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On a question of Mecheri and Braha
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Abstract. In this note we give an answer to a question posed recently by Mecheri and Braha [Oper.
Matrices 6 (2012), 725–734]. More precisely, we show that if T is n-perinormal, then the nonzero points λ of
its approximate point spectrum and joint approximate point spectrum are identical; but this is not the case
when λ = 0.

Let L(H) stand for the C∗ algebra of all bounded linear operators on an infinite dimensional complex
Hilbert space H. Recall that an operator T ∈ L(H) is said to be n-perinormal if T∗nTn ≥ (T∗T)n, where n ≥ 2
is an integer (see [2]). For T ∈ L(H), let σp(T), σ jp(T), σa(T) and σ ja(T) denote the point spectrum, joint point
spectrum, approximate point spectrum and joint approximate point spectrum of T, respectively (see [2]).

In [2, Theorem 2.1], it is shown that if T is n-perinormal, (T−λ)x = 0 and λ , 0, then (T−λ)∗x = 0. From
this result, a number of consequences are presented. For example, it is stated in [2, Theorem 3.1(1)] that
the point spectrum and joint point spectrum of an n-perinormal operator are identical. But, in fact, from [2,
Theorem 2.1], one could only deduce that

σ jp(T)\{0} = σp(T)\{0}

when T is n-perinormal. And Example 3 below shows that in general σp(T) , σ jp(T) for 2-perinormal
operators T.

Moreover, Mecheri and Braha posed in [2] an open question: Does σ ja(T) = σa(T) for n-perinormal
operator T? In this note we give an answer to this question by proving the following theorem and giving
an example of 2-perinormal operator T satisfying 0 ∈ σa(T)\σ ja(T).

Theorem 1. Let T be n-perinormal and 0 , λ ∈ C. If (T − λ)xm → 0 for a sequence {xm}∞m=1 of unit vectors, then
(T∗ − λ)xm → 0.

Proof. Let (T − λ)xm → 0 for unit vectors {xm}∞m=1 and let l ∈N. Since

Tl = (T − λ + λ)l =

l∑
j=1

(
l
j

)
λl− j(T − λ) j + λl,
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we have (Tl − λl)xm → 0. It then follows from∣∣∣||λlxm|| − ||(Tl − λl)xm||
∣∣∣ ≤ ||Tlxm|| = ||λlxm + (Tl − λl)xm||

≤ ||λlxm|| + ||(Tl − λl)xm||

that ||Tlxm|| → |λ|l. In particular, we have

||Txm|| → |λ| and ||Tnxm|| → |λ|n. (1)

By Hölder-McCarthy inequality [1, Lemma 2.1], we have∣∣∣∣∣∣|Tn| 2n xm

∣∣∣∣∣∣ = (|Tn| 2n xm, |Tn| 2n xm)
1
2 = (|Tn| 4n xm, xm)

1
2

≤ (|Tn|2xm, xm)
2
n · 12 = (T∗nTnxm, xm)

1
n = ||Tnxm||

2
n ,

which, together with (1), implies that

lim sup
m→∞

∣∣∣∣∣∣|Tn| 2n xm

∣∣∣∣∣∣ ≤ |λ|2. (2)

Since T is n-perinormal, |Tn| 2n − |T|2 is positive. It then follows from∣∣∣∣∣∣(|Tn| 2n − |T|2)
1
2 xm

∣∣∣∣∣∣2 = (|Tn| 2n xm, xm) − (|T|2xm, xm) ≤
∣∣∣∣∣∣|Tn| 2n xm

∣∣∣∣∣∣ − ||Txm||2

that (|Tn| 2n − |T|2)
1
2 xm → 0 and so (|Tn| 2n − |T|2)xm → 0. By (2) and the fact that

||T∗λxm|| − ||T∗(T − λ)xm|| ≤ ||T∗Txm|| ≤
∣∣∣∣∣∣(|Tn| 2n − |T|2)xm

∣∣∣∣∣∣ + ∣∣∣∣∣∣|Tn| 2n xm

∣∣∣∣∣∣,
we get

lim sup
m→∞

||T∗xm|| ≤ |λ|.

Since

||T∗xm − λxm||2 = (T∗xm − λxm,T∗xm − λxm)

= (T∗xm,T∗xm) − λ(xm,T∗xm) − λ(T∗xm, xm) + |λ|2

= ||T∗xm||2 − λ(Txm, xm) − λ(xm,Txm) + |λ|2

= ||T∗xm||2 − λ((T − λ)xm, xm) − λ(xm, (T − λ)xm) − |λ|2,

we have
lim sup

m→∞
||T∗xm − λxm||2 ≤ |λ|2 − |λ|2 = 0.

This establishes that (T∗ − λ)xm → 0.

Corollary 2. If T is n-perinormal, then
σ ja(T)\{0} = σa(T)\{0}.

The next example shows that there exists a 2-perinormal operator T satisfying

0 ∈ σp(T)\σ jp(T) and 0 ∈ σa(T)\σ ja(T).
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Example 3. Let U be the unilateral right shift operator on l2(N) with the canonical orthogonal basis {en}∞n=1
and

T =
(

2 +U e1 ⊗ e1
0 0

)
on H = l2(N) ⊕ Ce1.

Put S = (2 +U∗)(2 +U). Then

T∗ =
(

2 +U∗ 0
e1 ⊗ e1 0

)
,

T∗T =
(

S 2e1 ⊗ e1
2e1 ⊗ e1 e1 ⊗ e1

)
and

(T∗T)2 =

(
S2 + 4e1 ⊗ e1 S · 2e1 ⊗ e1 + 2e1 ⊗ e1

2e1 ⊗ e1 · S + 2e1 ⊗ e1 5e1 ⊗ e1

)
.

Moreover,

T2 =

(
(2 +U)2 (2 +U) · e1 ⊗ e1

0 0

)
,

T∗2 =
(

(2 +U∗)2 0
e1 ⊗ e1 · (2 +U∗) 0

)
and

T∗2T2 =

(
(2 +U∗)S(2 +U) (2 +U∗)S · e1 ⊗ e1
e1 ⊗ e1 · S(2 +U) e1 ⊗ e1 · S · e1 ⊗ e1

)
.

Since S = (2 +U∗)(2 +U), a routine calculation shows that

(2 +U∗)S(2 +U) = S2 + 4e1 ⊗ e1,

(2 +U∗)S · e1 ⊗ e1 = S · 2e1 ⊗ e1 + 2e1 ⊗ e1

and
e1 ⊗ e1 · S · e1 ⊗ e1 = 5e1 ⊗ e1.

Thus T∗2T2 = (T∗T)2 and hence T is 2-perinormal.
Next, we show that

0 ∈ σp(T)\σ jp(T) and 0 ∈ σa(T)\σ ja(T).

Clearly, ker(T) = {−(2 +U)−1ae1 ⊕ ae1 : a ∈ C} and ker(T∗) = {0} ⊕ Ce1, hence

ker(T) ∩ ker(T∗) = {0} ⊕ {0}.

Consequently, 0 ∈ σp(T)\σ jp(T). Evidently, 0 ∈ σa(T). We claim that 0 < σ ja(T). Otherwise, there exists a
sequence {xn}∞n=1 of unit vectors satisfying Txn → 0 and T∗xn → 0. For n ∈ N, let xn = (b1,n, b2,n, · · · ) ⊕ ane1 ∈
l2(N) ⊕ Ce1. Then

a2
n +

∞∑
k=1

b2
k,n = 1, (3)

(2b1,n + an)2 +

∞∑
k=1

(2bk+1,n + bk,n)2 → 0, (4)

and
∞∑

k=1

(2bk,n + bk+1,n)2 + b2
1,n → 0. (5)
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By (5), (4) and (3), we have
b2

1,n → 0, (2b1,n + an)2 → 0, a2
n → 0

and
∞∑

k=1

b2
k,n → 1,

∞∑
k=2

b2
k,n → 1.

Then by (4), we have
∞∑

k=1

(2bk+1,n + bk,n)2 =

∞∑
k=1

(4b2
k+1,n + 4bk+1,nbk,n + b2

k,n)→ 0.

Thus
∞∑

k=1

4bk+1,nbk,n → −5,

which contradicts to the fact that

∞∑
k=1

|4bk+1,nbk,n| ≤
∞∑

k=1

2(b2
k+1,n + b2

k,n) ≤ 4.
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