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Existence of covering topological R-modules
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Abstract. Let R be a topological ring with identity and M a topological (left) R-module such that the
underlying topology of M is path connected and has a universal cover. Let 0 € M be the identity element
of the additive group structure of M, and N a submodule of the R-module 71 (M, 0). In this paper we prove
that if R is discrete, then there exists a covering morphism p: (My,0) — (M,0) of topological R-modules
with characteristic group N and such that the structure of R-module on M lifts to ]\7IN. In particular, if N is
a singleton group, then this cover becomes a universal cover.

Introduction

The theory of covering spaces is one of the most interesting theories in algebraic topology. It is well
known that the group structure of a topological group X lifts to its simply connected covering space, i.e.,
if X is an additive topological group, p: X — X is a simply connected covering map, 0 € X is the identity
element and 0 € X is such that p(0) = 0, then X becomes a topological group with identity 0 such that
p is a morphism of topological groups (see for example [4]). Related to this a monodromy principle for
topological ring is proved in [7] and for topological R-modules in [8].

Let X be a topological space which has a universal cover, xo € X and G a subgroup of the fundamental
group m1(X, xo) of X at the point xp. We know from [9, Theorem 10.42] that there is a covering map

p: (Xe, %) — (X, xo) of pointed spaces. Here note that if G is singleton this becomes the universal covering

map. Further, if X is a topological group, then X; becomes a topological group such that p is a morphism
of topological groups.

In this paper we apply this method to topological R-modules in the case where the topological ring R is
discrete and obtain a more general result than the one for the topological group case. So this generalized
result guarantees that the R-module structure of a topological R-module lifts to the universal cover. Recently,
in [1], some results on the covering morphisms of R-module objects in the category of groupoids have been
given (see also [5]). The problem of universal covers of non-connected topological groups was first studied
in [10], where it is proved that a topological group X determines an obstruction class kx in H3(rtp(X), m1(X, €)),
and that the vanishing of kx is a necessary and sufficient condition for the lifting of the group structure to a
universal cover. In [6] an analogous algebraic result is given in terms of crossed modules and group objects
in the category of groupoids (see also [3] for a revised version, which generalizes these results and shows
the relation with the theory of obstructions to extension for groups).
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1. Preliminaries on covering spaces

We assume the usual theory of covering maps. All spaces X are assumed to be locally path connected
and semi-locally 1-connected, so that each path component of X admits a simply connected cover.

Recall that a covering map p: X — X of connected spaces is called universal if it covers every cover of X
in the sense that if g: Y — X is another cover of X then there exists a map r: X — Y such that p = qr (hence

r becomes a cover). A covering map p: X — Xis called simply connected if Xis simply connected. Note that
a simply connected cover is a universal cover.

We call a subset V of X liftable if it is open, path connected and V lifts to each cover of X, that is, if
p: X — X is a covering map, 1: V — X is the inclusion map, and ¥ € X satisfies p(¥) = x € V, then there
exists a map (necessarily unique) i: V — X such that pi = 1 and i(x) = .

It is easy to see that V is liftable if and only if it is open, path connected and for all x € V, 1, 11(V, x) = {e}
where 111(V, x) is the fundamental group of V at the base point x, 1, is the map induced by the inclusion map

: V — X and e is the identity element of the fundamental group 71 (X, x). Remark that if X is a semi-locally

51rnply connected topological space, then each point x € X has a liftable neighbourhood.

For a covering map p: (X %o) — (X, x0), the subgroup p (71 (X xo)) of 11(X, xo) is called characteristic group
of p, where p, is the morphism induced by p. Two covering maps p: (X, %) = (X, x0) and q: Y, 7o) — (X, x0)

are called equivalent if there is a homeomorphism f: (X, %) — (Y, #jp) such that qf = p.

Let X be a topological space which has a universal cover and xy € X and G a subgroup of the fundamental
group 11(X, xo) of X at the point xy. We recall a construction from [9, p.295] as follows: Let P(X, x¢) be the
set of all paths of @ in X with a(0) = x. Define a relation on P(X, xp) by a =~ g if and only if a(1) = (1) and
[ap!] € G. The relation defined in this way is an equivalence relation. Denote the equivalence relation

of a by (a)c and define X as the set of all such equivalence classes. Define a function p: Xg — X by

payc) = a(l). Let ag be the constant path at xp and ¥ = {(@)¢ € XG. If @ € P(X,xp) and U is an open
neighbourhood of a(1), then a path of the form aA, where A is a path in U with A(0) = a(1), is called a

continuation of a. For an {a)g € }?G and an open neighbourhood U of a(1), let
(e, U) = {ad)g: A() € U}.

Then the subsets ({a)g, U) form a basis for a topology on )?G such that the map p: (XG,XO) — (X, xg) is
continuous.

Theorem 1.1. ([9, Theorem 10.34]) Let (X, xo) be a pointed topological space and G a subgroup of m1(X, xo). If X

is connected, locally path connected and semi-locally simply connected, then p: (X¢, Xy) — (X, xo) is a covering map
with characteristic group G .

Remark 1.2. Let X be a connected, locally path connected and semi-locally simply connected topological
space and q: (X, %) — (X, x0) a covering map. Let G be the characteristic group of q. Then the covering
map g is equivalent to the covering map p: (X¢, %) — (X, x¢) corresponding to G.

So from Theorem 1.1 the following result is obtained.

Theorem 1.3. ([9, Theorem 10.42]) Suppose that X is a connected, locally path connected and semi-locally simply
connected topological group. Let e € X be the identity element and q: (X,2) - (X,e)a covering map. Then the group
structure of X lifts to X, i.e X becomes a topological group such that & is identity and q: (X,8) > (X,e)isa morphism

of topological groups.
2. Existence of covering topological modules

In this section we apply the preliminaries of Section 1 to topological R-modules and obtain covering
R-modules of some topological R-modules.
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A topological ring is a ring R with a topology on the underlying set such that the structure maps
(x,y) » x+y, x = —x and (x,y) — xy are all continuous. A topological ring R is called discrete if the
underlying space of R is discrete.

Definition 2.1. Let R be a topological ring with identity 1z. A topological (left) R-module is an additive
abelian topological group M together with a continuous function 6: R X M — M, (r,a) — ra called scalar
multiplication of R on M such that forr,s € Rand a,b e M

(i) r@+b)=ra+rb;
(i) (r+s)a =ra+ sa;
(iii) (rs)a = r(sa);
(iv) 1ra =a.

Let R be a topological ring with identity 1z and M, M’ be topological R-modules. A morphism of topological
R-modules is a continuous group morphism f: M’ — M such that f(ra) = vf(a) fora € M’ and r € R. A
morphism f: M’ — M of topological R-modules is called cover if f is a covering map on the underlying
topological spaces.

In [2, Theorem 3.1] the following theorem is proved.

Theorem 2.2. If R is a countable, Noetherian ring and M is any R-module, then the underlying abelian group of M
is isomorphic to the fundamental group 1(T(M)) for some path connected topological R-module T(M).

This result enables us to find examples of topological R-modules which are not simply connected and
so they have non-trivial covering spaces.
As a consequence of Theorem 2.2, taking R = Z the following corollary holds.

Corollary 2.3. Every abelian group is isomorphic to the fundamental group of some topological group.

We now generalize Theorem 1.1 to the topological R-modules. Let M be a topological R-module with a
continuous scalar multiplication 6: RXxM — M and 0 € M the identity element of the additive group. Then
the scalar multiplication 6 induces a map

&: Rx (M, 0) = 11 (M,0), (1, [a]) + rla] = [ra]

which makes 71(M, 0) an R-module. Let N be a submodule of 1(M, 0), i.e., N is a subgroup of the additive
group M and rn € N whenever r € R and n € N. Hence by Theorem 1.1 we have a covering map
p: (Mn,0) — (M, 0) corresponding to N as a subgroup of the additive group m1(M, 0).

We now prove a general result for topological R-modules. If the topological ring R is chosen as the ring
Z of integers endowed with the discrete topology, then this theorem reduces to Theorem 1.1.

Theorem 2.4. Let M be a topological R-module such that R is a discrete topological ring. Let 0 € M be the identity
element of the additive group and let N be a submodule of 71(M,0). Suppose that the underlying space of M is

connected, locally path connected and semi-locally simply connected. Let p: (My,0) — (M, 0) be the covering map
corresponding to N as a subgroup of the additive group 7,(M, 0) as in Theorem 1.1. Then the R-module structure of

M lifts to My, i.e., My is a topological R-module and p: My — M is a morphism of topological R-modules.

Proof. As in the proof of Theorem 1.1 let P(M, 0) be the set of all paths « in M with initial point 0 and My
the set of equivalence classes defined via N as in Section 1. The addition defined on P(M, 0) by

(a+p)(t) = alt) + B(1)
fora,p € P(M,0) and 0 < t < 1 induces an addition on My defined by
(@n + (BIn = (a + P)N.
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By Theorem 1.1 this addition is well-defined, Myisa topological group with this addition and p: (My, 0) —
(M, 0), {a)n = p(1) is a morphism of topological groups.
In addition to this we define a scalar multiplication on My by

5: Rx My — My, (r,{a)n) = r{a)n = (ra)n

where the path ra is defined by (ra)(t) = r(a(t)) for t € [0,1]. Here note that if r € R and {(a)n € MN, then the

initial point of the path ra is 0 and so (rayy € My. For B € P(M,0) and r € R we have that
(B (1) = (B)(1 = 1) = rB(1 = £) = 1B~ (¢)

and
(1B~ (ra) = (6~ a).

Soif a ~y pand r € R, then [ap~'] € N and
[ra)(rB) )] = [(ra)(rB~)] = [r(ap™)].

Since N is an R-submodule of 711 (M, 0), we have that [r(af™1)] € N and so (ra)y = (rB)n, i.e., §is well-defined.
For {(a)n, (f)n € My and 7, s € R we have the following

@) (r+s)}an =L(r+s)a)n = r{a)n + s{a)w;
(i) ran + (BIn) = r{adn + r{B)n;
(iii) (rs){a)v = {(rs)a)y = r(s{a)n);
(iv) Kayn = (la)n = ().
So My becomes an R-module. We now prove that the scalar multiplication
5: Rx My — My, (r, {a)n) = Hady = (rajy

is continuous. Let ({(ra)n, W) be a basic open neighbourhood of (ra)y. So W is an open neighbourhood of
(ra)(1) = ra(1). Since the map 6: R X M — M is continuous there are open neighbourhoods V and U of r
and a(1) respectively in R and M such that 6(V x U) = VU € W. Since R is discrete {r} X ({a)n, U) is an open

neighbourhood of (, (@)n) in R X My and
5({r} x ({ayn, ) = rayn, U) = ((ra)n, rU) C ((ra)y, W)

since VU € W and therefore § is continuous.
Further, by the definition of p: My — M, for (a)y and r € R we have that

p(r{a)n) = p((rayn) = ra(l) = rp{a)n).
O

In Theorem 2.4 if the R-submodule N is chosen to be the singleton, then the following result is obtained.

Corollary 2.5. Let R be a discrete topological ring and M a topological R-module such that the underlying space of
M is connected, locally path connected and semi-locally simply connected. Let 0 € M be the identity element of the

additive group. Suppose that p: (M, 0) — (M, 0) is a universal covering map. Then the R-module structure of M lifts
to M.

We now give a result which generalizes Theorem 1.3 in the case R = Z.
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Theorem 2.6. Let R be a discrete topological ring with identity. Suppose that M is a topological R-module whose
underlying space is connected, locally path connected and semi-locally simply connected. Let 0 € M be the iden-

tity element and p: (M,0) — (M,0) a covering map in which M is path connected and the characteristic group
px(m1(M, 0)) = N of p is an R-submodule of 7t1(M, 0). Then the R-module structure of M lifts to M.

Proof. Letp, : 711(M,0) — 711(M, 0) be the morphism induced by p: M — M. By assumption N = p(111(M, 0))
is an R-submodule of 11 (M, 0). By Remark 1.2, we can assume that M = My and, by Theorem 2.4, the module
structure lifts to M, as required. O

Theorem 2.7. Let R be a simply connected topological ring and M a topological R-module such that the underlying
space of M is path connected. Let 0 € M be the identity element of additive group and p: (M, 0) — (M, 0) a covering
map in which M is path connected. Then the characteristic group N of p is an R-submodule of 111(M, 0).

Proof. Let M be a path connected topological R-module given by a scalar multiplication 6: Rx M — M and
0 the identity element of the additive group of M. Consider the map of pointed topological spaces

f: RxM,(1g,0) - (M,0)

defined by f(r, X) = rp(X). Since f = 6(1 X p) as a composite of the continuous maps is continuous and since
R is simply connected, we have that

Fe(m(R x M, (1g,0)) € ps (1 (M, 0)),

because for a path 4 at 0 in Manda path p in R at 1z, we have
flp.a) = & xp).dp,a])

olp, @D

lpr@)]

[pllp@)]

and since R is simply connected, [p] = [1] and so that

flp,al) = [p@)] € p.(m1 (M, 0)).

Hence there exists a unique continuous map
§: Rx M, (1g,0) = (M, 0)

such that p§ = f. So the map 4 defines an induced map R x (M, 0) = (M, 0). Let Px: T (M, 0) — 11:(M, 0)
be the morphism induced by p: M — M. We now prove that the characteristic group p*(nl(]\z, 0)) =Nofp
is an R-submodule of 7t1(M, 0). For if r € R and [a] € N, then p,([a1]) = [@] for some [a;] € 7'[1(]\71, 0). Hence
[raq] € nl(ﬁ, 0) and py([raq]) = [p(raq)] = [rp(e1)] = [ra] e N. O
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