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Abstract. In this paper we introduce the notion of s-polaroid and compare it with the related notions of
right polaroid and a-polaroid. We establish for a bounded linear operator defined on a Banach space several
sufficient and necessary conditions for which properties (b), (ab), (1b), and (1ab) hold.

1. Introduction

Throughout this note we assume that X is an infinite dimensional complex Banach space. Let B(X),
B0(X) denote, respectively, the algebra of bounded linear operators, the ideal of compact operators acting
onX. If T ∈ B(X) we shall write N(T) and R(T) for the null space and range of T. Also, let α(T) := dim N(T),
β(T) := dim X/R(T), and let σ(T), σa(T), σs(T), σp(T), p0(T), π0(T) denote the spectrum, approximate point
spectrum, surjective spectrum, point spectrum of T, the set of poles of the resolvent of T, the set of all
eigenvalues of T which are isolated in σ(T), respectively. For T ∈ B(X), the smallest nonnegative integer p
such that N(Tp) = N(Tp+1) is called the ascent of T and denoted by p(T). If no such integer exists, we set
p(T) = ∞. The smallest nonnegative integer q such that R(Tq) = R(Tq+1) is called the descent of T and denoted
by q(T). If no such integer exists, we set q(T) = ∞. An operator T ∈ B(X) is called upper semi-Fredholm if it
has closed range and finite dimensional null space and is called lower semi-Fredholm if it has closed range
and its range has finite co-dimension. If T ∈ B(X) is either upper or lower semi-Fredholm, then T is called
semi-Fredholm, and index of a semi-Fredholm operator T ∈ B(X) is defined by

i(T) := α(T) − β(T).

If both α(T) and β(T) are finite, then T is called Fredholm. T ∈ B(X) is called Weyl if it is Fredholm of index
zero, and Browder if it is Fredholm of finite ascent and descent. The essential spectrum σe(T), the Weyl
spectrum σw(T) and the Browder spectrum σb(T) of T ∈ B(X) are defined by ([16])

σe(T) := {λ ∈ C : T − λ is not Fredholm},

σw(T) := {λ ∈ C : T − λ is not Weyl},

σb(T) := {λ ∈ C : T − λ is not Browder},
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respectively. For T ∈ B(X) and a nonnegative integer n define Tn to be the restriction of T to R(Tn) viewed as
a map from R(Tn) into R(Tn) (in particular T0 = T). If for some integer n the range R(Tn) is closed and Tn is
upper (resp. lower) semi-Fredholm, then T is called upper (resp. lower) semi-B-Fredholm. Moreover, if Tn is
Fredholm, then T is called B-Fredholm. T is called semi-B-Fredholm if it is upper or lower semi-B-Fredholm.

Definition 1.1. Let T ∈ B(X) and let

∆(T) := {n ∈N : m ∈N and m ≥ n⇒ (R(Tn) ∩N(T)) ⊆ (R(Tm) ∩N(T))}.

Then the degree of stable iteration dis(T) of T is defined as dis(T) := inf ∆(T).

Let T be semi-B-Fredholm and let d be the degree of stable iteration of T. It follows from [11, Proposition
2.1] that Tm is semi-Fredholm and i(Tm) = i(Td) for each m ≥ d. This enables us to define the index of semi-
B-Fredholm T as the index of semi-Fredholm Td. In [7] he studied this class of operators and he proved [7,
Theorem 2.7] that an operator T ∈ B(X) is B-Fredholm if and only if T = T1 ⊕ T2, where T1 is Fredholm
and T2 is nilpotent. It appears that the concept of Drazin invertibility plays an important role for the class
of B-Fredholm operators. It is well known that T is Drazin invertible if and only if it has finite ascent and
descent, which is also equivalent to the fact that

T = T1 ⊕ T2, where T1 is invertible and T2 is nilpotent.

An operator T ∈ B(X) is called B-Weyl if it is B-Fredholm of index 0. The B-Fredholm spectrum σBF(T), the
B-Weyl spectrum σBW(T), and the Drazin spectrum of T are defined by

σBF(T) := {λ ∈ C : T − λ is not B-Fredholm},

σBW(T) := {λ ∈ C : T − λ is not B-Weyl},
σD(T) := {λ ∈ C : T − λ is not Drazin invertible}.

Now we consider the following sets:

BF+(X) := {T ∈ B(X) : T is upper semi-B-Fredholm},
BF−+(X) := {T ∈ B(X) : T ∈ BF+(X) and i(T) ≤ 0},
LD(X) := {T ∈ B(X) : p(T) < ∞ and R(Tp(T)+1) is closed},
RD(X) := {T ∈ B(X) : q(T) < ∞ and R(Tq(T)) is closed}.

By definition,
σBea(T) := {λ ∈ C : T − λ < BF−+(X)}

is the upper semi-B-essential approximate point spectrum and

σLD(T) := {λ ∈ C : T − λ < LD(X)}

is the left Drazin spectrum, and
σRD(T) := {λ ∈ C : T − λ < RD(X)}

is the right Drazin spectrum. It is well known that

σBea(T) ⊆ σLD(T) = [σBea(T) ∪ acc σa(T)] ⊆ σD(T),

where we write acc K for the accumulation points of K ⊆ C.

Definition 1.2. An operator T ∈ B(X) has the single valued extension property at λ0 ∈ C (abbreviated SVEP
at λ0) if for every open neighborhood U of λ0 the only analytic function f : U −→ X which satisfies the
equation

(T − λ) f (λ) = 0
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is the constant function f ≡ 0 on U. The operator T is said to have SVEP if T has SVEP at every λ ∈ C.

Evidently, every operator T, as well as its dual T∗, has SVEP at every point of the boundary ∂σ(T) of the
spectrum σ(T), in particular, at every isolated point of σ(T). We also have (see [1, Theorem 3.8])

p(T − λ) < ∞ =⇒ T has SVEP at λ, (1.1)

and dually

q(T − λ) < ∞ =⇒ T∗ has SVEP at λ. (1.2)

Remark 1.3. If T−λ is semi-Fredholm then the implications (1.1) and (1.2) are equivalences, see [1, Chapter
3].

By definition,
σea(T) := ∩{σa(T + K) : K ∈ B0(X)}

is the essential approximate point spectrum, and

σab(T) := ∩{σa(T + K) : TK = KT and K ∈ B0(X)}

is the Browder essential approximate point spectrum. If we write iso K := K \ acc K then we let

π00(T) := {λ ∈ iso σ(T) : 0 < α(T − λ) < ∞ },

πa
00(T) := {λ ∈ iso σa(T) : 0 < α(T − λ) < ∞ },

p00(T) := σ(T) \ σb(T),

pa
00(T) := σa(T) \ σab(T),

pa
0(T) := {λ ∈ σa(T) : T − λ ∈ LD(X)},

ps
0(T) := {λ ∈ σs(T) : T − λ ∈ RD(X)},
πa

0(T) := {λ ∈ iso σa(T) : λ ∈ σp(T)}.

We say that Weyl’s theorem holds for T ∈ B(X), in symbol (W), if

σ(T) \ σw(T) = π00(T),

Browder’s theorem holds for T ∈ B(X), in symbol (B), if

σ(T) \ σw(T) = p00(T).

The following variants of Weyl’s theorem has been introduced by Rakočević, Berkani, and Zariouh in
([10],[11],[12],[13],[17]).

Definition 1.4. Let T ∈ B(X).

(1) a-Weyl’s theorem holds for T, in symbol (aW), if σa(T) \ σea(T) = πa
00(T) and a-Browder’s theorem holds for T,

in symbol (aB), if σa(T) \ σea(T) = pa
00(T).

(2) Generalized Weyl’s theorem holds for T, in symbol (1W), if σ(T) \ σBW(T) = π0(T) and generalized Browder’s
theorem holds for T, in symbol (1B), if σ(T) \ σBW(T) = p0(T).
(3) Generalized a-Weyl’s theorem holds for T, in symbol (1aW), if σa(T) \ σBea(T) = πa

0(T) and generalized a-
Browder’s theorem holds for T, in symbol (1aB), if σa(T) \ σBea(T) = pa

0(T).
(4) T satisfies property (w) if σa(T) \ σea(T) = π00(T) and satisfies property (b) if σa(T) \ σea(T) = p00(T).
(5) T satisfies property (1w) if σa(T) \ σBea(T) = π0(T) and satisfies property (1b) if σa(T) \ σBea(T) = p0(T).
(6) T satisfies property (aw) if σ(T) \ σw(T) = πa

00(T) and satisfies property (ab) if σ(T) \ σw(T) = pa
00(T).
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(7) T satisfies property (1aw) if σ(T) \ σBW(T) = πa
0(T) and satisfies property (1ab) if σ(T) \ σBW(T) = pa

0(T).

It is well known ([5],[6],[10],[11],[12],[13],[15],[17]) that if T ∈ B(X) then we have:

(1W) (1aB) (1aw) ⇒ (aw) (1B)
⇑ ⇑ ⇓ ⇑

(1w) ⇒ (1b) ⇒ (1ab) ⇒ (1B) ⇐ (1W) ⇐ (1aW) ⇒ (1aB)
⇓ ⇓ ⇓ ⇕ ⇓ ⇓ ⇕

(w) ⇒ (b) ⇒ (ab) ⇒ (B) ⇐ (W) ⇐ (aW) ⇒ (aB)
⇓ ⇓ ⇑ ⇓

(W) (aB) (aw) (B)

In the next section we give the structural properties for operators satisfying properties (b), (ab), (1b), and
(1ab), respectively. Also, we show that properties (b), (ab), (1b), and (1ab) can be characterized by means of
localized SVEP.

2. New extended Weyl type theorems

Theorem 2.1. Let T ∈ B(X). Then the following statements are equivalent:

(1) T satisfies property (ab);

(2) σab(T) = σa(T) ∩ σw(T).

Proof. (1)⇒(2): Suppose that property (ab) holds for T. Then Browder’s theorem holds for T by [13,
Theorem 2.4], and so σw(T) = σb(T). Therefore σab(T) ⊆ σa(T) ∩ σw(T). Conversely, let λ < σab(T). Then
either λ ∈ σa(T) \ σab(T) or λ < σa(T). Since T satisfies property (ab), we know that if λ ∈ σa(T) \ σab(T),
then λ ∈ σ(T) \ σw(T), which means that λ < σa(T) ∩ σw(T). Therefore σa(T) ∩ σw(T) ⊆ σab(T), and hence
σab(T) = σa(T) ∩ σw(T).

(2)⇒(1): Suppose that σab(T) = σa(T) ∩ σw(T). Let λ ∈ σ(T) \ σw(T). Then λ ∈ σ(T) \ σab(T). Since T − λ
is Weyl but not invertible, it is not bounded below. Therefore λ ∈ pa

00(T). Conversely, let λ ∈ pa
00(T). Then

λ ∈ σa(T) \ σab(T). Since σab(T) = σa(T) ∩ σw(T), λ < σw(T). Therefore λ ∈ σ(T) \ σw(T), and hence T satisfies
property (ab).

We give necessary and sufficient conditions for a Banach space operator T to satisfy property (b).

Theorem 2.2. Let T ∈ B(X). Then the following statements are equivalent:

(1) T satisfies property (b);

(2) σea(T) = σb(T) ∩ σa(T);

(3) σa(T) \ σea(T) ⊆ p00(T);

(4) σa(T) = σea(T) ∪ ∂σ(T);

(5) σa(T) \ σea(T) ⊆ iso σ(T);
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(6) σa(T) ∩ acc σ(T) ⊆ σea(T).

Proof. The statements (1), (2), and (3) are equivalent from [18, Theorem 2.2]. Now we show that (1)⇒ (4)
⇒ (5)⇒ (1) and (5)⇔ (6).

(1)⇒(4): Suppose that T satisfies property (b). Then σa(T) \ σea(T) = p00(T). Let λ ∈ σa(T) \ σea(T). Then
λ ∈ p00(T), and so λ ∈ iso σ(T) ⊆ ∂σ(T). Therefore σa(T) ⊆ σea(T) ∪ ∂σ(T). But σea(T) ∪ ∂σ(T) ⊆ σa(T), hence
σa(T) = σea(T) ∪ ∂σ(T).

(4)⇒(5): Suppose that σa(T) = σea(T)∪∂σ(T). Let λ ∈ σa(T)\σea(T). Then λ ∈ ∂σ(T), and so T and T∗ have
SVEP at λ. Since T − λ is upper semi-Fredholm, T − λ is Browder by Remark 1.3. Therefore λ ∈ iso σ(T),
and hence σa(T) \ σea(T) ⊆ iso σ(T).

(5)⇒(1): Suppose that σa(T) \ σea(T) ⊆ iso σ(T). Let λ ∈ σa(T) \ σea(T). Then λ is an isolated point of
σ(T), and so T and T∗ have SVEP at λ. Therefore λ ∈ σ(T) \ σb(T) = p00(T) by Remark 1.3. Conversely,
let λ ∈ p00(T). Then λ is an isolated point of σ(T) and T − λ is Browder. So λ ∈ σa(T) \ σea(T), and hence
σa(T) \ σea(T) = p00(T). Therefore T satisfies property (b).

(5) ⇔ (6): Suppose that σa(T) \ σea(T) ⊆ iso σ(T). Let λ < σea(T). If λ < σa(T), then clearly, λ <
σa(T) ∩ acc σ(T). If λ ∈ σa(T), then λ ∈ σa(T) \ σea(T), which means that λ is an isolated point of σ(T).
Therefore λ < σa(T) ∩ acc σ(T).

Conversely, suppose that σa(T) ∩ acc σ(T) ⊆ σea(T). Let λ ∈ σa(T) \ σea(T). Then λ < acc σ(T), and hence
λ ∈ iso σ(T). Therefore σa(T) \ σea(T) ⊆ iso σ(T).

Corollary 2.3. Let T be quasinilpotent. Then T satisfies property (b).

Proof. Straightforward from Theorem 2.2 and the fact that acc σ(T) = ∅whenever T is quasinilpotent.

Theorem 2.4. Let T ∈ B(X). Then the following statements are equivalent:

(1) T satisfies property (1ab) ;

(2) σLD(T) = σa(T) ∩ σBW(T).

Proof. (1)⇒(2): Suppose that property (1ab) holds for T. Then T satisfies generalized Browder’s theorem by
[13, Corollary 2.6], and so σBW(T) = σD(T). Therefore σLD(T) ⊆ σa(T) ∩ σBW(T). Conversely, let λ < σLD(T).
Then either λ ∈ σa(T) \ σLD(T) or λ < σa(T). If λ < σa(T), then clearly λ < σa(T) ∩ σBW(T). Since T satisfies
property (1ab), we know that ifλ ∈ σa(T)\σLD(T), thenλ ∈ σ(T)\σBW(T), which means thatλ < σa(T)∩σBW(T).
Therefore σa(T) ∩ σBW(T) ⊆ σLD(T), and hence σLD(T) = σa(T) ∩ σBW(T).

(2)⇒(1): Suppose that σLD(T) = σa(T) ∩ σBW(T). Let λ ∈ σ(T) \ σBW(T). Then λ ∈ σ(T) \ σLD(T). Since
T − λ is B-Weyl but not invertible, it is not bounded below. Therefore λ ∈ pa

0(T). Conversely, let λ ∈ pa
0(T).

Then λ ∈ σa(T) \ σLD(T). Since σLD(T) = σa(T) ∩ σBW(T), λ < σBW(T). Therefore λ ∈ σ(T) \ σBW(T), and hence
T satisfies property (1ab).

In analogy with Theorem 2.2, we obtain the following.

Theorem 2.5. Let T ∈ B(X). Then the following statements are equivalent:
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(1) T satisfies property (1b);

(2) σBea(T) = σD(T) ∩ σa(T);

(3) σa(T) = σBea(T) ∪ p0(T);

(4) σa(T) \ σBea(T) ⊆ π0(T);

(5) σa(T) \ σBea(T) ⊆ iso σ(T);

(6) σa(T) = σBea(T) ∪ ∂σ(T).

Proof. (1)⇒(2) : Suppose that T satisfies property (1b). Since σBea(T) ⊆ σLD(T) ⊆ σD(T) and σBea(T) ⊆ σa(T),
σBea(T) ⊆ σD(T) ∩ σa(T). Conversely, let λ < σBea(T). If λ < σa(T), then clearly, λ < σD(T) ∩ σa(T). If λ ∈ σa(T),
then λ ∈ σa(T) \ σBea(T). Since T satisfies property (1b), λ ∈ σ(T) \ σD(T). Therefore λ < σD(T) ∩ σa(T), and
hence σD(T) ∩ σa(T) ⊆ σBea(T).

(2)⇒(3): Suppose that σBea(T) = σD(T) ∩ σa(T). Let λ ∈ σa(T) \ σBea(T). Then λ < σD(T), and so λ ∈ p0(T).
But σBea(T) ∪ p0(T) ⊆ σa(T), hence σa(T) = σBea(T) ∪ p0(T).

(3)⇒(4): Since p0(T) ⊆ π0(T), it is clear.

(4)⇒(5): Since π0(T) ⊆ iso σ(T), it is clear.

(5)⇒(6): Let λ ∈ σa(T) \ σBea(T). Then λ is an isolated point of σ(T), and so λ ∈ ∂σ(T). Conversely, since
σBea(T) ⊆ σa(T) and ∂σ(T) ⊆ σa(T), σBea(T) ∪ ∂σ(T) ⊆ σa(T). Therefore σa(T) = σBea(T) ∪ ∂σ(T).

(6)⇒(1): Suppose that σa(T) = σBea(T)∪∂σ(T). Let λ ∈ σa(T) \σBea(T). Then λ is a boundary point of σ(T),
and so T and T∗ have SVEP at λ. Therefore T − λ is B-Weyl. But λ ∈ ∂σ(T), hence T − λ is Drazin invertible
by [8, Theorem 2.3], which implies that λ ∈ p0(T). Conversely, let λ ∈ p0(T). Then λ ∈ iso σ(T) \ σD(T), and
hence λ ∈ σa(T) \ σBea(T). Therefore T satisfies property (1b).

Let H(σ(T)) denote the set of all analytic functions defined on an open neighborhood of σ(T). From
Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Suppose T∗ has SVEP. Then f (T) satisfies property (1b) for each f ∈ H(σ(T)).

Proof. Since T∗ has SVEP, σBea(T) = σD(T) and σa(T) = σ(T). So σBea(T) = σD(T) ∩ σa(T), and hence T satisfies
property (1b) by Theorem 2.5. Since f (T∗) = f (T)∗, f (T)∗ has SVEP for each f ∈ H(σ(T)). Therefore f (T)
satisfies property (1b) for each f ∈ H(σ(T)).

The following example shows that the converse of Corollary 2.6 does not hold in general.

Example 2.7. Let U ∈ B(ℓ2) be the unilateral shift. Then σBea(U) = σa(U) = Γ and σD(U) = D, where Γ is the
unit circle and D is the open unit disk. Therefore σBea(U) = σD(U) ∩ σa(U), and hence U satisfies property
(1b) by Theorem 2.5. However, U∗ does not have SVEP.

Now we characterize the bounded linear operators T satisfying properties (b), (1b), (ab), and (1ab) by
means of localized SVEP.

Theorem 2.8. Let T ∈ B(X). Then the following equivalences hold:
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(1) T satisfies property (b)⇔ T∗ has SVEP at every λ ∈ σa(T) \ σea(T).

(2) T satisfies property (1b)⇔ T∗ has SVEP at every λ ∈ σa(T) \ σBea(T).

(3) T satisfies property (ab)⇔ T∗ has SVEP at every λ ∈ [σ(T) \ σw(T)] ∪ pa
00(T).

(4) T satisfies property (1ab)⇔ T∗ has SVEP at every λ ∈ [σ(T) \ σBW(T)] ∪ pa
0(T).

Proof. (1): Suppose that T satisfies property (b). Then σa(T) \ σea(T) = p00(T). Let λ ∈ σa(T) \ σea(T). Then
λ ∈ p00(T), and so λ is an isolated point of σ(T∗). Therefore T∗ has SVEP at λ. Conversely, suppose that T∗

has SVEP at every λ ∈ σa(T) \ σea(T). Let λ ∈ σa(T) \ σea(T). Since λ < σea(T), T − λ is upper semi-Fredholm
and i(T − λ) ≤ 0. But T∗ has SVEP at λ, hence i(T − λ) ≥ 0. So T − λ is Weyl. Since q(T − λ) < ∞ by Remark
1.3, T − λ is Browder. Therefore λ ∈ p00(T), and hence σa(T) \ σea(T) ⊆ p00(T). But p00(T) ⊆ σa(T) \ σea(T) for
any T, hence σa(T) \ σea(T) = p00(T). Therefore T satisfies property (b).

(2): Suppose that T satisfies property (1b). Then σa(T) \ σBea(T) = p0(T). Let λ ∈ σa(T) \ σBea(T). Then
λ ∈ p0(T), and so λ is an isolated point of σ(T∗). Therefore T∗ has SVEP at λ. Conversely, suppose that T∗ has
SVEP at every λ ∈ σa(T) \ σBea(T). Let λ ∈ σa(T) \ σBea(T). Since λ < σBea(T), T − λ is upper semi-B-Fredholm
and i(T − λ) ≤ 0. But T∗ has SVEP at λ, hence i(T − λ) ≥ 0. So T − λ is B-Weyl, and hence T − λ is
quasi-Fredholm. It follows form [2, Theorem 2.11] that q(T−λ) < ∞. Since T−λ =

(
T1 0
0 T2

)
, where T1 is Weyl

and T2 is nilpotent by [9, Lemma 4.1], T1 is Browder and T2 is nilpotent. Therefore T−λ is Drazin invertible,
and hence λ ∈ p0(T). So we have σa(T)\σBea(T) ⊆ p0(T). Conversely, let λ ∈ p0(T). Then λ ∈ σ(T)\σD(T), and
so λ ∈ iso σ(T) and T−λ is Drazin invertible. Therefore λ ∈ σa(T) \σBea(T), and hence p0(T) ⊆ σa(T) \σBea(T).
So T satisfies property (1b).

(3): Suppose that T satisfies property (ab). Then σ(T) \ σw(T) = pa
00(T). Let λ ∈ σ(T) \ σw(T). Then

λ ∈ pa
00(T), and so λ is an isolated point of σa(T), which implies that T has SVEP at λ. Since T − λ is Weyl,

it follows from Remark 1.3 that p(T − λ) < ∞. Therefore T − λ is Browder, and so λ is an isolated point of
σ(T∗). Hence T∗ has SVEP at λ. Conversely, suppose that T∗ has SVEP at every λ ∈ [σ(T) \ σw(T)] ∪ pa

00(T).
Let λ ∈ σ(T) \ σw(T). Since λ < σw(T), T − λ is Weyl. Since T∗ has SVEP at λ, it follows from Remark 1.3 that
q(T − λ) < ∞. Therefore T − λ is Browder, and hence λ ∈ pa

00(T). So σ(T) \ σw(T) ⊆ pa
00(T). Conversely, let

λ ∈ pa
00(T). Then T and T∗ have SVEP at λ. Since T − λ is upper semi-Fredholm, it follows from Remark 1.3

that T − λ is Weyl. So λ ∈ σ(T) \ σw(T), and hence pa
00(T) ⊆ σ(T) \ σw(T). Therefore T satisfies property (ab).

(4): Suppose that T satisfies property (1ab). Then σ(T) \ σBW(T) = pa
0(T). Let λ ∈ σ(T) \ σBW(T). Then

λ ∈ pa
0(T), and so λ is an isolated point of σa(T). Therefore T has SVEP at λ. Since T − λ is B-Weyl, it follows

from [9, Lemma 4.1] that T − λ =
(

T1 0
0 T2

)
, where T1 is Weyl and T2 is nilpotent. Since T1 has SVEP at 0, T1

is Browder by Remark 1.3. Hence T − λ is Drazin invertible, and so T∗ has SVEP at λ. Conversely, suppose
that T∗ has SVEP at every λ ∈ [σ(T)\σBW(T)]∪pa

0(T). Let λ ∈ σ(T)\σBW(T). Since λ < σBW(T), T−λ is B-Weyl.
But T∗ has SVEP at λ, hence T−λ is Drazin invertible. Therefore λ ∈ pa

0(T), and hence σ(T) \ σBW(T) ⊆ pa
0(T).

Conversely, let λ ∈ pa
0(T). Then T and T∗ have SVEP at λ. Since T − λ is upper semi-B-Fredholm, it follows

from [2, Theorems 2.7 and 2.11] that T − λ is B-Weyl. So λ ∈ σ(T) \ σBW(T), and hence pa
0(T) ⊆ σ(T) \ σBW(T).

Therefore T satisfies property (1ab).

Now we introduce the concept of s-polaroid and compare it with the related notions of right polaroid
and a-polaroid.
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Definition 2.9. Let T ∈ B(X). An operator T is called a-polaroid if iso σa(T) ⊆ p0(T). T is s-polaroid if
iso σs(T) ⊆ p0(T). T is called polaroid if iso σ(T) ⊆ p0(T). T is called isoloid if iso σ(T) ⊆ σp(T). T is said to be
left polaroid if iso σa(T) ⊆ pa

0(T) and T is said to be right polaroid if iso σs(T) ⊆ ps
0(T).

From these definitions, if T ∈ B(X) then we have:

T a-polaroid =⇒ T polaroid =⇒ T isoloid

T a-polaroid =⇒ T left polaroid

T left polaroid or right polaroid =⇒ T polaroid

The concept of s-polaroid and a-polaroid are dual each other:

Theorem 2.10. Let T ∈ B(X).

(1) Suppose T is s-polaroid. Then it is right polaroid.

(2) T is s-polaroid if and only if T∗ is a-polaroid.

Proof. (1) Suppose T is s-polaroid. Let λ is an isolated point of σs(T). Since T is s-polaroid, 0 < p := p(T−λ) =
q(T − λ) < ∞. So p = q(T − λ) ∈ N and (T − λ)p(X) is closed. Therefore λ ∈ ps

0(T), and hence T is right
polaroid.

(2) Recall that
σs(T) = σa(T∗) and σD(T) = σD(T∗).

Therefore p0(T) = p0(T∗), and hence

iso σs(T) ⊆ p0(T)⇐⇒ iso σa(T∗) ⊆ p0(T∗).

So T is s-polaroid if and only if T∗ is a-polaroid.

The following example shows that the converse of the statement (1) of Theorem 2.10, in general, does
not hold.

Example 2.11. Let U be the unilateral shift on ℓ2 and let A ∈ B(ℓ2) be given by

A(x1, x2, x3, . . . ) := (0, x2, x3, x4, . . . ).

Define T := U∗ ⊕ A. Then σs(T) = Γ ∪ {0}, and so iso σs(T) = {0}. Since q(T) = 1 and R(T) is closed, 0 ∈ ps
0(T).

Therefore T is right polaroid. However, since p(T) = ∞, T is not s-polaroid.

The following result gives a very simple framework for establishing property (1aw) if T is a-polaroid.

Theorem 2.12. Let T ∈ B(X). Suppose T is a-polaroid. Then the following statements are equivalent:

(1) T has SVEP at every λ < σBW(T);

(2) T satisfies property (1aw);

(3) T satisfies property (1ab);
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(4) T satisfies property (ab);

(5) T satisfies property (aw);

(6) Weyl’s theorem holds for T;

(7) Generalized Browder’s theorem holds for T.

Proof. (1)⇔ (2): Suppose T has SVEP at every λ < σBW(T). Let λ ∈ σ(T)\σBW(T). Then T−λ is B-Weyl. Since
T has SVEP at λ, T − λ is Drazin invertible. So λ ∈ iso σ(T) \ σD(T), and hence λ ∈ πa

0(T). Conversely, let
λ ∈ πa

0(T). Then λ is an isolated point of σa(T) and α(T − λ) > 0. Since T is a-polaroid, λ ∈ p0(T). Therefore
T − λ is Drazin invertible, and hence λ ∈ σ(T) \ σBW(T). Hence σ(T) \ σBW(T) = πa

0(T), and so T satisfies
property (1aw).
Conversely, suppose T satisfies property (1aw). Then σ(T) \ σBW(T) = πa

0(T). If λ < σ(T), then clearly, T has
SVEP at λ. If λ ∈ σ(T) \ σBW(T), then λ ∈ πa

0(T). Therefore λ is an isolated point of σa(T), and hence T has
SVEP at λ.

(2)⇒(3) and (3)⇒(4): These statements hold by [13, Theorems 3.5 and 2.2].

(4)⇒(5): Suppose T satisfies property (ab). Then σ(T) \ σw(T) = pa
00(T). To show that T satisfies property

(aw) it is sufficient to show that pa
00(T) = πa

00(T). Let λ ∈ πa
00(T). Then λ is an isolated point of σa(T) and

0 < α(T − λ) < ∞. Since T is a-polaroid, λ ∈ p0(T). Therefore T − λ has finite ascent and descent, and hence
T − λ is Browder, which implies that λ ∈ pa

00(T). But pa
00(T) ⊆ πa

00(T), hence pa
00(T) = πa

00(T). So T satisfies
property (aw).

(5)⇒(6): Suppose T satisfies property (aw). Then σ(T) \ σw(T) = πa
00(T). We first show that Browder’s

theorem holds for T. Let λ ∈ σ(T) \ σw(T). Then T − λ is Weyl and λ ∈ πa
00(T). So T has SVEP at λ, and so

p(T − λ) < ∞. Since 0 < α(T − λ) = β(T − λ) < ∞, 0 < p(T − λ) = q(T − λ) < ∞. Therefore T − λ is Browder,
and hence λ ∈ σ(T) \ σb(T). So σw(T) = σb(T), and hence Browder’s theorem holds for T. To show that
Weyl’s theorem holds for T it suffices to prove that the equality π00(T) = p00(T) holds. Let λ ∈ π00(T). Since
the inclusion π00(T) ⊆ πa

00(T) is clear, λ ∈ πa
00(T). Since T satisfies property (aw), λ ∈ σ(T) \ σw(T). But T

has SVEP at λ, hence 0 < p(T − λ) = q(T − λ) < ∞. Therefore λ ∈ p00(T), and so π00(T) ⊆ p00(T). Since the
opposite inclusion holds for every T ∈ B(X), π00(T) = p00(T). Therefore Weyl’s theorem holds for T.

(6)⇒(7): Suppose Weyl’s theorem holds for T. Then Browder’s theorem holds for T. Since T satisfies
Browder’s theorem if and only if T satisfies generalized Browder’s theorem, hence generalized Browder’s
theorem holds for T.

(7)⇒(1): Suppose generalized Browder’s theorem holds for T. Then σ(T) \ σBW(T) = p0(T). Since
p0(T) = σ(T) \ σD(T), σBW(T) = σD(T). Therefore T has SVEP at every λ < σBW(T).

In Theorem 2.12, the condition “a-polaroid” cannot be replaced by the weaker condition “polaroid”.

Example 2.13. Let U be the unilateral shift on ℓ2 and let A ∈ B(ℓ2) be given by

A(x1, x2, x3, . . . ) := (0, x2, x3, x4, . . . ).

Define T := U ⊕ A. Then σ(T) = σw(T) = D, and hence π00(T) = ∅. Moreover, since σa(T) = Γ ∪ {0},
iso σa(T) = {0}. Since N(T) = N(U) ⊕ N(A) and α(A) = 1, α(T) = 1. Hence πa

00(T) = {0}. Therefore Weyl’s
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theorem holds for T, while T does not satisfy property (aw). Since σ(T) = D, T is polaroid. However, since
p(T) = ∞, T is not a-polaroid.

In analogy with Theorem 2.12, we obtain the following.

Theorem 2.14. Let T ∈ B(X). Suppose T is a-polaroid. Then the following statements are equivalent:

(1) T∗ has SVEP at every λ ∈ σa(T) \ σBea(T);

(2) T satisfies property (1w);

(3) T satisfies property (1b);

(4) Generalized a-Weyl’s theorem holds for T;

(5) Generalized a-Browder’s theorem holds for T;

(6) T satisfies property (b);

(7) T satisfies property (w).

Proof. (1)⇔ (2): Suppose T∗ has SVEP at every λ ∈ σa(T)\σBea(T). Let λ ∈ σa(T)\σBea(T). Then T−λ is upper
semi-B-Fredholm and i(T−λ) ≤ 0. Since T∗ has SVEP at λ, i(T−λ) ≥ 0. Therefore T−λ is B-Weyl, and hence
T − λ is Drazin invertible. So λ ∈ π0(T), and hence λ ∈ σa(T) \ σBea(T) ⊆ π0(T). Conversely, let λ ∈ π0(T).
Then λ is an isolated point of σ(T) and α(T − λ) > 0. Since T is a-polaroid, λ ∈ p0(T), which implies that
T − λ is Drazin invertible. Therefore λ ∈ σa(T) \ σBea(T), and hence π0(T) ⊆ σa(T) \ σBea(T). So T satisfies
property (1w). Conversely, suppose T satisfies property (1w). Let λ ∈ σa(T) \ σBea(T). Then λ ∈ π0(T), and
so λ is an isolated point of σ(T∗). Therefore T∗ has SVEP at λ.

(2)⇒(3): It follows form [12, Theorem 2.15].

(3)⇒(4): Suppose T satisfies property (1b). Then σa(T) \ σBea(T) = p0(T). Let λ ∈ σa(T) \ σBea(T). Then
λ ∈ p0(T), and so λ is an isolated point of σ(T) and T − λ is Drazin invertible. Therefore λ is an isolated
point of σa(T) and α(T − λ) > 0. Hence λ ∈ πa

0(T). Conversely, let λ ∈ πa
0(T). Then λ is an isolated point of

σa(T) and α(T − λ) > 0. Since T is a-polaroid, λ ∈ p0(T). Therefore λ ∈ σa(T) \ σBea(T), and hence generalized
a-Weyl’s theorem holds for T.

(4)⇒(5): It follows form [10, Corollary 3.3].

(5)⇒(1): Suppose generalized a-Browder’s theorem holds for T. Then σa(T) \ σBea(T) = pa
0(T). Let

λ ∈ σa(T) \ σBea(T). Then λ ∈ pa
0(T), and so λ ∈ σa(T) \ σLD(T). Since σLD(T) = σBea(T) ∪ acc σa(T), λ is an

isolated point of σa(T). Since T is a-polaroid, λ ∈ p0(T). Therefore λ is an isolated point of σ(T∗), and hence
T∗ has SVEP at λ.

(5) ⇔ (6): Suppose generalized a-Browder’s theorem holds for T. Then σa(T) \ σBea(T) = pa
0(T). Let

λ ∈ σa(T) \ σea(T). Then λ ∈ σa(T) \ σLD(T), and so λ is an isolated point of σa(T). Since T is a-polaroid,
λ ∈ p0(T). Therefore T is an isolated point of σ(T). But T − λ is upper semi-Fredholm, hence it is Browder.
So λ ∈ p00(T), and hence σa(T) \ σea(T) ⊆ p00(T). But p00(T) ⊆ σa(T) \ σea(T) holds for any operator T, hence
T satisfies property (b). Conversely, suppose T satisfies property (b). Then σa(T) \ σea(T) = p00(T). Since
p00(T) ⊆ pa

00(T), σa(T) \ σea(T) ⊆ pa
00(T), which means that a-Browder’s theorem holds for T. It follows form

[5, Theorem 3.2] that generalized a-Browder’s theorem holds for T.
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(6) ⇔ (7): Suppose T satisfies property (b). Then σa(T) \ σea(T) = p00(T). To show that T satisfies
property (w) it suffices to prove that π00(T) ⊆ p00(T). Let λ ∈ π00(T). Then λ is an isolated point of
σ(T) and 0 < α(T − λ) < ∞. Since T is a-polaroid, λ ∈ p0(T). Therefore there exists a positive integer
p := p(T − λ) = q(T − λ), and hence R(T − λ)p is closed. But α(T − λ)p < ∞, hence (T − λ)p is upper
semi-Fredholm, which implies that T−λ is upper semi-Fredholm. Since λ is an isolated point of σ(T), T−λ
is Browder. Therefore λ ∈ p00(T), and hence π00(T) ⊆ p00(T). So T satisfies property (w).

Let H1(σ(T)) denote the set of all analytic functions on an open neighborhood of σ(T) such that f is
nonconstant on each of the components of its domain. Let T ∈ B(X). Then it is well known that the
inclusion σw( f (T)) ⊆ f (σw(T)) holds for every f ∈ H(σ(T)) with no other restriction on T.

Theorem 2.15. Let T ∈ B(X) and f ∈ H1(σ(T)).

(1) Suppose T satisfies property (1b). Then f (T) satisfies property (1b)⇔ f (σBea(T)) = σBea( f (T)).

(2) Suppose T satisfies property (ab). Then f (T) satisfies property (ab)⇔ f (σw(T)) = σw( f (T)).

(3) Suppose T satisfies property (1ab). Then f (T) satisfies property (1ab)⇒ f (σBW(T)) = σBW( f (T)).

Proof. (1):(⇒) Suppose f (T) satisfies property (1b). Then σa( f (T)) \ σBea( f (T)) = p0( f (T)). To show that
σBea( f (T)) = f (σBea(T)) it suffices to show that f (σBea(T)) ⊆ σBea( f (T)). Suppose λ < σBea( f (T)). Then f (T) − λ
is upper semi-B-Fredholm and i( f (T) − λ) ≤ 0. We consider two cases.

Case I. Suppose f (T) − λ is bounded below. Then λ < σa( f (T)) = f (σa(T)), and hence λ < f (σBea(T)).
Case II. Suppose λ ∈ σa( f (T)) \ σBea( f (T)). Since f (T) satisfies property (1b), λ ∈ p0( f (T)), which implies

that λ ∈ σ( f (T)) \ σD( f (T)). Since σD( f (T)) = f (σD(T)) by [14, Theorem 2.7], λ < f (σD(T)). Therefore
λ < f (σBea(T)), and hence f (σBea(T)) ⊆ σBea( f (T)). It follows from Cases I and II that f (σBea(T)) = σBea( f (T)).

(⇐) Suppose f (σBea(T)) = σBea( f (T)). Since T has property (1b),

σa( f (T)) \ σBea( f (T)) = f (σa(T)) \ f (σBea(T))

⊆ f (σa(T) \ σBea(T))

= f (p0(T))

⊆ p0( f (T)).

Therefore σa( f (T)) \ σBea( f (T)) ⊆ p0( f (T)), and hence f (T) satisfies property (1b).

(2):(⇒) Suppose f (T) satisfies property (ab). Then σ( f (T)) \ σw( f (T)) = pa
00( f (T)). To show that σw( f (T)) =

f (σw(T)) it suffices to show that f (σw(T)) ⊆ σw( f (T)). Suppose λ < σw( f (T)). Then f (T) − λ is Weyl. We
consider two cases.

Case I. Suppose f (T) − λ is invertible. Then λ < σ( f (T)) = f (σ(T)), and hence λ < f (σw(T)).
Case II. Suppose λ ∈ σ( f (T)) \ σw( f (T)). Since f (T) satisfies property (ab), λ ∈ pa

00( f (T)), which means
that λ ∈ σa( f (T)) \ σab( f (T)). Therefore f (T) − λ is Weyl and p( f (T) − λ) < ∞. Therefore f (T) − λ is Browder,
and hence λ < σb( f (T)) = f (σb(T)). So λ < f (σw(T)), and hence f (σw(T)) ⊆ σw( f (T)). It follows from Cases I
and II that f (σw(T)) = σw( f (T)).

(⇐) Suppose f (σw(T)) = σw( f (T)). Let λ ∈ σ( f (T)) \ σw( f (T)). Write

f (T) − λ = c0(T − λ1)(T − λ2) · · · (T − λn)1(T),
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where c0, λ1, λ2, . . . , λn ∈ C and 1(T) is invertible. Since λ < σw( f (T)) = f (σw(T)), T − λi is Weyl for each
i = 1, 2, . . . ,n. Since T satisfies property (ab), Browder’s theorem holds for T. Therefore σw(T) = σb(T), and
hence T − λi is Browder for each i = 1, 2, . . . , n. So f (T) − λ is Browder, and hence λ ∈ pa

00( f (T)).
Conversely, suppose λ ∈ pa

00( f (T)). Then λ ∈ σa( f (T)) \ σab( f (T)). Write

f (T) − λ = c0(T − λ1)(T − λ2) · · · (T − λn)1(T),

where c0, λ1, λ2, . . . , λn ∈ C and 1(T) is invertible. Since λ ∈ f (σa(T)) \ f (σab(T)), λi ∈ σa(T) \ σab(T) for each
i = 1, 2, . . . ,n. But T satisfies property (ab), hence every T − λi is Weyl. So λ ∈ σ( f (T)) \ σw( f (T)). Therefore
f (T) satisfies property (ab).

(3): Suppose f (T) satisfies property (1ab). Then σ( f (T)) \ σBW( f (T)) = pa
0( f (T)). Since T satisfies property

(1ab), generalized Browder’s theorem holds for T. So σBW( f (T)) ⊆ f (σBW(T)) by [14, Corollary 2.8]. Now we
show that f (σBW(T)) ⊆ σBW( f (T)). Suppose that λ < σBW( f (T)). Then f (T) − λ is B-Weyl. We consider two
cases.

Case I. Suppose f (T) − λ is invertible. Then λ < σ( f (T)) = f (σ(T)), and hence λ < f (σBW(T)).
Case II. Suppose λ ∈ σ( f (T)) \ σBW( f (T)). Since f (T) satisfies property (1ab), λ ∈ pa

0( f (T)), which means
that λ ∈ σa( f (T)) \ σLD( f (T)). Therefore f (T)−λ is B-Weyl and p( f (T)−λ) < ∞. Therefore f (T)−λ is Drazin
invertible, and hence λ < σD( f (T)) = f (σD(T)). So λ < f (σBW(T)), and hence f (σBW(T)) ⊆ σBW( f (T)). It
follows from Cases I and II that f (σBW(T)) = σBW( f (T)).

In [3], it was shown that if T is left polaroid then f (T) is also left polaroid for each f ∈ H1(σ(T)). We
obtain similar results for a-polaroid and s-polaroid, respectively.

Theorem 2.16. Let T ∈ B(X) and f ∈ H1(σ(T)).

(1) Suppose T is a-polaroid. Then f (T) is a-polaroid.

(2) Suppose T is s-polaroid. Then f (T) is s-polaroid.

Proof. (1) Suppose T is a-polaroid. We shall show that iso σa( f (T)) ⊆ p0( f (T)). Let λ0 ∈ iso σa( f (T)). Since the
spectral mapping theorem holds for the approximate point spectrum, λ0 ∈ iso f (σa(T)). We let µ0 ∈ σa(T)
such that f (µ0) = λ0. Denote by Ω the connected component of the domain of f which contains µ0. Now
we show that µ0 ∈ iso σa(T). Assume to the contrary that µ0 ∈ acc σa(T). Then there exists a sequence (µn)
in Ω ∩ σa(T) of distinct scalars such that µn −→ µ0 as n → ∞. Since C := {µ0, µ1, µ2, µ3, . . . } is a compact
subset of Ω, f may assume the value λ0 = f (µ0) only a finite number of points of C, so for n sufficiently
large f (µn) , f (µ0) = λ0, and since f (µn) −→ f (µ0) = λ0 as n→∞, λ0 ∈ acc f (σa(T)). This is a contradiction.
Therefore µ0 ∈ iso σa(T). Since T is a-polaroid, µ0 ∈ p0(T). It follows from [4, Theorem 2.9] that λ0 ∈ p0( f (T)).
Hence f (T) is a-polaroid.

(2) Suppose T is s-polaroid. Then T∗ is a-polaroid by Theorem 2.10. So f (T)∗ = f (T∗) is a-polaroid by (1),
and hence f (T) is s-polaroid.

From Theorem 2.12, if T is a-polaroid and T has SVEP, then T satisfies property (1aw). We can prove
more:

Theorem 2.17. Let T ∈ B(X) and f ∈ H1(σ(T)).
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(1) Suppose T is a-polaroid and has SVEP. Then f (T) satisfies property (1aw).

(2) Suppose T is s-polaroid and T∗ has SVEP. Then f (T∗) satisfies property (1aw).

Proof. (1) Since T is a-polaroid, f (T) is a-polaroid by Theorem 2.16. Also, since T has SVEP, f (T) has SVEP.
It follows from Theorem 2.12 that f (T) satisfies property (1aw).

(2) Since T is s-polaroid, f (T) is s-polaroid by theorem 2.16, which means that f (T∗) = f (T)∗ is a-polaroid.
Since T∗ has SVEP, f (T∗) = f (T)∗ has SVEP. Therefore f (T∗) satisfies property (1aw) by Theorem 2.12.
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