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Abstract. This paper introduces new dimension-like functions of the type Ind defined by big bases.
Relations between them are investigated. It is shown that these dimension-like functions satisfy subspace,
partition, and sum theorems.

1. Introduction and preliminaries

The origin of a notion of the classical dimension Ind goes back to L. Brouwer and was formally defined
for normal spaces by E. Čech. Its transfinite extension was introduced by Yu. Smirnov (see, for example,
[1, 2, 10, 14, 15]). First of all, for the purpose of its reasonable usage in the broader than normal classes
of spaces different dimension-like functions appeared. V. Filippov and M. Charalambous introduced
dimension Ind0, M. Charalambous uniform dimension µ−Ind, A. Chigogidze relative dimension I, S.
Iliadis base-normal dimension I, S. Bogatyı̆ and G. Himšiašvili uniform large dimension (see [3–5, 7, 8, 11]).
The latter is based on the G. Toulmin’s idea in the case of small inductive dimension: to fix a base on a space
and examine dimensions of its closed subsets being equipped with the trace of this fixed base (see [16, 17]).

Another generalized approach to the investigation of inductive dimension-like functions belongs to A.
Lelek (see [12]). It allows, for example, to examine dimension Ind and dimension-like invariant Cmp from
one point of view. This approach is developed in the works of M. Charalambous, V. Chatyrko, Y. Hattory
and others (see, for example, [6]). The paper is devoted to the investigation of dimension-like functions of
the type Ind and generalizes both approaches of G. Toulmin and A. Lelek.

We denote by ω the first infinite cardinal, by O the class of all ordinals, and by (+) the natural sum of
Hessenberg (see [13]). We also consider two extra symbols, “−1” and “∞” such that −1 < α < ∞ for every
α ∈ O, −1(+)α = α(+)(−1) = α for every α ∈ O∪ {−1,∞}, and∞(+)α = α(+)∞ = ∞ for every α ∈ O∪ {∞}. We
recall some properties of natural sum. Let α and β be ordinals. Then,
(1) α(+)β = β(+)α,
(2) if α1 < α2, then α1(+)β < α2(+)β, and
(3) α(+)n = α + n for n < ω.

Let U be a subset of a space X. We denote by ClX(U) and BdX(U) the closure and the boundary of U in
X, respectively.
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Recall that a family B of open subsets of a space X is called a big base for X if for every pair (F,U) of
subsets of X, where F is closed, U is open, and F ⊆ U, there exists V ∈ B such that F ⊆ V ⊆ U.

The large inductive dimension of a space X (see for example [10] and [15]), denoted by Ind(X), is defined
as follows:
(i) Ind(X) = −1 if and only if X = ∅.
(ii) Ind(X) ≤ α, where α ∈ O, if and only if there exists a big base B for X such that for every V ∈ B we have
Ind(BdX(V)) < α.
(iii) Ind(X) = ∞ if and only if the inequality Ind(X) ≤ α does not hold for every α ∈ O ∪ {−1}.

By a class of big bases we mean a class consisting of pairs (B,X), where B is a big base for the space X
containing the sets ∅ and X. Let IB be a class of big bases. A big base B of a space X is said to be a IB-big base
if (B,X) ∈ IB.

In [11] base dimension-like functions of the type Ind were introduced. In Section 2 we introduce and
study new dimension-like functions of the type Ind. In Sections 3, 4, and 5 we give for these dimension-like
functions subspace, partition, and sum theorems. Finally, in Section 6 we give some questions concerning
these functions.

2. New dimension-like functions of the type Ind

Definition 2.1. A class IL of big bases is said to be b-rim-hereditary if for every (A,X) ∈ IL and U ∈ A we have

({BdX(U) ∩ V : V ∈ A},BdX(U)) ∈ IL.

Definition 2.2. Let IL be a b-rim-hereditary class of big bases. We denote by b-IndIL the base dimension-like
function with domain the class of all big bases and range the class O ∪ {−1,∞} satisfying the following
conditions:
(i) b-IndIL(A,X) = −1 if and only if (A,X) ∈ IL.
(ii) b-IndIL(A,X) ≤ α, where α ∈ O, if and only if for every U ∈ A we have

b-IndIL({BdX(U) ∩ V : V ∈ A},BdX(U)) < α.

(iii) b-IndIL(A,X) = ∞ if and only if the inequality b-IndIL(A,X) ≤ α does not hold for every α ∈ O ∪ {−1}.

Definition 2.3. Let IB be a class of big bases. A class IL of big bases is said to be IB-b0-rim-hereditary if for
every (A,X) ∈ IL there exists a IB-big base B for X such that for every U ∈ B we have

({BdX(U) ∩ V : V ∈ A},BdX(U)) ∈ IL.

Definition 2.4. Let IB be a class of big bases and IL a IB-b0-rim-hereditary class of big bases. We denote by
b0-IndIB

IL the base dimension-like function with domain the class of all big bases and range the classO∪ {−1,∞}
satisfying the following conditions:
(i) b0-IndIB

IL(A,X) = −1 if and only if (A,X) ∈ IL.
(ii) b0-IndIB

IL(A,X) ≤ α, where α ∈ O, if and only if there exists a IB-big base B for X such that for every U ∈ B
we have

b0-IndIB
IL({BdX(U) ∩ V : V ∈ A},BdX(U)) < α.

(iii) b0-IndIB
IL(A,X) = ∞ if and only if the inequality b0-IndIB

IL(A,X) ≤ α does not hold for every α ∈ O ∪ {−1}.

Remark 2.5. If IL = {({∅}, ∅)}, then the base dimension-like functions b-IndIL and b0-IndIB
IL are denoted by

b-Ind and b0-IndIB, respectively. Moreover, if the class IB consists of all pairs (B,X), where B is a big base
for the space X containing the sets ∅ and X, then the base dimension-like function b0-IndIB is denoted by
b0-Ind.

The proof of the following theorems are straightforward verifications of the inductive definitions.
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Theorem 2.6. For every big base A of a space X the following relations are true:
(1) Ind(X) ≤ b-Ind(A,X).
(2) Ind(X) = b0-Ind(A,X).

Theorem 2.7. Let IB be a class of big bases. The following propositions are true:
(1) For every big base A of a space X, Ind(X) ≤ b0-IndIB(A,X).
(2) For every IB-big base A of a space X, b0-IndIB(A,X) ≤ b-Ind(A,X).

Example 2.8. (1) Let Q be the space of the rational numbers with the natural topology. It is known that
Ind(Q) = 0 (see for example [10] and [15]). We consider the big base

A = {∪{(an, bn) ∩Q : n = 1, 2, . . .} : an, bn ∈ Q}

for Q. Then, b-Ind(A,Q) ≥ 1. Indeed, for the element

U = ∪{( 1
n + 1

,
1
n

) ∩Q : n = 1, 2, . . .} ∈ A

we have
BdQ(U) = {1

n
: n = 1, 2, . . .} ∪ {0}.

Since BdQ(U) , ∅, we have
b-Ind({BdQ(U) ∩ V : V ∈ A},BdQ(U)) ≥ 0.

Thus, b-Ind(A,Q) ≥ 1 and, therefore, Ind(Q) < b-Ind(A,Q). Also, if we consider as IB the class of all pairs
(B,X), where B is a big base for the space X containing the sets ∅ and X, then by Theorem 2.6(2) we have

b0-IndIB(A,Q) = b0-Ind(A,Q) = Ind(Q) = 0.

Thus, b0-IndIB(A,Q) < b-Ind(A,Q).
(2) Let IB = {({∅}, ∅), (B,Q)}, where Q is the space of the rational numbers with the natural topology and

B = {∪{(an, bn) ∩Q : n = 1, 2, . . .} : an, bn ∈ R \Q}.

For every big base A for Q we have b0-IndIB(A,Q) ≥ 1. Indeed, the only IB-big base for Q is B. For the
element

U = ∪{( π
n + 1

,
π
n

) ∩Q : n = 1, 2, . . .} ∈ B

we have BdQ(U) = {0}. Since BdQ(U) , ∅, we have

b0-IndIB({BdQ(U) ∩ V : V ∈ A},BdQ(U)) ≥ 0.

Thus, b0-IndIB(A,Q) ≥ 1 and, therefore, Ind(Q) < b0-IndIB(A,Q).

Remark 2.9. The relations between base dimension-like functions of the type Ind are summarized in the
following diagram, where for dimension-like functions d f1, d f2 “d f1 → d f2” stands for d f1 ≤ d f2 and
“d f1 9 d f2” stands for d f1 � d f2.
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Definition 2.10. Let A1 be a big base of a space X1 and A2 a big base of a space X2. The pairs (A1,X1) and
(A2,X2) are homeomorphic if there exists a homeomorphism h : X1 → X2 such that A2 = {h(U) : U ∈ A1}.

Definition 2.11. A class IB of big bases is said to be topological if for every homeomorphism h : X → Y the
condition (B,X) ∈ IB implies that ({h(U) : U ∈ B},Y) ∈ IB.

Theorem 2.12. Let IL be a b-rim-hereditary topological class of big bases. If the pairs (A1,X1) and (A2,X2) are
homeomorphic, then b-IndIL(A1,X1) = b-IndIL(A2,X2).

Proof. Let (A1,X1) and (A2,X2) be two homeomorphic pairs. We prove that

b-IndIL(A1,X1) ≤ b-IndIL(A2,X2).

Let h : X1 → X2 be a homeomorphism such that A2 = {h(U) : U ∈ A1} and b-IndIL(A2,X2) = α ∈ O ∪ {−1,∞}.
The inequality is clear if α = −1 or α = ∞. We suppose that α ∈ O and the inequality is true for every
homeomorphic pairs (AX,X) and (AY,Y) with b-IndIL(AY,Y) < α. Since b-IndIL(A2,X2) = α, for every U ∈ A2
we have

b-IndIL({BdX2 (U) ∩ V : V ∈ A2},BdX2 (U)) < α.

We prove that
b-IndIL({BdX1 (h−1(U)) ∩ h−1(V) : V ∈ A2},BdX1 (h−1(U))) < α

for every U ∈ A2. Indeed, let U ∈ A2. Since

BdX1 (h−1(U)) = ClX1 (h−1(U)) \ h−1(U) = h−1(ClX2 (U) \U) = h−1(BdX2 (U)),

we have h(BdX1 (h−1(U))) = h(h−1(BdX2 (U))) = BdX2 (U).
Moreover, for V ∈ A2 we have

h(BdX1 (h−1(U)) ∩ h−1(V)) = h(h−1(BdX2 (U)) ∩ h−1(V)) = BdX2 (U) ∩ V.

Thus, the pairs
({BdX2 (U) ∩ V : V ∈ A2},BdX2 (U))

and
({BdX1 (h−1(U)) ∩ h−1(V) : V ∈ A2},BdX1 (h−1(U)))

are homeomorphic. By inductive assumption, we have

b-IndIL({BdX1 (h−1(U)) ∩ h−1(V) : V ∈ A2},BdX1 (h−1(U))) ≤ b-IndIL({BdX2 (U) ∩ V : V ∈ A2},BdX2 (U)) < α.

The following theorem is proved similar to Theorem 2.12.

Theorem 2.13. Let IB be a topological class of big bases and IL a IB-b0-rim-hereditary topological class of big bases.
If the pairs (A1,X1) and (A2,X2) are homeomorphic, then b0-IndIB

IL(A1,X1) = b0-IndIB
IL(A2,X2).

3. Subspace theorems

Theorem 3.1. (The first subspace theorem) Let IB be a class of bases and A1, A2 two bases of a space X with
A1 ⊆ A2. Then, we have
(1) b-Ind(A1,X) ≤ b-Ind(A2,X),
(2) b0-IndIB(A1,X) ≤ b0-IndIB(A2,X).
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Proof. (1) Let b-Ind(A2,X) = α ∈ O ∪ {−1,∞}. The inequality is clear if α = −1 or α = ∞. We suppose
that α ∈ O and the inequality is true if b-Ind(A2,X) < α. Since b-Ind(A2,X) = α, for every U ∈ A2 we have

b-Ind({BdX(U) ∩ V : V ∈ A2},BdX(U)) < α.

Also, for every U ∈ A1 we have

{BdX(U) ∩ V : V ∈ A1} ⊆ {BdX(U) ∩ V : V ∈ A2}.

Hence, by inductive assumption, for every U ∈ A1 we have

b-Ind({BdX(U) ∩ V : V ∈ A1},BdX(U)) ≤ b-Ind({BdX(U) ∩ V : V ∈ A2},BdX(U)).

Thus, b-Ind(A1,X) ≤ α.
Similar we can prove the relation (2).

Definition 3.2. A class IB of big bases is said to be closed with respect to the subspaces if for every (A,X) ∈ IB
and for every closed subset X1 of X we have (A1,X1) ∈ IB, where A1 = {X1 ∩U : U ∈ A}.

The following theorem is proved similar to Theorem 3.1.

Theorem 3.3. (The second subspace theorem) Let IB be a class of big bases, closed with respect to the subspaces,
X1 a closed subspace of a space X, A a big base for X, and A1 = {X1 ∩U : U ∈ A}. Then, we have
(1) b-Ind(A1,X1) ≤ b-Ind(A,X),
(2) b0-IndIB(A1,X1) ≤ b0-IndIB(A,X).

4. Partition theorems

Definition 4.1. (See [9]) Let A and B be two disjoint subsets of a space X. A subset L of X is said to be a
partition between A and B if there exist two open subsets O1 and O2 of X such that A ⊆ O1, B ⊆ O2, O1∩O2 = ∅,
and X \ L = O1 ∪O2.

Theorem 4.2. Let IL be a b-rim-hereditary class of big bases and A a big base of a normal space X. If b-IndIL(A,X) ≤ α,
where α ∈ O, then for every pair (F,K) of disjoint closed subsets of X there exists U ∈ A such that the set BdX(U) is a
partition between F and K and b-IndIL({BdX(U) ∩ V : V ∈ A},BdX(U)) < α.

Proof. Let b-IndIL(A,X) ≤ α, where α ∈ O, and (F,K) be a pair of disjoint closed subsets of X. Since the
space X is normal, there exists an open subset W of X such that F ⊆ W ⊆ ClX(W) ⊆ X \ K. Therefore, there
exists U ∈ A such that

F ⊆ U ⊆W ⊆ ClX(W) ⊆ X \ K

and
b-IndIL({BdX(U) ∩ V : V ∈ A},BdX(U)) < α.

We observe that the set BdX(U) is the required partition between F and K.

The following theorem is proved similar to Theorem 4.2.

Theorem 4.3. Let IB be a class of big bases, IL a IB-b0-rim-hereditary class of big bases, and A a big base of
a normal space X. If b0-IndIB

IL(A,X) ≤ α, where α ∈ O, then for every pair (F,K) of disjoint closed subsets
of X there exist a IB-base B for X and U ∈ B such that the set BdX(U) is a partition between F and K and
b0-IndIB

IL({BdX(U) ∩ V : V ∈ A},BdX(U)) < α.
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5. Sum theorems

Definition 5.1. A class IB of big bases is said to be closed with respect to the unions if we have (A1 ∪A2,X) ∈ IB
for every (A1,X) ∈ IB and (A2,X) ∈ IB.

Theorem 5.2. Let IB be a class of big bases, closed with respect to the unions and subspaces, and A1, A2 two big bases
of a space X. Then, we have
(1) b-Ind(A1 ∪ A2,X) ≤ b-Ind(A1,X)(+)b-Ind(A2,X),
(2) b0-IndIB(A1 ∪ A2,X) ≤ b0-IndIB(A1,X)(+)b0-IndIB(A2,X).

Proof. (1) If b-Ind(A1,X) = ∞ or b-Ind(A2,X) = ∞, then the inequality holds. Also, if b-Ind(A1,X) = −1
or b-Ind(A2,X) = −1, then X = ∅ and, therefore, b-Ind(A1 ∪ A2,X) = −1. We suppose that the inequality
is true for every pairs (B1,Y) and (B2,Y) with b-Ind(B1,Y)(+)b-Ind(B2,Y) < α, where α is a fixed ordinal
and let (A1,X) and (A2,X) be two pairs with b-Ind(A1,X)(+)b-Ind(A2,X) = α. We need to prove that b-
Ind(A1 ∪A2,X) ≤ α. Let b-Ind(A1,X) = α1 and b-Ind(A2,X) = α2, where α1, α2 ∈ O. Since b-Ind(A1,X) = α1,
for every U ∈ A1 we have

b-Ind({BdX(U) ∩ V : V ∈ A1},BdX(U)) < α1.

Since b-ind(A2,X) = α2, for every U ∈ A2 we have

b-Ind({BdX(U) ∩ V : V ∈ A2},BdX(U)) < α2.

Let U ∈ A1 ∪ A2. Without loss of generality we can assume that U ∈ A1. Then,

b-Ind({BdX(U) ∩ V : V ∈ A1},BdX(U)) < α1.

Also, by Theorem 3.3(1) we have

b-Ind({BdX(U) ∩ V : V ∈ A2},BdX(U)) ≤ b-Ind(A2,X) = α2.

Thus,

b-Ind({BdX(U) ∩ V : V ∈ A1},BdX(U))(+)b-Ind({BdX(U) ∩ V : V ∈ A2},BdX(U)) < α1 + α2 = α.

Therefore, by inductive assumption, we have

b-Ind({BdX(U)∩V : V ∈ A1∪A2},BdX(U)) = b-Ind({BdX(U)∩V : V ∈ A1}∪{BdX(U)∩V : V ∈ A2},BdX(U)) < α.

This means that b-Ind(A1 ∪ A2,X) ≤ α.
Similar we can prove the relation (2).

Definition 5.3. A class IB of big bases is said to be closed with respect to the free unions if we have (A1∪A2,X1⊎
X2) ∈ IB for every (A1,X1) ∈ IB and (A2,X2) ∈ IB, where the symbol ⊎ denotes the free union of topological
spaces.

The following two theorems are straightforward verifications of the inductive definitions.

Theorem 5.4. Let A1 be a big base of a space X1 and A2 a big base of a space X2. If b-Ind(A1,X1) ≤ α and
b-Ind(A2,X2) ≤ α, where α ∈ O ∪ {−1,∞}, then

b-Ind(A1 ∪ A2,X1 ⊎ X2) ≤ α.

Theorem 5.5. Let IB be a class of big bases, closed with respect to the free unions, A1 a big base of X1, and A2 a big
base of X2. If b0-IndIB(A1,X1) ≤ α and b0-IndIB(A2,X2) ≤ α, where α ∈ O ∪ {−1,∞}, then

b0-IndIB(A1 ∪ A2,X1 ⊎ X2) ≤ α.
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Theorem 5.6. Let A be a big base of a space X, X1 and X2 two closed subsets of X, A1 = {X1 ∩ U : U ∈ A}, and
A2 = {X2 ∩U : U ∈ A} such that X = X1 ∪X2, b-Ind(A1,X1) ≤ α, and b-Ind(A2,X2) ≤ α, where α ∈ O∪ {−1,∞}.
Then, b-Ind(A,X) ≤ α.

Proof. Obviously, the theorem is true if α = −1 or α = ∞. Let α ∈ O. We suppose that the theorem is
true for every ordinal less than α and we prove the theorem for the ordinal α. Let b-Ind(A1,X1) ≤ α and
b-Ind(A2,X2) ≤ α. We prove that b-Ind(A,X) ≤ α. Since b-Ind(A1,X1) ≤ α, for every U ∈ A we have

b-Ind({BdX1 (U ∩ X1) ∩ V : V ∈ A},BdX1 (U ∩ X1)) = β1 < α.

Since b-Ind(A2,X2) ≤ α, for every U ∈ A we have

b-Ind({BdX2 (U ∩ X2) ∩ V : V ∈ A},BdX2 (U ∩ X2)) = β2 < α.

Without loss of generality we can suppose that β1 ≤ β2. Let U ∈ A. Then,

BdX(U) = BdX((U ∩ X1) ∪ (U ∩ X2)) ⊆ BdX1 (U ∩ X1) ∪ BdX2 (U ∩ X2).

Therefore, by Theorem 3.3(1), we have

b-Ind({BdX(U) ∩ V : V ∈ A},BdX(U)) = b-Ind({BdX((U ∩ X1) ∪ (U ∩ X2)) ∩ V : V ∈ A},
BdX((U ∩ X1) ∪ (U ∩ X2))) ≤
b-Ind({(BdX1 (U ∩ X1) ∪ BdX2 (U ∩ X2)) ∩ V : V ∈ A},BdX1 (U ∩ X1) ∪ BdX2 (U ∩ X2)) =
b-Ind({BdX1 (U ∩ X1) ∩ V : V ∈ A} ∪ {BdX2 (U ∩ X2)) ∩ V : V ∈ A},BdX1 (U ∩ X1) ∪ BdX2 (U ∩ X2)).

Also, by inductive assumption, we have

b-Ind({BdX1 (U ∩ X1) ∩ V : V ∈ A} ∪ {BdX2 (U ∩ X2)) ∩ V : V ∈ A},BdX1 (U ∩ X1) ∪ BdX2 (U ∩ X2)) ≤ β2 < α.

Thus, b-Ind(A,X) ≤ α.

6. Questions

(1) Is it true the converse of theorems 4.2 and 4.3?
(2) Is it true the sum theorem (Theorems 5.6) for the base dimension-like function b0-IndIB

IL?
(3) Is it true the following product theorem:
Let AX be a big base of a space X and AY a big base of a space Y such that the family

AX×Y = {U × V : U ∈ AX,V ∈ AY}

is a big base for X × Y. Then, b-Ind(AX×Y,X × Y) ≤ b-Ind(AX,X)(+)b-Ind(AY,Y).
(4) Let d f be one of the following base dimension like functions b-IndIL and b0-IndIB

IL. For every space X we
consider the class of ordinals

Spd f (X) = {d f (A,X) : A is a big base for X}.

(a) Find the class of all spaces X such that Spd f (X) = {0, 1, 2, . . . , n}, where n ∈ ω.
(b) Find the class of all spaces X such that Spd f (X) = {∞}.
(c) Find the class of all spaces X such that Spd f (X) = ω.
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in the article.
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[3] S.A. Bogatyı̆, G.N. Himšiašvili, Large inductive uniform dimension (Russian), Sakharth. SSR Mecn. Akad. Moambe 70 (1973)

25-28.
[4] M. Charalambous, Inductive dimension theory for uniform spaces, Annales Univ. Sci. Budapest, Sectio Math. Soc. 17 (1974)

21–28.
[5] M.G. Charalambous, V.A. Chatyrko, Notes on the inductive dimension Ind0, (Proc. 17th Summer Conf. Topology Appl.) Topology

Proc. 27 (2003) 395-410.
[6] M.G. Charalambous, V.A. Chatyrko, Y. Hattori, The behaviour of dimension functions on unions of closed subsets, J. Math. Soc.

Japan 56 (2004) 489-501.
[7] A. Chigogidze, Inductive dimensions of completely regular spaces, Comment. Math. Univ. Carolinae 18 (1977) 623–637.
[8] A. Chigogidze, Relative dimensions (Russian), General Topology. Spaces of functions and dimension, Moskov. Gos. Univ.,

Moscow, 1985, 67–117.
[9] R. Engelking, General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.

[10] R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann Verlag, Lemgo, 1995.
[11] S.D. Iliadis, Universal spaces and mappings, North-Holland Mathematics Studies 198, Elsevier Science B.V., Amsterdam, 2005.
[12] A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloq. Math. 12 (1964) 221-227.
[13] K. Kuratowski, A. Mostowski, Set Theory with an introduction to descriptive set theory, Studies in Logic and the Foundations

of Mathematics, Vol. 86, North-Holland Publishing Co., Amsterdam-New York-Oxford; PWN—Polish Scientific Publishers,
Warsaw, 1976.

[14] B.A. Pasynkov, V.V. Fedorcuk, V.V. Filippov, Dimension theory (Russian), In: Algebra. Topology. Geometry, Vol. 17, pp. 229–306,
308, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979.

[15] A.R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
[16] G.H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. (3) 4 (1954) 177-195.
[17] G.H. Toulmin, Uniform dimension and the product theorem, Quart. J. Math., Oxford Ser. (2) 4 (1953) 198-203.


