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Abstract. In this paper, we introduce a formula to induce metrics from a fuzzy ultrametric, and consider
consistency of the metrics. We also show that completeness and precompactness of a fuzzy ultrametric
space are, respectively, identical with completeness and totally bounded property of the metric spaces
induced by the fuzzy ultrametric. Furthermore, we explore three types of Hausdorff fuzzy metrics in a
fuzzy metric space, and prove that they are identical if the fuzzy metric space is a fuzzy ultrametric space.
At last, we discuss consistency between the Hausdorff fuzzy metric in a fuzzy ultrametric space and the
Hausdorffmetric in the metric space induced by this fuzzy ultrametric.

1. Introduction

Fuzzy metric space, which was first constructed by Kramosil and Michalek in 1975 [9], is one of the
important notions in the theory of fuzzy topology. To make the topology induced by a fuzzy metric space
to be Hausdorff, George and Veeramani [3] modified the notion given by Kramosil and Michalek and
presented a new notion with the help of continuous t-norms. The new version of fuzzy metric space is
more restrictive, but it determines the class of spaces that are tightly connected with the class of metrizable
topological spaces. So it is interesting to study the new version of a fuzzy metric space.

Our basic reference for general topology is [2].
Following [3], a continuous t-norm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] which satisfies the

following conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is continuous;

(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Clearly, a ∗ b = min{a, b} and a ∗ b = a · b are two common examples of t-norms.
According to [3], a fuzzy metric space is 3-tuple (X,M, ∗) such that X is an arbitrary set, ∗ is a continuous

t-norm and M is a fuzzy subset of X × X × (0,∞) satisfying the following conditions for all x, y, z ∈ X and
s, t ∈ (0,∞):
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(i) M(x, y, t) > 0;
(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) =M(y, x, t);
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
(v) the function M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

In [3], George and Veeramani proved that every fuzzy metric M generates a topology τM on X which has
as a base the family of open sets of the form {BM(x, 1

n ,
1
n )|n ∈N, x ∈ X}, where BM(x, 1

n ,
1
n ) = {y ∈ X|M(x, y, 1

n ) >
1 − 1

n }. They also proved that (X, τM) is Hausdorff and first countable.
Fuzzy ultrametric space, which is a special case of a fuzzy metric space, was introduced by Savchenko

and Zarichnyi in [12]. A fuzzy ultrametric space is 3-tuple (X,M, ∗) such that X is an arbitrary set, ∗ = min
and M is a fuzzy subset of X×X× (0,∞) satisfying conditions (i), (ii), (iii), (v) from the definition of a fuzzy
metric space and the following condition for all x, y, z ∈ X and s, t ∈ (0,∞):
(iv′) M(x, y, t) ∗M(y, z, s) ≤M(x, z,max{t, s}).

Let us recall (see [6]) that a fuzzy metric space (X,M, ∗) is said to be strong if it satisfies the following
condition for each x, y, z ∈ X and each t > 0:
(iv′′) M(x, y, t) ∗M(y, z, t) ≤M(x, z, t).

It is remarked in [10] that if ∗ = min, then condition (iv′) is equivalent to condition (iv′′). Obviously, any
fuzzy ultrametric space is just the same as a strong fuzzy metric space for the continuous t-norm min.

A simple but useful fact is that for every x, y ∈ X, the function M(x, y, ·) : (0,∞)→ [0, 1] is nondecreasing
[12].

The topological space induced by a fuzzy metric is metrizable [7]. However, no authors gave a method
to generate a metric from a fuzzy metric. Here, we introduce a formula to induce metrics from a fuzzy
ultrametric, and consider consistency of the metrics. Then we prove that completeness and precompactness
of a fuzzy ultrametric space are, respectively, identical with completeness and totally bounded property
of the metric spaces induced by the fuzzy ultrametric. Furthermore, corresponding to the three type of
Hausdorffmetrics in a metric space [1], we explore three types of Hausdorff fuzzy metrics in a fuzzy metric
space, and prove that they are identical if the fuzzy metric space is a fuzzy ultrametric space. At last, we
discuss consistency between the Hausdorff fuzzy metric in a fuzzy ultrametric space and the Hausdorff
metric in the metric space induced by this fuzzy ultrametric.

2. Metrics induced by a fuzzy ultrametric

Let (X,M, ∗) be a fuzzy ultrametric space and t0 ∈ (0,∞). We define a mapping dX
t0

: X × X→ [0,∞] by

dX
t0

(x, y) =
t0

M(x, y, t0)
− t0.

Then we have

Theorem 2.1. dX
t0

is a metric in X.

Proof. Let x, y, z ∈ X.
(1) Since 0 < M(x, y, t) ≤ 1 for all t ∈ (0,∞), we have dX

t0
(x, y) ≥ 0. If dX

t0
(x, y) = 0, then it follows from

t0
M(x,y,t0) − t0 = 0 that M(x, y, t0) = 1. Hence x = y. Conversely, if x = y, then dX

t0
(x, y) = t0

M(x,y,t0) − t0 = 0.

(2) Obviously, dX
t0

(x, y) = dX
t0

(y, x).

(3) We are going to prove dX
t0

(x, y) + dX
t0

(y, z) ≥ dX
t0

(x, z).
Since M(x, z, t0) ≥M(x, y, t0) ∗M(y, z, t0) = min{M(x, y, t0),M(y, z, t0)}, we obtain

1
M(x,z,t0) ≤ max{ 1

M(x,y,t0) ,
1

M(y,z,t0) }.
Without loss of generality, we assume that 1

M(x,z,t0) ≤ 1
M(x,y,t0) , then

dX
t0

(x, y) + dX
t0

(y, z) = t0
M(x,y,t0) − t0 +

t0
M(y,z,t0) − t0
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≥ t0
M(x,z,t0) − t0 +

t0
M(y,z,t0) − t0

≥ t0
M(x,z,t0) − t0

= dX
t0

(x, z).
Therefore, dX

t0
is a metric in X.

In the following, we will use dX
t0

to denote the metric in (X, τM) induced by t0 ∈ (0,∞). Furthermore, it is
easy to see that dX

t0
is also an ultrametric in X. As a result, we can have the following three corollaries.

Corollary 2.2. Let (X,M, ∗) be a fuzzy ultrametric space. If BdX
t0

(x, ε)
∩

BdX
t0

(y, ε) , Ø for all x, y ∈ X and ε > 0,
then BdX

t0
(x, ε) = BdX

t0
(y, ε).

Corollary 2.3. Let (X,M, ∗) be a fuzzy ultrametric space. Then, for every x ∈ X and ε > 0, BdX
t0

(x, ε) is an open and
closed set (i.e., a clopen set).

Corollary 2.4. Let (X,M, ∗) be a fuzzy ultrametric space. Then (X, dX
t0

) is zero-dimensional.

Theorem 2.5. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1 −M(x, y, kt)) ≥ 1 −M(x, y, t) for all x, y ∈ X, k ≥ 1,
then τM coincides with the topology τdX

t0
on X generated by dX

t0
.

Proof. Let BM(x, 1
n ,

1
n ) be an open ball with center x and radius 1

n with respect to 1
n , where x ∈ X and

n > [ 1
t0

] + 1. Then there exists a ε = 1
2 (

n2t2
0

n2t0−1 − t0) such that
x ∈ BdX

t0
(x, ε) ⊂ BM(x, 1

n ,
1
n ).

In fact, for each z ∈ BdX
t0

(x, ε), we have

dX
t0

(x, z) = t0
M(x,z,t0) − t0 < ε.

Thus M(x, z, t0) > t0
t0+ε

. Since nt0 ≥ 1 and k(1 −M(x, y, kt)) ≥ 1 −M(x, y, t) for all x, y ∈ X, k ≥ 1, we get
1

nt0
(M(x, z, 1

n ) − 1) + 1 ≥M(x, z, nt0 · 1
n ) =M(x, z, t0) > t0

t0+ε
.

Hence
M(x, z, 1

n ) > nt0( t0
t0+ε
− 1) + 1 > nt0( t0

t0+2ε − 1) + 1 = nt0( n2t0−1
n2t0
− 1) + 1 = 1 − 1

n ,

which implies that z ∈ BM(x, 1
n ,

1
n ). So

x ∈ BdX
t0

(x, 1
2 (

n2t2
0

n2t0−1 − t0)) ⊂ BM(x, 1
n ,

1
n ).

Conversely, let BdX
t0

(x, ε) be an open ball in (X, τdX
t0

) for each x ∈ X and ε > 0. Put n = max{[ 1
t0

], [ t0+ε
ε ]} + 1.

Then
x ∈ BM(x, 1

n ,
1
n ) ⊂ BdX

t0
(x, ε).

In fact, for each z ∈ BM(x, 1
n ,

1
n ), since 1

n <
ε

t0+ε
and t0 > 1

n , we obtain
M(x, z, t0) ≥M(x, z, 1

n ) > 1 − 1
n > 1 − ε

t0+ε
= t0

t0+ε
.

Then (t0 + ε)M(x, z, t0) > t0. Hence t0
M(x,z,t0) − t0 < ε, that is, dX

t0
(x, z) < ε, which means that z ∈ BdX

t0
(x, ε).

Consequently, we deduce that

x ∈ BM(x,
1
n
,

1
n

) ⊂ BdX
t0

(x, ε).

We are done.

With the above theorem we obtain immediately

Corollary 2.6. Let (X,M, ∗) be a fuzzy ultrametric space, and t1, t2 ∈ (0,∞) with t1 , t2. If k(1 −M(x, y, kt)) ≥
1 −M(x, y, t) for all x, y ∈ X, k ≥ 1, then the topology τdX

t1
coincides with the topology τdX

t2
.
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Example 2.7. Let φ(t) = 1− 1
t+1 (t ∈ (0,∞)), and D an ultrametric in X with D(x, y) < 1 for all x, y ∈ X. Define

MD : X × X × (0,∞)→ [0, 1] as follows:

MD(x, y, t) = 1 −D(x, y) +D(x, y)φ(t).

By Proposition 3.5 from [12], we know that (X,MD, ∗) is a fuzzy ultrametric space. It is easy to see that
dX

t0
(x, y) = t0D(x,y)

t0+1−D(x,y) for every t0 ∈ (0,∞). Note that

k(1 −MD(x, y, kt)) = kD(x,y)
kt+1 ≥

D(x,y)
t+1 = 1 −MD(x, y, t)

for every k ≥ 1. According to Theorem 2.5, we conclude that τMD = τdX
t0

.

3. Properties of the induced metrics

In this section we will study some properties of metrics induced by a fuzzy ultrametric.

Definition 3.1. ([11]) Let (Xi,Mi, ∗i)(i = 1, 2) be two fuzzy metric spaces.
(1) A mapping f : X1 → X2 is called an isometry mapping, if for every x, y ∈ X1 and t > 0,M1(x, y, t) =

M2( f (x), f (y), t).
(2) (Xi,Mi, ∗i)(i = 1, 2) are called isometric, if there is an isometry mapping from X1 onto X2.
(3) A complete fuzzy metric space (X2,M2, ∗2) is called a completion of (X1,M1, ∗1), if (X1,M1, ∗1) is

isometric to a dense subspace of X2.

Theorem 3.2. Let (Xi,Mi, ∗)(i = 1, 2) be two fuzzy ultrametric spaces, and f a mapping from X1 to X2. Then f is an
isometry mapping from (X1,M1, ∗) to (X2,M2, ∗) if and only if f is an isometry mapping from (X1, dX1

t0
) to (X2, dX2

t0
)

for every t0 ∈ (0,∞).

Proof. Let x, y ∈ X1, t0 ∈ (0,∞). Then M1(x, y, t0) =M2( f (x), f (y), t0) if and only if t0
M1(x,y,t0) −t0 =

t0
M2( f (x), f (y),t0) −

t0, that is, dX1
t0

(x, y) = dX2
t0

( f (x), f (y)).

Definition 3.3. ([5]) Let (X,M, ∗) be a fuzzy metric space. {xn} is called a Cauchy sequence in X, if for each
ε ∈ (0, 1) and t > 0, there exists an n0 ∈N such that M(xn, xm, t) > 1 − ε whenever n,m ≥ n0.

Definition 3.4. ([5]) A fuzzy metric space (X,M, ∗) is complete provided that each Cauchy sequence in X is
convergent.

Theorem 3.5. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1 −M(x, y, kt)) ≥ 1 −M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (X,M, ∗) is complete if and only if (X, dX

t0
) is complete.

Proof. Sufficiency. Let {xn} be a Cauchy sequence in (X,M, ∗). Then, for each ε > 0, there exists an n0 ∈ N
such that M(xn, xm, t0) > 1 − ε

t0+ε
whenever n,m ≥ n0. Hence t0

M(xn,xm,t0) − t0 < ε, that is, dX
t0

(xn, xm) < ε.
Therefore, {xn} is a Cauchy sequence in (X, dX

t0
). Since (X, dX

t0
) is complete, {xn} is convergent, which implies

that (X,M, ∗) is complete.

Necessity. Let {xn} be a Cauchy sequence in (X, dX
t0

). For each r1 ∈ (0, 1) and t1 ∈ (0, t0), put ε = r1t1t0
2(t0−t1r1) .

Then there exists an m0 ∈N such that
dX

t0
(xn, xm) = t0

M(xn,xm,t0) − t0 < ε

whenever n,m ≥ m0. So M(xn, xm, t0) > t0
t0+ε

. Since t0
t1
≥ 1 and k(1 − M(x, y, kt)) ≥ 1 − M(x, y, t) for all

x, y ∈ X, k ≥ 1, we obtain
t1
t0

(M(xn, xm, t1) − 1) + 1 ≥M(xn, xm,
t0
t1
· t1) =M(xn, xm, t0) > t0

t0+ε
.

Hence M(xn, xm, t1) > 1 − t0ε
t1(t0+ε) . Note that

ε = r1t1t0
2(t0−t1r1) <

r1t1t0
t0−t1r1

.

It follows that t0ε
t1(t0+ε) < r1. Therefore,

M(xn, xm, t1) > 1 − t0ε
t1(t0+ε) > 1 − r1.

So {xn} is a Cauchy sequence in (X,M, ∗). Since (X,M, ∗) is complete, {xn} is convergence, which means that
(X, dX

t0
) is complete. This proof is finished.
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Definition 3.6. ([7]) A fuzzy ultrametric space (X,M, ∗) is precompact, if for every r ∈ (0, 1) and t > 0, there
exists a finite set A ⊂ X such that X =

∪
a∈A

BM(a, r, t).

Theorem 3.7. Let (X,M, ∗) be a fuzzy ultrametric space, If k(1−M(x, y, kt)) ≥ 1−M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (X,M, ∗) is precompact if and only if (X, dX

t0
) is totally bounded.

Proof. Sufficiency. For each x ∈ X, r1 ∈ (0, 1) and t1 ∈ (0, t0), we have
x ∈ BdX

t0
(x, t1r1t0

2(t0−t1r1) ) ⊂ BM(x, r1, t1).

Since (X, dX
t0

) is totally bounded, there exists a finite set C ⊂ X such that
X =

∪
x∈C

BdX
t0

(x, t1r1t0
2(t0−t1r1) ).

Hence
X =

∪
x∈C

BM(x, r1, t1).

Necessity. For each x ∈ X and ε > 0, we obtain
x ∈ BM(x, ε

2(t0+ε) ,
t0
2 ) ⊂ BdX

t0
(x, ε).

Since (X,M, ∗) is precompact, there exists a finite set A ⊂ X such that
X =

∪
x∈A

BM(x, ε
2(t0+ε) ,

t0
2 ).

So
X =

∪
x∈A

BdX
t0

(x, ε).

We complete the proof.

4. The Hausdorff fuzzy metric

Let (X,M, ∗) be a fuzzy metric space, Ø , C ⊂ X. For every a ∈ X and t > 0, M(a,C, t) := sup{M(a, c, t) :
c ∈ C}, M(C, a, t) := sup{M(c, a, t) : c ∈ C} (see [10]). It is easy to see that M(a,C, t) =M(C, a, t).

Definition 4.1. Let (X,M, ∗) be a fuzzy metric space. We denote by Comp(X) the set of all nonempty compact
subsets of (X, τM). We define three functions HM,H

′

M,H
′′

M: Comp(X)× Comp(X)× (0,∞)→ [0, 1] as follows,
respectively: ∀A,C ∈ Comp(X) and t > 0,

HM(A,C, t) = min{inf
a∈A

M(a,C, t), inf
c∈C

M(A, c, t)} (see [11]);

H′

M(A,C, t) = 1 − inf{r|C ⊂ BM(A, r, t),A ⊂ BM(C, r, t)} (see [12]);
H′′

M(A,C, t) = inf
x∈X

M(x,A,t)M(x,C,t)
|M(x,A,t)−M(x,C,t)|+M(x,A,t)M(x,C,t) .

Theorem 4.2. Let (X,M, ∗) be a fuzzy ultrametric space. Then HM(A,C, t) = H′

M(A,C, t) = H′′

M(A,C, t).

Proof. Firstly, we will prove HM(A,C, t) = H′

M(A,C, t).
Put H′M(A,C, t) = 1 − r0. Take r ∈ (r0, 1). Then we have

C ⊂ BM(A, r, t), A ⊂ BM(C, r, t).
This shows that

M(A, c, t) > 1 − r, M(a,C, t) > 1 − r
for every c ∈ C and a ∈ A. Hence

inf
c∈C

M(A, c, t) ≥ 1 − r, inf
a∈A

M(a,C, t) ≥ 1 − r.

So
min{inf

a∈A
M(a,C, t), inf

c∈C
M(A, c, t)} ≥ 1 − r,

i.e., HM(A,C, t) ≥ 1 − r. Passing to the limit as r→ r0, we conclude that
HM(A,C, t) ≥ 1 − r0 = H′M(A,C, t).
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Suppose that HM(A,C, t) > H′M(A,C, t). Put HM(A,C, t) = 1 − r1. Then we can find an r2 ∈ (r1, r0), which
means that 1 − r1 > 1 − r2 > 1 − r0. Since inf

a∈A
M(a,C, t) ≥ 1 − r1 and inf

c∈C
M(A, c, t) ≥ 1 − r1, we immediately

deduce that
M(a,C, t) ≥ 1 − r1 > 1 − r2

and
M(A, c, t) ≥ 1 − r1 > 1 − r2

for every c ∈ C and a ∈ A. Hence
C ⊂ BM(A, r2, t), A ⊂ BM(C, r2, t).

So
H′M(A,C, t) ≥ 1 − r2 > 1 − r0 = H′M(A,C, t),

which is a contradiction.

Next, we are going to prove HM(A,C, t) = H′′

M(A,C, t).
If x ∈ A, we have

M(x,A, t)M(x,C, t)
|M(x,A, t) −M(x,C, t)| +M(x,A, t)M(x,C, t)

=
M(x,C, t)

|1 −M(x,C, t)| +M(x,C, t)
=M(x,C, t).

If x ∈ C, we have

M(x,A, t)M(x,C, t)
|M(x,A, t) −M(x,C, t)| +M(x,A, t)M(x,C, t)

=
M(x,A, t)

|1 −M(x,A, t)| +M(x,A, t)
=M(x,A, t).

Hence HM(A,C, t) ≥ H′′

M(A,C, t). On the other hand, for each x ∈ X and ε > 0, there exists an a ∈ A such that

1
M(x, a, t)

<
1

M(x,A, t)
+
ε
2
.

Also, there exists a c ∈ C such that

1
M(a, c, t)

<
1

M(a,C, t)
+
ε
2
≤ 1

inf
a∈A

M(a,C, t)
+
ε
2
.

Since M(x, c, t) ≥M(x, a, t) ∗M(a, c, t) = min{M(x, a, t),M(a, c, t)}, we obtain

1
M(x, c, t)

≤ max{ 1
M(x, a, t)

,
1

M(a, c, t)
} ≤ 1

M(x, a, t)
+

1
M(a, c, t)

− 1.

Hence
1

M(x,C, t)
≤ 1

M(x, c, t)
≤ 1

M(x, a, t)
+

1
M(a, c, t)

− 1 <
1

M(x,A, t)
+

1
inf
a∈A

M(a,C, t)
+ ε − 1.

It follows that
1

M(x,C, t)
− 1

M(x,A, t)
<

1
inf
a∈A

M(a,C, t)
+ ε − 1.

By the arbitrariness of ε, we have

sup
x∈X

(
1

M(x,C, t)
− 1

M(x,A, t)
) = sup

x∈X
| 1
M(x,C, t)

− 1
M(x,A, t)

| ≤ 1
inf
a∈A

M(a,C, t)
− 1.

Therefore,

inf
x∈X

M(x,A, t)M(x,C, t)
|M(x,A, t) −M(x,C, t)| +M(x,A, t)M(x,C, t)

≥ inf
a∈A

M(a,C, t).
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Using the same method as above, we can get

inf
x∈X

M(x,A, t)M(x,C, t)
|M(x,A, t) −M(x,C, t)| +M(x,A, t)M(x,C, t)

≥ inf
c∈C

M(A, c, t).

So

inf
x∈X

M(x,A, t)M(x,C, t)
|M(x,A, t) −M(x,C, t)| +M(x,A, t)M(x,C, t)

≥ min{inf
a∈A

M(a,C, t), inf
c∈C

M(A, c, t)},

i.e., H′′

M(A,C, t) ≥ HM(A,C, t). We are done.

Lemma 4.3. ([12]) Let (X,M, ∗) be a fuzzy ultrametric space. Then (Comp(X),H′

M, ∗) is a fuzzy ultrametric space.

According to Theorem 4.2 and Lemma 4.3, we obtain

Corollary 4.4. Let (X,M, ∗) be a fuzzy ultrametric space. Then (Comp(X),HM, ∗) and (Comp(X),H′′

M, ∗) are fuzzy
ultrametric spaces.

We call HM a Hausdorff fuzzy metric.

Proposition 4.5. Let (X,M, ∗) be a fuzzy ultrametric space. Then, for each x ∈ X and A ∈ Comp(X), we have
dX

t0
(x,A) = t0

M(x,A,t0) − t0.

Proof. dX
t0

(x,A) = inf
a∈A

dX
t0

(x, a) = inf
a∈A

( t0
M(x,a,t0) − t0) = t0

sup
a∈A

M(x,a,t0) − t0 =
t0

M(x,A,t0) − t0.

Proposition 4.6. Let (X,M, ∗) be a fuzzy ultrametric space, and A ∈ Comp(X). If k(1−M(x, y, kt)) ≥ 1−M(x, y, t)
for all x, y ∈ X, k ≥ 1, then k(1 −M(x,A, kt)) ≥ 1 −M(x,A, t).

Proof. For every a ∈ A, k(1 −M(x, a, kt)) ≥ 1 −M(x, a, t). Then
infa∈A k(1 −M(x, a, kt)) ≥ infa∈A(1 −M(x, a, t)).

Hence
k(1 − supa∈A M(x, a, kt)) ≥ 1 − supa∈A M(x, a, t),

that is, k(1 −M(x,A, kt)) ≥ 1 −M(x,A, t).

Remark. From Theorem 2.1 and Corollary 4.4, we can see that dComp(X)
t0

is the metric in Comp(X) induced
by t0.

Definition 4.7. ([1]) Let (X, d) be a metric space. For every A,C ∈ Comp(X), let Hd:Comp(X)× Comp(X)→
[0,∞) be a mapping defined by

Hd(A,C) = max{sup
a∈A

d(a,C), sup
c∈C

d(A, c)}.

Hd is a metric in Comp(X), which is called Hausdorff metric.

Theorem 4.8. Let (X,M, ∗) be a fuzzy ultrametric space. Then for each A,C ∈Comp(X), dComp(X)
t0

(A,C) = HdX
t0

(A,C).

Proof. dComp(X)
t0

(A,C) = t0
HM(A,C,t0) − t0

= max{ t0
inf
a∈A

M(a,C,t) − t0,
t0

inf
c∈C

M(A,c,t) − t0}

= max{sup
a∈A

( t0
M(a,C,t) − t0), sup

c∈C
( t0

M(A,c,t) − t0)}

= max{sup
a∈A

dX
t0

(a,C), sup
c∈C

dX
t0

(A, c)} = HdX
t0

(A,C).
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Theorem 4.9. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1−M(x, y, kt)) ≥ 1−M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (Comp(X), τHM ) coincides with (Comp(X), τHdX

t0

).

Proof. By Theorem 4.8, (Comp(X), τHdX
t0

) coincides with (Comp(X), τdComp(X)
t0

). According to Theorem 2.5, we

know that (Comp(X), τHM ) coincides with (Comp(X), τdComp(X)
t0

). Consequently, (Comp(X), τHM ) coincides with

(Comp(X), τHdX
t0

).

Lemma 4.10. ([11]) Let (X,M, ∗) be a fuzzy metric space. Then (Comp(X),HM, ∗) is complete if and only if (X,M, ∗)
is complete.

Lemma 4.11. ([11]) Let (X,M, ∗) be a fuzzy metric space. Then (Comp(X),HM, ∗) is precompact if and only if
(X,M, ∗) is precompact.

Definition 4.12. ([7]) A fuzzy metric space (X,M, ∗) is called compact, if (X, τM) is a compact topological
space.

Lemma 4.13. ([2]) A metric space (X, d) is compact if and only if it is complete and totally bounded.

Lemma 4.14. [7] A fuzzy metric space (X,M, ∗) is compact if and only if it is complete and totally bounded.

According to Theorems 3.5, 3.7,4.9, Lemmas 4.10, 4.11, 4.13, 4.14 and Definition 4.12, we immediately
deduce the following.

Theorem 4.15. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1−M(x, y, kt)) ≥ 1−M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (Comp(X),HdX

t0
) is complete if and only if (X,M, ∗) is complete.

Theorem 4.16. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1−M(x, y, kt)) ≥ 1−M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (Comp(X),HdX

t0
) is totally bounded if and only if (X,M, ∗) is precompact.

Theorem 4.17. Let (X,M, ∗) be a fuzzy ultrametric space. If k(1−M(x, y, kt)) ≥ 1−M(x, y, t) for all x, y ∈ X, k ≥ 1,
then (Comp(X),HdX

t0
) is compact if and only if (X,M, ∗) is compact.
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