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Abstract. In this paper, we investigate the stability in the set of Fredholm perturbations under composition
with bounded operators. Moreover, we introduce the concept of a measure of non-Fredholm perturbations,
which allows us to give a general approach to the question of obtaining perturbation theorems for semi-
Fredholm operators. Finally, we prove some localization results about the Wolf, the Schechter and the
Browder essential spectrum of bounded operators on a Banach space X.

1. Introduction

Let X and Y be two Banach spaces. We denote byL(X,Y) (respectivelyK (X,Y)) the space of all bounded
(respectively compact) linear operators from X into Y. If T ∈ L(X,Y), we write N(T) ⊆ X and Ran(T) ⊆ Y
for the null space and the range of T. We set α(T) := dim N(T) and β(T) := codim Ran(T). The sets
of upper and lower semi-Fredholm operators in L(X,Y) are denoted by Φ+(X,Y) and Φ−(X,Y). We use
Φ±(X,Y) := Φ+(X,Y) ∪ Φ−(X,Y) for the set of semi-Fredholm operators, and Φ(X,Y) := Φ+(X,Y) ∩ Φ−(X,Y)
for the set of Fredholm operators. If T ∈ Φ±(X,Y), then i(T) := α(T) − β(T) is called the index of T. If X = Y,
we simply write L(X), K (X), Φ+(X), Φ−(X), Φ±(X) and Φ(X).

Set N∞(T) =
⊔

nN(Tn), R∞(T) =
∩

n Ran(Tn), and denote by a(T) respectively δ(T), the ascent and the
descent of T ∈ L(X). The sets of upper and lower semi-Browder operators are denoted byB+(X) andB−(X).
The set of Browder operators on X is B(X) = B+(X) ∩ B−(X).

In this paper we are concerned with the following essential spectra:

Wolf essential spectrum: σe(T) := {λ ∈ C such that λ − T < Φ(X)},
Schechter essential spectrum: σess(T) := C\{λ − T ∈ Φ(X) such that i(λ − T) = 0},
Browder essential spectrum : σb = {λ ∈ C; λ − T < B(X)}.
An operator T ∈ L(X,Y) is said to be left Atkinson if T ∈ Φ+(X,Y) and Ran(T) is complemented. The
operator T ∈ L(X,Y) is said to be right Atkinson if T ∈ Φ−(X,Y) and N(T) is complemented. The class of
left Atkinson operators and right Atkinson operators will be denoted byΦl(X,Y) andΦr(X,Y), respectively.
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Clearly, we have Φ(X,Y) ⊂ Φl(X,Y) ⊂ Φ+(X,Y) and Φ(X,Y) ⊂ Φr(X,Y) ⊂ Φ−(X,Y). Moreover, Φ(X,Y) =
Φl(X,Y) ∩Φr(X,Y).

An operator A ∈ L(X,Y) is called a Fredholm perturbation, if A + B ∈ Φ(X,Y) whenever B ∈ Φ(X,Y). The
operator A is called upper (respectively lower) semi-Fredholm perturbation if A+B ∈ Φ+(X,Y) (respectively
Φ−(X,Y)) whenever B ∈ Φ+(X,Y) (respectively Φ−(X,Y)). The sets of Fredholm, upper semi-Fredholm and
lower semi-Fredholm perturbations are denoted respectively by F (X,Y), F+(X,Y) and F−(X,Y).
An operator A ∈ L(X,Y) is called a left (respectively right) Fredholm perturbation, if A + B ∈ Φl(X,Y)
(respectively Φr(X,Y)) whenever B ∈ Φl(X,Y) (respectively Φr(X,Y)). The sets of left Fredholm and right
Fredholm perturbation are denoted respectively by Fl(X,Y) and Fr(X,Y). If Φ(X,Y) = ∅,we shall agree that
F (X,Y) = L(X,Y). It is well known that, if Φ(X,Y) , ∅, then F (X,Y) = Fl(X,Y) = Fr(X,Y) (see, for example,
[2, Theorem 3.16]). If X = Y, we use F (X), F+(X), F−(X), Fl(X) and Fr(X).

These sets of operators are introduced and investigated in [7, 14]. In particular, it is shown that F (X,Y)
is a closed linear subspace ofL(X,Y) andF (X),F+(X),F−(X) are closed two-sided ideals ofL(X).Moreover,
K (X,Y) ⊂ SS(X,Y) ⊂ F+(X,Y) ⊂ F (X,Y), and K (X,Y) ⊂ CS(X,Y) ⊂ F−(X,Y) ⊂ F (X,Y), where SS(X,Y)
and CS(X,Y) are respectively the classes of strictly singular operators and strictly cosingular operators.

In this paper, we are interested in the properties of the class of Fredholm perturbations. This class of
operators has been subject of interest for several authors (see for instance, [4, 7, 8, 12, 14]). Let X1,X2,Y1
and Y2 be Banach spaces, and consider U ∈ L(X2,Y2) and V ∈ L(Y1,X1). It is familiar that if S ∈ K (X1,X2),
respectively SS(X1,X2), then USV ∈ K (Y1,Y2), respectively SS(Y1,Y2). To study the stability problem in
the class of Fredholm perturbations, it is natural to ask the following: For S ∈ F (X1,X2), under which
conditions does USV ∈ F (Y1,Y2)? To answer this question I. Gohberg and all in [7, pp. 69-70] have shown
the following:

Proposition 1.1. [7] Let X,Y,Z be Banach spaces. If at least one of the sets Φ(X,Y) or Φ(Y.Z) is not empty, then

(i) S ∈ F (X,Y), U ∈ L(Y,Z), imply US ∈ F (X,Z).

(ii) S ∈ F (Y,Z), V ∈ L(X,Y), imply SV ∈ F (X,Z).

The purpose of this paper is to extend the above results and to give a positive answer in more general cases
(see Theorem 2.4 in section 2).

The aim of section 3 is to treat the problem of stability in semi-Fredholm (respectively semi-Browder) oper-
ators set. For this, we construct a new measure called measure of non-upper semi-Fredholm perturbations
and we prove some localization results about the essential spectra σe, σess and σb of bounded operators on
a Banach space X. These results provide, in particular, an extension of ones done by [1].
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2. Fredholm perturbation

The purpose of this section is to extend the results of Proposition 1.1 in more general cases. First, we
adopt the following definition:

Definition 2.1. Let X and Y be two Banach spaces. We say that Y is essentially stronger than X and write X ≤ Y,
if there exists R ∈ Φl(X,Y).

Remark 2.2. (i) It is clear that, for X a Banach space, X ≤ X .

(ii) Let X1,X2,X3 be three Banach spaces such that X1 ≤ X2 ≤ X3. Then there exists R1 ∈ Φ+(X1,X2) and
R2 ∈ Φ+(X2,X3) with Ran(R1) complemented in X2 and Ran(R2) complemented in X3. By [11, Theorem 14, p. 160],
there exists Si such that SiRi = IXi + Ki with Ki ∈ K (Xi), i = 1, 2. Hence, (S1S2)(R2R1) = IX1 + K1 + S1K2R1. Thus,
by [13, Theorem 5.37, p. 126], R2R1 ∈ Φ+(X1,X3) with Ran(R2R1) complemented in X3 which implies that X1 ≤ X3.

(iii) To deduce that ” ≤ ” is not antisymmetric, we notice that W.T. Gowers showed in [10] that there is a Banach
space Z that is isomorphic to Z ⊕ Z ⊕ Z but not isomorphic to Z ⊕ Z.

An other important property is the following :

Lemma 2.3. Let X and Y be two Banach spaces. Suppose that X ≤ Y, then X∗ ≤ Y∗.

Proof. We have X ≤ Y, then there exist R ∈ Φ+(X,Y) and S ∈ Φ−(Y,X), such that SR = IX+K,with K ∈ K (X).
This implies that R∗S∗ = IX∗ +K∗. Since R∗ ∈ Φ−(Y∗,X∗), S∗ ∈ Φ+(X∗,Y∗) and K∗ ∈ K (X∗), then we get X∗ ≤ Y∗.
Q.E.D.

Now, we are ready to state and prove the main result of this section.

Theorem 2.4. Let (X1,X2) and (Y1,Y2) be two couples of Banach spaces satisfying X1 ≤ Y1. Consider U ∈ L(X2,Y2)
and V ∈ L(Y1,X1).

(i) Suppose that Φ(X1,X2) , ∅. If S ∈ F (X1,X2), then USV ∈ F (Y1,Y2).

(ii) Suppose that Φl(X1,X2) , ∅. If S ∈ Fl(X1,X2), then USV ∈ Fl(Y1,Y2).

(iii) Suppose that Φr(X1,X2) , ∅. If S ∈ Fr(X1,X2), then USV ∈ Fr(Y1,Y2).

Proof. (i) Remark that the result is trivial ifΦ(Y1,Y2) = ∅. So let us assume thatΦ(Y1,Y2) , ∅. Since X1 ≤ Y1
and Φ(X1,X2) , ∅, this yields X2 ≤ Y2. Hence, there exists Ri ∈ Φ+(Xi,Yi) and a closed subspace Zi such
that Yi := Ran(Ri) ⊕ Zi, i = 1, 2. Without loss of generality, we can suppose that R1 and R2 are injective. For
i = 1, 2 denote the following invertible operator

Ri0 : Xi −→ Ran(Ri)
x 7−→ Ri0(x) = Ri(x).

By [11, Theorem 14, p. 160], there exists R′i ∈ L(Yi,Xi) such that R′i Ri = IXi + Ki, with Ki ∈ K (Xi). We can
choose R′1 as follows:

R′1 : Y1 = Ran(R1) ⊕ Z1 −→ X1

y = (y1, z1) 7−→ R−1
10 (y1).

Hence,

R2SR′1 : Y1 = Ran(R1) ⊕ Z1 −→ Y2 = Ran(R2) ⊕ Z2

y = (y1, z1) 7−→ (R20SR−1
10 (y1), 0) =

(
R20SR−1

10 0
0 0

) (
y1
z1

)
.
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Since S ∈ F (X1,X2), then, by [7, pp. 69-70], we get R20SR−1
10 ∈ F (Ran(R1),Ran(R2)). First, we claim that

F := R2SR′1 ∈ F (Y1,Y2).

Consider an arbitrary element L =
(
A B
C D

)
∈ Φ(Y1,Y2). It follows, by Atkinson theorem, that there exists

L0 =

(
A0 B0
C0 D0

)
∈ Φ(Y2,Y1) and K ∈ K (Y2) such that LL0 = I + K on Y2. Then

(L + F)L0 = I + K + FL0 = K +
(

I R20SR−1
10 B0

0 I

) (
I + R20SR−1

10 A0 0
0 I

)
.

Notice that Φ(X1,X2) , ∅ implies Φ(Ran(R1),Ran(R2)) , ∅. According to [7, pp. 69-70], R20SR−1
10 ∈

F (Ran(R1),Ran(R2)), yields that R20SR−1
10 A0 ∈ F (Ran(R2)). Thus, I + R20SR−1

10 A0 ∈ Φ(Ran(R2)) which im-

plies that
(

I + R20SR−1
10 A0 0

0 I

)
is Fredholm. Observing that

(
I R20SR−1

10 B0
0 I

)
is invertible, with inverse(

I −R20SR−1
10 B0

0 I

)
, we get (L + F)L0 ∈ Φ(Y2). Hence, (L + F) ∈ Φ(Y1,Y2) and therefore F ∈ F (Y1,Y2). Our

claim is proved.

Now, since R′i Ri = IXi + Ki, then

USV = U(R′2R2 − K2)S(R′1R1 − K1)V
= UR′2(R2SR′1)R1V + K′,

with K′ ∈ K (Y1,Y2). Finally, the result follows by Proposition 1.1, since UR′2 ∈ L(Y2) and R1V ∈ L(Y1).

(ii)-(iii) The proof is analogous to the previous one. Q.E.D.

Remark 2.5. Notice that if Φ(X1,X2) = ∅ and Φ(Y1,Y2) , ∅, then the results in the above theorem need not
hold. Consider the Banach space Z constructed by Gowers in [10] (see Remark 2.2(iii)). If we take X1 = Z and
X2 = Y1 = Y2 = Z ⊕ Z, then F := idX2 ◦ i ◦ p < F (Y1,Y2), where i and p are respectively the natural embedding and
the projection.

As a consequence of Theorem 2.4, we have:

Corollary 2.6. Let (X1,X2) and (Y1,Y2) be two couples of Banach spaces such that X1 ≤ Y1. Assume that
Φ(X1,X2) , ∅.
(i) If F (Y1,Y2) = K (Y1,Y2), then F (X1,X2) = K (X1,X2).
(ii) If F (Y1,Y2) = SS(Y1,Y2), then F (X1,X2) = S(X1,X2).

Proof. We shall prove (i), the proof of (ii) is similar. Since Xi ≤ Yi, i = 1, 2, then there exists R1 ∈ Φ+(X1,Y1)
and R2 ∈ Φ+(X2,Y2) with Ran(R1) complemented in Y1 and Ran(R2) complemented in Y2. By [11, Theorem
14, p. 160], there exists R′i such that R′i Ri = IXi + Ki with Ki ∈ K (Xi), i = 1, 2. Let T ∈ F (X1,X2). The use of
Theorem 2.4 leads to R2TR′1 ∈ F (Y1,Y2) = K (Y1,Y2). Thus, R′2R2TR′1R1 = T + K2T + K2TK1 ∈ K (X1,X2) and
therefore T ∈ K (X1,X2). Q.E.D.

Corollary 2.7. Let X be a Banach space satisfying X ≤ Lp(µ), for some p ≥ 1, then F (X) = SS(X) = CS(X).

Proof. By [16] we have F (Lp(µ)) = SS(Lp(µ)). Since X ≤ Lp(µ) then by Corollary 2.6 (ii), we get F (X) =
SS(X).
Now, consider F ∈ F (X), then F∗ ∈ F (X∗). Since X ≤ Lp(µ) then by Lemma 2.3, X∗ ≤ L∗p(µ) = Lq(µ) for some
q ≥ 1. Again by Corollary 2.6, F (X∗) = SS(X∗). Hence F∗ ∈ SS(X∗), and therefore F ∈ CS(X). This yields
F (X) ⊂ CS(X), and we get the result since we have CS(X) ⊂ F (X). Q.E.D.
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3. Seminorm related to upper semi-Fredholm perturbations

3.1. Basic construction and properties
Let X be a Banach space. We write MX for the family of all nonempty and bounded subset of X. Given

α the Kuratowski measure of noncompactness, we define, for T ∈ L(X), the two non-negative quantities
associated with T by:

α(T) = sup
{
α(T(A))
α(A)

; A ∈MX, α(A) > 0
}

and β(T) = inf
{
α(T(A))
α(A)

; A ∈MX, α(A) > 0
}
.

For more detail of some fundamental properties satisfied by α and β we refer to [1, 6].

Definition 3.1. For T ∈ L(X), we define the non-negative quantity:

φ(T) = sup{β(T + S), β(S) = 0}.

In what follows, we give some fundamental properties satisfied by φ(.).

Proposition 3.2. (i) φ(T) = 0 if and only if T ∈ F+(X).

(ii) φ(T + S) = φ(S), for all T ∈ F+(X).

(iii) φ(λT) = |λ|φ(T).

(iv) β(T) ≤ φ(T) ≤ α(T).

(v) φ(T) − α(S) ≤ φ(T + S) ≤ φ(T) + α(S).

(vi) φ(T) ≤ ∥T∥F+ ≤ ∥T∥K , where ∥T∥K = inf{∥T − K∥; K ∈ K (X)} and

∥T∥F+ = inf{∥T − K∥; K ∈ F+(X)}.
(vii) φ(ST) ≥ φ(T)β(S), for all S ∈ L(X).

(viii) If φ(T) = 0, then, for all S ∈ L(X), φ(TS) = φ(ST) = 0.

Proof. (i) It follows immediately from the fact that β(T) > 0 if and only if T ∈ Φ+(X).

(ii) Due to the fact that for T ∈ F+(X), β(S) = 0 if and only if β(T + S) = 0.

(iii) − (v) Follow from the definition of φ(.) and the fact that β(T) ≤ α(T).

(vi) Deduction of (ii) and (iv).

(vii) Let S,S1 ∈ L(X). According to [2, Theorem 1.46], we have

β(S1) = 0 =⇒ β(SS1) = 0.

On the other hand, we have

β(ST + SS1) = β(S(T + S1)) ≥ β(T + S1)β(S).

Hence,
sup

β(SS1)=0
β(ST + SS1) ≥ sup

β(S1)=0
β(T + S1)β(S)

and therefore, φ(ST) ≥ φ(T)β(S).

(viii) The fact that F+(X) is a two-sided ideal ofL(X) together with (i) gives immediately the assertion (viii).
Q.E.D.
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Remark 3.3. (i) Notice thatφ is not a non-compactness measure. Endeed, using the Rademcher functions, the author
in [3] constructs a strictly singular operator T ∈ L(Lp[−1, 1]), (p ≥ 1), hence φ(T) = 0. The proof of Theorem X.5.2
in [3] shows that α(T) = 1.

(ii) The assertion (viii) is equivalent to say that F+(X) is a two-sided ideal ofL(X).Moreover by (v), | φ(T)−φ(S) |≤
α(T − S) ≤∥ T − S ∥ . This implies that the measure φ is continuous. Hence, it follows from (i) that F+(X) is closed.

3.2. Applications
In the following theorems we establish a stability properties in the upper semi-Fredholm and semi-

Browder operators sets. In [12], V. Rakoc̆ević proves that the upper (lower) semi-Fredholm operators with
finite ascent (descent) is closed under commuting operator perturbations that belongs to the perturbation
class associated with the set of upper (lower) semi-Fredholm operators. In the following theorem we extend
in some way the result of Rakoc̆ević.

Theorem 3.4. Let T,S be two bounded operators on X.

(i) If φ(T) < β(S), then T + S ∈ Φ+(X) and i(T + S) = i(S).

Suppose moreover that ST = TS.

(ii) If φ(T) < β(S), then (a(S) < ∞ ⇒ a(T + S) < ∞).

(iii) Suppose that there exists n ∈N∗ such that φ(Tn) < β(Sn), then we get

(a) If S ∈ B+(X), then T + S ∈ B+(X).

(b) If S ∈ B(X), then T + S ∈ B(X).

Proof. (i) Suppose that β(T + S) = 0. Then β(S) = β(T − (T + S)) < φ(T). Hence, if φ(T) < β(S), then
β(T + S) > 0 and therefore T + S ∈ Φ+(X). Let t ∈ [0, 1], then φ(tT) < β(S), and so, by what we have just
proved, tT + S ∈ Φ+(X). Thus, by the continuity of the index on Φ+(X), we get i(T + S) = i(S).

(ii) For t ∈ [0, 1], we have φ(tT) < β(S), then, by (i), tT + S ∈ Φ+(X). Since S and T are commuting, then
according to [9, Theorem 3],

N∞(tT + S) ∩ R∞(tT + S) = N∞(sT + S) ∩ R∞(sT + S),

for all s in some open disk with center t. Hence,N∞(tT + S)∩R∞(tT + S) is locally constant function of t on
the interval [0, 1]. This yields that for all t ∈ [0, 1],

N∞(tT + S) ∩ R∞(tT + S) = N∞(S) ∩ R∞(S).

Now, since a(S) < ∞, then from [17, Proposition 1.6(i)] :

N∞(S) ∩ R∞(S) = N∞(S) ∩ R∞(S) = {0}.
Hence,

N∞(T + S) ∩ R∞(T + S) = {0}.
Thus,

N∞(T + S) ∩ R∞(T + S) = {0},
and again by [17, Proposition 1.6(i)], it follows that a(T + S) < ∞.
(iii)(a) Let t ∈ [0, 1]. Since φ((tT)n) < β(Sn), by (i), tT + S ∈ Φ+(X). Arguing as in the proof of (ii), we get the
result.

(iii)(b) Since S ∈ B(X), then i(S) = 0. Arguing as in the proof of (i), we get i(T + S) = 0. On the other hand,
(ii) yields a(T + S) < ∞. According to [15, Theorem 4.5 (d)], we get δ(T + S) < ∞. Q.E.D.

Recall the essential spectral radius re(T) := max{|λ|; T − λI < Φ(X)}, defined for T ∈ L(X). According to

[5, Section 1.4], we have re(T) = lim
n→+∞

∥Tn∥
1
n
K . By Theorem 3.4 and Proposition 3.2, we can deduce:
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Corollary 3.5. re(T) = lim
n→+∞

(φ(Tn))
1
n

Proof. From Proposition 3.2(vi) it follows re(T) ≥ lim
n→+∞

(φ(Tn))
1
n . To prove the opposite inequality, let λ ∈ C

be such that | λ |> (φ(Tn))
1
n for some n ∈ N, then by Theorem 3.4 (i) it follows that λ − T ∈ Φ(X). Hence

re(T) ≤ (φ(Tn))
1
n for every n ∈N.

Q.E.D.

For T ∈ L(X), define β0(T) to be the limit of the sequence (β(Tn))
1
n . For the existence of the quantity

β0(T) see [11, Lemma 1.21]. As an application of Theorem 3.4, we prove some localization results about the
essential spectra σe, σess and σb of bounded operators on X. We use D(0, r) for the disc with center 0 and
radius r andD(0, r) for the closure ofD(0, r). We write C[r1, r2] = D(0, r2) \D(0, r1), for r1 ≤ r2.

Corollary 3.6. Let T be a bounded operator on X, we have :

(i) σess(T) ⊂ D(0, re(T)).

(ii) If T ∈ Φ−(X), then σe(T) ⊂ C[β0(T), re(T)].

(iii) If 0 < σess(T), then σess(T) ⊂ C[β0(T), re(T)].

(iv) σb(T) ⊂ D(0, re(T)).

(v) If 0 < σb(T), then σb(T) ⊂ C[β0(T), re(T)].

Proof. Let n ∈ N∗ and suppose that |λ|n > φ(Tn), then, by Theorem 3.4(i), we have λ − T ∈ Φ(X) and
i(λ − T) = 0. Hence, if |λ| > re(T), then λ < σess(T), this proves (i).

Notice that if β(T) = 0, then β0(T) = 0 and the results are all trivial. Suppose that β(T) > 0. For |λ| < β0(T),
there exists n ∈N∗ such that |λ|n < β(Tn). Then, by Theorem 3.4(i), we have λ−T ∈ Φ+(X) and i(λ−T) = i(T).
Hence, we get easily (ii) and (iii).

(iv) For |λ| > re(T), there exists n ∈ N∗ such that |λ|n > φ(Tn). By Theorem 3.4, we have λ − T ∈ B(X). The
result follows since we can choose n arbitrary large.

(v) Since 0 < σb(T), then T ∈ Φ(X) and hence β(T) > 0. For |λ| < β0(T), there exists n ∈ N∗ such that
|λ|n < β(Tn). Theorem 3.4 implies that λ − T ∈ B(X) since T ∈ B(X). Q.E.D.

3.3. Weighted shift operators
Let ω = (ωn)n∈N be a bounded complex sequence. Consider the unilateral backward weighted shift

operator W(ω, p) defined on X = lr(N,C), r ≥ 1, by :

W(ω, p)(x0, x1, ...) = (ωpxp, ωp+1xp+1, ...).

Lemma 3.7. If 0 is a cluster point of the sequence (ωn)n, then β(W(ω, p)) = 0.

Proof. By hypothesis, there exists (ωρ(n))n such that lim
n→+∞

ωρ(n) = 0. Let λ = (λn)n be the sequence defined
by: {

λρ(n) = ωρ(n)
λn = 0 if n < Ran(ρ)

For n ≥ p, define the operator of finite rank on X:

Kn : (xk)k → (λpxp, ..., λnxn, 0, 0, ...).

Since ∥W(λ, p) − Kn∥ = sup
k≥n
|λk| → 0 when n → 0, then W(λ, p) is a compact operator. On the other hand,

dimN(W(ω, p) −W(λ, p)) = ∞. Hence, W(ω, p) < Φ+(X) and therefore, β(W(ω, p)) = 0. Q.E.D.



B. Abdelmoumen, H. Baklouti / Filomat 27:6 (2013), 1147–1155 1154

The following proposition extends the results of [1, Proposition 2.2] where one has shown that

α(W(ω, p)) ≤ lim sup
n→+∞

|ωn| and β(W(ω, p)) ≥ lim inf
n→+∞

|ωn|. (1)

Proposition 3.8. (i) α(W(ω, p)) = lim sup
n→+∞

|ωn|.

(ii) β(W(ω, p)) = lim inf
n→+∞

|ωn|.

(iii) φ(W(ω, p)) = lim sup
n→+∞

|ωn|.

Proof. Consider
ω+ := lim sup

n→+∞
|ωn|, ω− := lim inf

n→+∞
|ωn|.

There exists (ωρ+(n))n and (ωρ−(n))n such that |ωρ+(n)| → ω+ and |ωρ−(n)| → ω− when n → +∞. Let c+ (respec-
tively c−) be a cluster point of (ωρ+(n))n (respectively (ωρ−(n))n). We have |c+| = ω+ and |c−| = ω−. There exists
(ωψ+(n))n and (ωψ−(n))n such that ωψ+(n) → c+ and ωψ−(n) → c− when n→ +∞. Let

W+(ω, p) = c+(xp, xp+1, ...), W−(ω, p) = c−(xp, xp+1, ...).

Observe that
α(W+(ω, p)) = β(W+(ω, p)) = |c+| and α(W−(ω, p)) = β(W−(ω, p)) = |c−|.

Since, 0 is a cluster point of the sequences (ωn−c+)n and (ωn−c−)n, then by Lemma 3.7, β(W(ω, p)−W+(ω, p)) =
β(W(ω, p) −W−(ω, p)) = 0.

(i) According to [1, Proposition 2.1(vi)], we have

β(W+(ω, p)) − α(W(ω, p)) ≤ β(W(ω, p) −W+(ω, p)) = 0

which implies that α(W(ω, p)) ≥ ω+. The result follows from (1).

(ii) Since β(W(ω, p)) ≤ β(W(ω, p)−W−(ω, p))+α(W−(ω, p)), then β(W(ω, p)) ≤ ω−. The result follows from (1).

(iii) Let S =W(c+ − ω, p), then β(S) = 0. We have:

φ(W(ω, p)) ≥ β(W(ω, p) + S)
≥ β(W(c+, p)) = α(W(ω, p))

Hence, the result follows since α(W(ω, p)) ≥ φ(W(ω, p)). Q.E.D.

As an immediate result from Proposition 3.8, we obtain the following :

Corollary 3.9. W(ω, p) ∈ F+(lr(N,C)) if and only if W(ω, p) ∈ K (lr(N,C)) if and only if ω converges to 0.
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