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Remarks on strongly star-Hurewicz spaces
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Abstract. A space X is strongly star-Hurewicz if for each sequence (Un : n ∈ N) of open covers of X there
exists a sequence (An : n ∈ N) of finite subsets of X such that for each x ∈ X, x ∈ St(An,Un) for all but finitely
many n. In this paper, we continue to investigate topological properties of strongly star-Hurewicz spaces.

1. Introduction

By a space, we mean a topological space. In this section, we give definitions of terms which are used in
this paper. LetN denote the set of positive integers. Let X be a space andU be a collection of subsets of X.
For A ⊆ X, let St(A,U) = ∪{U ∈ U : U ∩ A , ∅}. As usual, we write St(x,U) instead of St({x},U).

Let A and B be collections of subsets of a space X. Then the symbol S1(A,B) denotes the selection
hypothesis that for each sequence (Un : n ∈ N) of elements of A there exists a sequence (Un : n ∈ N)
such that for each n ∈ N, Un ∈ Un and {Un : n ∈ N} is an element of B. The symbol S f in(A,B) denotes
the selection hypothesis that for each sequence (Un : n ∈ N) of elements of A there exists a sequence
(Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un and

∪
n∈NVn is an element of B (see

[9,15]).
Kočinac [10, 11, 12] introduced star selection hypothesis similar to the previous ones:
(A) The symbol S∗f in(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of

elements ofA there exists a sequence (Vn : n ∈N) such that for each n ∈N,Vn is a finite subset ofUn and∪
n∈N{St(V,Un) : V ∈ Vn} is an element of B.

(B) The symbol SS∗f in(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of
elements ofA there exists a sequence (Kn : n ∈ N) of finite subsets of X such that {St(Kn,Un) : n ∈N} ∈ B.

Let O denote the collection of all open covers of X.

Definition 1.1. ([10, 11, 12]) A space X is said to be star-Menger (strongly star-Menger) if it satisfies the
selection hypothesis S∗f in(O,O) (resp., SS∗f in(O,O)).

In 1925 in [7] (see also [8]), Hurewicz introduced the Hurewicz covering property for a space X in the
following way:

H: For each sequence (Un : n ∈N) of open covers of X there exists a sequence (Vn : n ∈ N) such that for
each n,Vn is a finite subset ofUn and for each x ∈ X, x ∈ ∪Vn for all but finitely many n.
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In [1], two star versions of the Hurewicz property were introduced as follows:
SH: A space X satisfies the star-Hurewicz property if for each sequence (Un : n ∈ N) of open covers of X

there exists a sequence (Vn : n ∈ N) such that for each n, Vn is a finite subset of Un and for each x ∈ X,
x ∈ St(∪Vn,Un) for all but finitely many n.

SSH: A space X satisfies the strongly star-Hurewicz property if for each sequence (Un : n ∈ N) of open
covers of X there exists a sequence (An : n ∈ N) of finite subsets of X such that for each x ∈ X, x ∈ St(An,Un)
for all but finitely many n.

Definition 1.2. ([1]) A space X is said to be strongly star-Hurewicz (star-Hurewicz) if it satisfies the selection
hypothesis strongly star-Hurewicz property (resp., star-Hurewicz property).

From the above definitions, we have the following diagram.

compact −→ stron1ly star-Hurewicz −→ stron1ly star-Men1er
↓ ↓

star-Hurewicz −→ star-Men1er

On the study of star-Hurewicz spaces, the readers can see the references [1, 2, 3, 12, 16]. The purpose of this
paper is to continue to investigate topological properties of strongly star-Hurewicz spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω1 the first uncountable cardinal and
c the cardinality of the set of all real numbers. For each pair of ordinals α, β with α < β, we write
[α, β) = {γ : α ≤ γ < β}, (α, β) = {γ : α < γ < β}, (α, β] = {γ : α < γ ≤ β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual,
a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed
as a space with the usual order topology. Other terms and symbols that we do not define follow [6].

2. Main results

In this section, we study the topological properties of strongly star-Hurewicz spaces.

Theorem 2.1. A continuous image of a strongly star-Hurewicz space is strongly star-Hurewicz.

Proof. Let f : X → Y be a continuous mapping from a strongly star-Hurewicz space X onto a space Y.
Let (Un : n ∈ N) be a sequence of open covers of Y. For each n ∈ N, let Vn = { f−1(U) : U ∈ Un}. Then
(Vn : n ∈ N) is a sequence of open covers of X. Since X is strongly star-Hurewicz, there exists a sequence
(An : n ∈ N) of finite subsets of X such that for each x ∈ X, x ∈ St(An,Un) for all but finitely many n. Thus
( f (An) : n ∈ N) is a sequence of finite subsets of Y such that for each y ∈ Y, y ∈ St( f (An),Un) for all but
finitely many n. In fact, let y ∈ Y. Then there is x ∈ X such that f (x) = y. Hence x ∈ St(An,Vn) for all
but finitely many n. Thus y = f (x) ∈ St( f (An), { f (U) : U ∈ Vn}) = St( f (An),Un) for all but finitely many n,
which shows that Y is strongly star-Hurewicz.

Next we turn to consider preimages. We shall give a consistent example showing that the preimage of
a strongly star-Hurewicz space under a closed 2-to-1 continuous map need not be strongly star-Hurewicz
by using the following example from [3]. We make use of one of the cardinals defined in [5]. Define ωω as
the set of all functions from ω to itself. For all f , 1 ∈ωω, we say f ≤∗ 1 if and only if f (n) ≤ 1(n) for all but
finitely many n. The unbounding number, denoted by b, is the smallest cardinality of an unbounded subset
of (ωω,≤∗). It is not difficult to show that ω1 ≤ b ≤ c. We also use the following example from [3].

Example 2.2. ([3]) Let A be an almost disjoint family of infinite subsets of ω (i.e., the intersection of every two
distinct elements ofA is finite) and Let X = ω∪A be the Isbell-Mrówka space constructed fromA([4],[6]). Then X
is strongly star-Hurewicz if and only if |A| < b.

For a space X, recall that the Alexandorff duplicate A(X) of X is constructed in the following way: The
underlying set A(X) is X× {0, 1}; each point of X× {1} is isolated and a basic neighborhood of ⟨x, 0⟩ ∈ X× {0}
is a set of the form (U × {0}) ∪ ((U × {1}) \ {⟨x, 1⟩}),where U is a neighborhood of x in X.



Y.-K. Song / Filomat 27:6 (2013), 1127–1131 1129

Example 2.3. Assuming b = c and ¬CH, there exists a closed 2-to-1 continuous map f : X → Y such that Y is a
strongly star-Hurewicz space, but X is not strongly star-Hurewicz.

Proof. Let Y = ω ∪ A be the space X of Example 2.2 with |A| = ω1. Then Y is strongly star-Hurewicz by
Example 2.2.

Let X = A(Y). Then X is not strongly star-Hurewicz. In fact, since A is a discrete closed subset of Y
with |A| = ω1, the setA× {1} is an open and closed subset of A(Y) with |A × {1}| = ω1, and each point ⟨a, 1⟩
is isolated for each a ∈ A. Hence X is not strongly star-Hurewicz, since every open and closed subset of a
strongly star-Hurewicz space is strongly star-Hurewicz andA× {1} is not strongly star-Hurewicz.

Let f : X→ Y be the projection. Then f is a closed 2-to-1 continuous map, which completes the proof.

From the proof of Example 2.3, it is not difficult to show the following result.

Theorem 2.4. If X is a T1-space and A(X) is a strongly star-Hurewicz space, then e(X) < ω1.

Proof. Suppose that e(X) ≥ ω1. Then there exists a discrete closed subset B of X such that |B| ≥ ω1. Hence
B × {1} is a open and closed subset of A(X) and every point of B × {1} is an isolated point. Thus A(X) is not
strongly star-Hurewicz, since every open and closed subset of a strongly star-Hurewicz space is strongly
star-Hurewicz and B × {1} is not strongly star-Hurewicz.

Remark 2.5. The author does not know if the Alexandorff duplicate A(X) of a strongly star-Hurewicz space
X with e(X) < ω1 is strongly star-Hurewicz.

Now we give a positive result:

Theorem 2.6. Let f be an open and closed, finite-to-one continuous map from a space X to a strongly star-Hurewicz
space Y. Then X is strongly star-Hurewicz.

Proof. Let (Un : n ∈N) be a sequence of open covers of X and let y ∈ Y. For each n ∈N, since f−1(y) is finite,
there exists a finite subcollectionUny ofUn such that f−1(y) ⊆ ∪Uny and U ∩ f−1(y) , ∅ for each U ∈ Uny .
Since f is closed, there exists an open neighborhood Vny of y in Y such that f−1(Vny ) ⊆ ∪{U : U ∈ Uny }. Since
f is open, we can assume that

Vny ⊆
∩
{ f (U) : U ∈ Uny}. (1)

For each n ∈ N, taking such open set Vny for each y ∈ Y, we have an open cover Vn = {Vny : y ∈ Y} of
Y. Thus (Vn : n ∈ N) is a sequence of open covers of Y, so that there exists a sequence (An : n ∈ N) of
finite subsets of Y such that for each y ∈ Y, y ∈ St(An,Vn) for all but finitely many n, since Y is strongly
star-Hurewicz. Since f is finite-to-one, the sequence ( f−1(An) : n ∈ N) is a sequence of finite subsets of X. We
show that for each x ∈ X, x ∈ St( f−1(An),Un) for all but finitely many n. Let x ∈ X. Then f (x) ∈ St(An,Vn)
for all but finitely many n. If f (x) ∈ St(An,Vn), then there exists y ∈ Y such that f (x) ∈ Vny and Vny ∩An , ∅.
Since

x ∈ f−1(Vny ) ⊆
∪
Uny ,

we can choose U ∈ Uny with x ∈ U. Then Vny ⊆ f (U) by (1). Hence U ∩ f−1(An) , ∅. Therefore
x ∈ St( f−1(An),Un). Consequently x ∈ St( f−1(An),Un) for all but finitely many n, which shows that X
is strongly star-Hurewicz.

For strongly star-Hurewicz spaces, we give a consistent example showing that the product of a strongly
star-Hurewicz space and a compact space need not be strongly star-Hurewicz. For the example, we need
the following Lemmas.

Lemma 2.7. ([2]) A space X is a strongly star-Hurewicz space if and only if for every sequence (Un : n ∈N) of open
covers of X there exists a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X, St(x,Un) ∩ An , ∅
for all but finitely many n ∈N.
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Example 2.8. Assuming b = c and ¬CH, there exist a strongly star-Hurewicz space X and a compact space Y such
that X × Y is not strongly star-Hurewicz.

Proof. Assuming b = c and ¬CH, let X = ω ∪A be the same space as Example 2.2 with |A| = ω1. Then X is
strongly star-Hurewicz by Example 2.2. Let D = {dα : α < ω1} be the discrete space of cardinality ω1 and let
Y = D ∪ {d∗} be the one-point compactification of D. Then Y is strongly star-Hurewicz, since Y is compact.
Let us show that X × Y is not strongly star-Hurewicz. Since |A| = ω1, we can enumerateA as {aα : α < ω1}.
For each n ∈N, let

Un = {({aα} ∪ aα) × (Y \ {dα}) : α < ω1} ∪ {X × {dα} : α < ω1} ∪ {ω × Y}.

Then all the Un’s are the same and Un is an open cover of X × Y for each n ∈ N. Let us consider the
sequence (Un : n ∈ N) of open covers of X × Y. It suffices to show that for any sequence (An : n ∈ N) of
finite subsets of X×Y there exists a point a ∈ X×Y such that St(a,Un)∩An , ∅ for all n ∈N by Lemma 2.7.
Let (An : n ∈ N) be any sequence of finite subsets of X × Y. For each n ∈ N, since An is finite, there exists
αn < ω1 such that

An ∩ (X × {dα}) = ∅ for each α > αn.

Let β = sup{αn : n ∈N}. Then β < ω1 and

(
∪
n∈N

An) ∩ (X × {dα}) = ∅ for each α > β.

Let α > β. Since X × {dα} is the only element of Un containing the point ⟨aα, dα⟩ for each n ∈ N,
St(⟨aα, dα⟩,Un) = X × {dα} for each n ∈ N. Thus (

∪
n∈N An) ∩ (X × {dα}) = ∅, which shows that X × Y is

not strongly star-Hurewicz.

Remark 2.9. Assuming b = c and ¬CH, Example 2.8 shows that the preimage of a strongly star-Hurewicz
space under an open perfect map need not be strongly star-Hurewicz, and also shows that Theorem 2.6
fails to be true if “open and closed, finite-to-one” is replaced by “open perfect”. The author does not know
if in ZFC, there exist a strongly star-Hurewicz space X and a compact space Y such that X×Y is not strongly
star-Hurewicz.

However, the product of two strongly star-Hurewicz spaces need not be strongly star-Hurewicz. In
fact, the following well-known example shows that the product of two countably compact (hence strongly
star-Hurewicz) spaces need not be strongly star-Hurewicz. Here we give the proof roughly for the sake of
completeness.

Example 2.10. There exist two Tychonoff countably compact (hence strongly star-Hurewicz) spaces X and Y such
that X × Y is not strongly star-Hurewic.

Proof. Let D be a discrete space of cardinality c. We can define X =
∪
α<ω1

Eα and Y =
∪
α<ω1

Fα, where Eα
and Fα are the subsets of βD which are defined inductively so as to satisfy the following conditions (1),(2)
and (3):

(1) Eα ∩ Fβ = D if α , β;
(2) |Eα| ≤ c and |Fβ| ≤ c;
(3) every infinite subset of Eα (resp., Fα) has an accumulation point in Eα+1 (resp., Fα+1).
These sets Eα and Fα are well-defined since every infinite closed set in βD has cardinality at least 2c (see

[14]). Then X × Y is not strongly star-Hurewicz. In fact, the diagonal {⟨d, d⟩ : d ∈ D} is an open and closed
subset of X × Y with cardinality c and {⟨d, d⟩} is isolated for each d ∈ D. Thus X × Y is not strongly star-
Hurewicz, since the open and closed subsets of strongly star-Hurewicz spaces are strongly star-Hurewicz
and the diagonal {⟨d, d⟩ : d ∈ D} is not strongly star-Hurewicz.
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In [4, Example 3.3.3], van Douwen et al. gave an example showing that there exist a countably compact
(and hence strongly star-Hurewicz) space X and a Lindelöf space Y such that X × Y is not strongly star-
Lindelöf. Therefore, this example shows that the product of a strongly star-Hurewicz space X and a
Lindelöf space Y need not be strongly star-Hurewicz, since every strongly star-Hurewicz space is strongly
star-Lindelöf.

Next we give a condition that implies Lindelöfness. Recall that a space X is meta-Lindelöf if every open
coverU of X has a point countable open refinement.

Theorem 2.11. Every meta-Lindelöf strongly star-Hurewicz space is Lindelöf.

Proof. Let X be a meta-Lindelöf strongly star-Hurewicz space and U be an open cover of X. Then there
exists a point countable open refinementV ofU. Since X is strongly star-Hurewicz, there exists a sequence
(An : n ∈ N) of finite subsets of X such that for each x ∈ X, x ∈ St(An,V) for all but finitely many n.

For each n ∈N, let
Vn = {V ∈ V : V ∩ An , ∅}.

ThenVn is a countable subset ofV. LetW =
∪

n∈NVn. ThenW is a countable open cover of X. For each
V ∈ W, choose UV ∈ U such that V ⊆ UV. Then {UV : V ∈ W} is a countable subcover ofU, which shows
that X is Lindelöf. Thus we complete the proof.

Recall that a space X is para-Lindelöf if every open coverU of X has a locally countable open refinement.
Since every para-Lindelöf space is meta-Lindelöf, the following Corollary follows from Theorem 2.11.

Corollary 2.12. A para-Lindelöf strongly star-Hurewicz space X is Lindelöf.

Since every Lindelöf space is meta-Lindelöf and para-Lindelöf, the following Corollaries follows from
Theorem 2.11.

Corollary 2.13. Let X be a strongly star-Hurewicz space. Then X is meta-Lindelöf if and only if X is Lindelöf.

Corollary 2.14. Let X be a strongly star-Hurewicz space. Then X is para-Lindelöf if and only if X is Lindelöf.
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