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Available at: http://www.pmf.ni.ac.rs/filomat

On almost z-supercontinuity

S. Bayhana, A. Kanıbirb, A. McCluskeyc, I.L. Reillyd

aDepartment of Mathematics, Mehmet Akif Ersoy University, 15030 Istiklal Campus, Burdur, Turkey
bDepartment of Mathematics, Hacettepe University, 06532 Beytepe, Ankara, Turkey

cSchool of Mathematics, National University of Ireland, Galway, Ireland
dDepartment of Mathematics, University of Auckland, P.B. 92019, Auckland, New Zealand

Abstract. Two new classes of functions between topological spaces have been defined recently, and their
basic properties have been studied. They are called almost z-supercontinuous functions and almost Dδ-
supercontinuous functions. We consider these two classes of functions from the perspective of changes of
topologies. In particular, we show that each of these variants of continuity coincides with the classical notion
of continuity when the domain and codomain of the function under consideration have been retopologized
appropriately. Some of the consequences of this situation are examined in this paper.

1. Introduction

One of the fundamental ideas in all of mathematics is the notion of continuity. So much so that there
has been a movement in recent years to categorize mathematics into two main parts, namely discrete
mathematics and continuous mathematics. In topology there have been many variants of continuity
considered in the literature. In a recent paper [8], Kohli, Singh and Kumar have introduced two new
classes of functions almost z-supercontinuous functions and almost Dδ-supercontinuous functions. They note, in
particular, that these two variants of continuity are ”independent of continuity”. One of the main purposes
of this paper is to advocate exactly the opposite of this point of view. We argue that the distinction made
by Kohli, Singh and Kumar [8] between the concepts of almost z-supercontinuity and continuity must be
treated very carefully. It is imperative that this distinction be given a very strict interpretation. We claim
that almost z-supercontinuity is a disguised form of continuity. In fact, we show that if the domain and
codomain spaces of an almost z-supercontinuous function f are retopologized appropriately (see Theorem
4.1), then f is simply a continuous function. What this means is that the alleged new concept is in fact a
classical notion in a modified form. To use the language of category theory, we contend that an almost z-
supercontinuous function f exists because the wrong source and target have been chosen for the morphism
f in the category Top whose objects are topological spaces and whose morphisms are continuous functions.

Section 2 considers the basic properties of semi-regular topologies and topologies generated by the
collection of all cozero subsets of a topological space. Section 3 provides the relevant definitions of the
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The authors gratefully acknowledge financial support for this research by the Scientific and Technological Research Council of

Turkey (TUBITAK)
Email addresses: bayhan@mehmetakif.edu.tr (S. Bayhan), kanibir@hacettepe.edu.tr (A. Kanıbir),

aisling.mccluskey@nuigalway.ie (A. McCluskey), i.reilly@auckland.ac.nz (I.L. Reilly)



S. Bayhan et al. / Filomat 27:6 (2013), 965–969 966

classes of functions that are considered in this paper. The change of topology approach is used in Section 4
to reconsider the class of almost z-supercontinuous functions introduced by Kohli, Singh and Kumar [8]. In
Section 5 this same perspective of change of topology is focussed on the class of almost Dδ-supercontinuous
functions defined by Kohli, Singh and Kumar [8].

The notation and terminology used in this paper are standard, see for example Dugundji [2]. In
particular, no separation properties are assumed for topological spaces unless explicitly stated. We denote
the interior of a subset A of a topological space (X, τ) by τintA ( or by intA, if there is no possibility of
confusion), and the closure of A by τclA (or by clA).

2. Semi-regularization and complete regularization

In a topological space (X, τ) a set A is called τ regular open if A = τint(τclA) and τ regular closed if
A = τcl(τintA). The collection RO(X, τ) of all τ regular open sets forms a base for a smaller topology τs on X
called the semi-regularization of τ. The space (X, τ) is said to be semi-regular if τs = τ. Semi-regularization
topologies are considered in some detail by Mršević, Reilly and Vamanamurthy [10], especially from the
change of topology perspective. A result that we find useful is that (X, τ) is Hausdorff if and only if (X, τs)
is Hausdorff [10, Proposition 1].

A subset B of a topological space (X, τ) is called a cozero set if there is a continuous real-valued function
1 on X such that B = {x ∈ X : 1(x) , 0}. The complement of a cozero set is called a zero set. Since the
intersection of two cozero sets is a cozero set, the collection of all cozero subsets of (X, τ) is a base for a
topology τz on X, called the complete regularization of τ. It is clear that τz ⊂ τ in general. Furthermore, the
space (X, τ) is completely regular if and only if τz = τ. In general for any topological space (X, τ), we note
that (X, τz) is completely regular. Thus (X, τz) is regular, and hence it is semi-regular. Therefore (τz)s = τz.
Now the inclusion τz ⊂ τ implies that (τz)s ⊂ τs. That is, we have τz ⊂ τs, for any topological space (X, τ).

3. Definitions

This section provides a list of definitions of variations of continuity that are relevant to this paper.

A function f : (X, τ) −→ (Y, σ) between topological spaces is defined to be
(1) almost continuous [16] if for each x ∈ X and for each regular open set V containing f (x) there is an

open set U containing x such that f (U) ⊂ V,
(2) δ-continuous [12] if for each x ∈ X and for each regular open set V containing f (x) there is a regular

open set U containing x such that f (U) ⊂ V,
(3) supercontinuous [11] if for each x ∈ X and for each open set V containing f (x) there is a regular open

set U containing x such that f (U) ⊂ V,
(4) z-continuous [15] if for each x ∈ X and for each cozero subset V of Y containing f (x) there is an open

set U containing x such that f (U) ⊂ V,
(5) z-supercontinuous [5] if for each x ∈ X and for each open set V of Y containing f (x) there is a cozero

subset U of X containing x such that f (U) ⊂ V,
(6) almost z-supercontinuous [8] if for each x ∈ X and for each open set V of Y containing f (x) there is a

cozero subset U of X containing x such that f (U) ⊂ int(clV).

In 1970 Mack [9] made the following definition. A subset B of a space (X, τ) is called a regular Gδ-set if

B is the intersection of a sequence of closed sets in (X, τ) whose interiors contain B, so B =
∞∩

n=1
Fn =

∞∩
n=1

intFn,

where each Fn is closed in (X, τ). The complement of a regular Gδ-set is called a regular Fσ-set.
Then a function f : (X, τ) −→ (Y, σ) is defined to be
(7) Dδ-continuous [7] if for each x ∈ X and for each regular Fσ-subset V of Y containing f (x) there is an

open set U containing x such that f (U) ⊂ V.
(8) Dδ-supercontinuous [6] if for each x ∈ X and for each open set V of Y containing f (x) there is a regular

Fσ-set U containing x such that f (U) ⊂ V.
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4. Change of topology

The fundamental result, Theorem 4.1 below, shows that a change of topology on each of the domain
and co-domain spaces of an almost z-supercontinuous function reduces it to a continuous function. Thus
almost z-supercontinuity is not a new concept. It is the classical notion of continuity in disguise. The proof
of Theorem 4.1 follows immediately from Proposition 3.1 of Kohli, Singh and Kumar [8].

Theorem 4.1. Let f : (X, τ) −→ (Y, σ) be a function. Then the following are equivalent:
(1) f : (X, τ) −→ (Y, σ) is almost z-supercontinuous,
(2) f : (X, τz) −→ (Y, σ) is almost continuous,
(3) f : (X, τ) −→ (Y, σs) is z-supercontinuous,
(4) f : (X, τz) −→ (Y, σs) is continuous.

The equivalence of (1) and (4) in Theorem 4.1 is the fundamental defining characteristic of the class
of almost z-supercontinuous functions. It shows that almost z-supercontinuity is a µ-continuity property
in the sense of Gauld, Mršević, Reilly and Vamanamurthy [4]. The inclusion σs ⊂ σ, for any topology σ,
and the equivalence of (1) and (3) in Theorem 4.1 show that, in general, z-supercontinuity is stronger than
almost z-supercontinuity, and that for semi-regular codomains these notions are equivalent. On the other
hand, the inclusion τz ⊂ τ, for any topology τ, and the equivalence of (1) and (2) of Theorem 4.1 indicate
that almost continuity is, in general, weaker than almost z-supercontinuity, and that for completely regular
domains they are equivalent.

One immediate conclusion from Theorem 4.1 is that each almost z-supercontinuous function is a mor-
phism in the category Top where the objects are topological spaces and the morphisms are continuous
functions. If f : (X, τ) −→ (Y, σ) is almost z-supercontinuous, then f is a morphism in Top from (X, τz) to
(Y, σs). It is not the case that f lies outside of Top. It is the case that the wrong objects in Top have been
chosen for the source and target of the morphism f in the category Top.

The equivalence of (1) and (4) in Theorem 4.1 underlies much of the work in section 3 of Kohli, Singh
and Kumar [8], but that is never explicit in their presentation. For example, the results of Theorem 3.2
and Theorem 3.5 of [8] are standard results for continuous functions restated in the setting of almost
z-supercontinuous functions.

The equivalence of (1) and (4) in Theorem 4.1 can be used to provide elegant alternative proofs of existing
results. Recall that Frolı̀k [3] defined a topological space (X, τ) to be quasi-compact if every cover of X by
cozero sets in (X, τ) has a finite subcover. We observe that (X, τ) is quasi-compact if and only if (X, τz) is
compact. The class of nearly compact spaces was introduced by Singal and Mathur [14]. A space (X, τ) is
called nearly compact if every open cover of X has a finite subfamily such that the interiors of the closures
of its members cover X. Carnahan [1, Theorem 4.1] proved that (X, τ) is nearly compact if and only if (X, τs)
is compact.

Theorem 4.2. ([8, Theorem 4.1]) If f : (X, τ) −→ (Y, σ) is an almost z-supercontinuous surjection, and (X, τ) is
quasi-compact, then (Y, σ) is nearly compact.

Proof. By Theorem 4.1, f : (X, τz) −→ (Y, σs) is continuous and onto. So (Y, σs) is the continuous image of the
compact space (X, τz), and so is compact. Therefore (Y, σ) is nearly compact.

Note that Corollary 4.2 of [8] follows immediately, since (Y, σ) is semiregular if and only if σ = σs.

We now present two propositions as examples of new results suggested by the equivalence of (1) and
(4) of Theorem 4.1.

Proposition 4.3. Let f , 1 : (X, τ) −→ (Y, σ) be almost z-supercontinuous functions and (Y, σ) be Hausdorff. Then
E = {x ∈ X : f (x) = 1(x)} is closed in (X, τz).
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Proposition 4.4. If f : (X, τ) −→ (Y, σ) is almost z-supercontinuous and (Y, σ) is Hausdorff, then G( f ), the graph of
f , is closed in (X × Y, τz × σs).

The equivalence of (1) and (4) of Theorem 4.1 is an especially powerful tool in the discussion of
purely mapping properties, for example the composition of functions. First we need to note the following
equivalences.

(1) f : (X, τ) −→ (Y, σ) is δ-continuous if and only if f : (X, τs) −→ (Y, σs) is continuous [12, Theorem 2.5].

(2) f : (X, τ) −→ (Y, σ) is almost continuous if and only if f : (X, τ) −→ (Y, σs) is continuous [10, Proposition
12].

(3) f : (X, τ) −→ (Y, σ) is supercontinuous if and only if f : (X, τs) −→ (Y, σ) is continuous [11, Theorem
2.1].

(4) f : (X, τ) −→ (Y, σ) is z-supercontinuous if and only if f : (X, τz) −→ (Y, σ) is continuous [5, Theorem
6.3].

(5) f : (X, τ) −→ (Y, σ) is z-continuous if and only if f : (X, τ) −→ (Y, σz) is continuous [5, Theorem 6.5(a)].

The change of topology approach allows us to prove the next theorem simply by observing that the
composition of two continuous functions is continuous. Proofs going back to first principles are not
necessary. We note that (1) and (5) of Theorem 4.5 are Theorems 3.10 and 3.17 of Kohli and Kumar [5]
respectively, and that (3) is part of Remark 3.6 of [8].

Theorem 4.5. Let (X, τ), (Y, σ) and (Z, ψ) be topological spaces, and f : (X, τ) −→ (Y, σ) and 1 : (Y, σ) −→ (Z, ψ) be
functions.

(1) If f is z-supercontinuous and 1 is continuous then 1 ◦ f is z-supercontinuous.

(2) If f is z-supercontinuous and 1 is almost continuous then 1 ◦ f is almost z-supercontinuous.

(3) If f is almost z-supercontinuous and 1 is δ-continuous then 1 ◦ f is almost z-supercontinuous.

(4) If f is almost z-supercontinuous and 1 is supercontinuous then 1 ◦ f is z-supercontinuous.

(5) If f is z-continuous and 1 is z-supercontinuous then 1 ◦ f is continuous.

(6) If f is z-continuous and 1 is almost z-supercontinuous then 1 ◦ f is almost continuous.

5. Almost Dδ-supercontinuous functions

Let (X, τ) be a topological space, and let β denote the collection of all regular Fσ-subsets of (X, τ). The
intersection of two regular Fσ-subsets of (X, τ) is a regular Fσ-subset of (X, τ), and hence β is the base of a
topology τ∗ on X. It is clear that τ∗ ⊂ τ, (see Kohli and Singh [6]).

Kohli, Singh and Kumar [8, Definition 2.1] made the following definition. The function f : (X, τ) −→ (Y, σ)
is defined to be almost Dδ-supercontinuous if for each x ∈ X and each σ-open set V containing f (x), there is
a regular Fσ-subset of U of (X, τ) containing x and such that f (U) ⊂ σint(σclV).

The fundamental characterization of almost Dδ-supercontinuous functions is given by the next theorem.
It shows that almost Dδ-supercontinuity is not a new concept, but that it is the classical notion of continuity
in disguise. Its proof follows immediately from Proposition 3.1 of Kohli, Singh and Kumar [8].

Theorem 5.1. If f : (X, τ) −→ (Y, σ) is a function between topological spaces, then the following are equivalent:

(1) f : (X, τ) −→ (Y, σ) is almost Dδ-supercontinuous,

(2) f : (X, τ∗) −→ (Y, σ) is almost continuous,

(3) f : (X, τ) −→ (Y, σs) is Dδ-supercontinuous,

(4) f : (X, τ∗) −→ (Y, σs) is continuous.
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It is now clear that we can give a discussion of the properties of the class of almost Dδ-supercontinuous
functions exactly parallel to that in Section 4 of the properties of the class of almost z-supercontinuous
functions. We shall state some results without providing the proofs, which are entirely analogous to the
proofs of the corresponding results in Section 4.

Recall that a space (X, τ) is Dδ-compact [8, Definition 2.5] if every cover of X by regular Fσ-subsets of X
has a finite subcover. Hence (X, τ) is Dδ-compact if and only if (X, τ∗) is compact.

Theorem 5.2. ([8, Theorem 4.1]) If f : (X, τ) −→ (Y, σ) is an almost Dδ-supercontinuous surjection, and (X, τ) is
Dδ-compact, then (Y, σ) is nearly compact.

Proposition 5.3. Let f , 1 : (X, τ) −→ (Y, σ) be almost Dδ-supercontinuous functions and (Y, σ) be Hausdorff. Then
E = {x ∈ X : f (x) = 1(x)} is closed in (X, τ∗).

Proposition 5.4. If f : (X, τ) −→ (Y, σ) is almost Dδ-supercontinuous and (Y, σ) is Hausdorff, then G( f ), the graph
of f , is closed in (X × Y, τ∗ × σs).

Before considering composition of functions we note the following equivalences.
(1) f : (X, τ) −→ (Y, σ) is Dδ-continuous if and only if f : (X, τ) −→ (Y, σ∗) is continuous [6, Theorem 6.3].
(2) f : (X, τ) −→ (Y, σ) is Dδ-supercontinuous if and only if f : (X, τ∗) −→ (Y, σ) is continuous [6, Theorem

6.1].
We now state a result entirely analogous to the corresponding result for almost z-supercontinuity, and

which is proved by observing that the composition of two continuous functions is continuous. Theorem
5.5 (1) and (5) are Theorems 3.10 and 3.18 of Kohli and Singh [6] respectively.

Theorem 5.5. Let (X, τ), (Y, σ) and (Z, ψ) be topological spaces, and f : (X, τ) −→ (Y, σ) and 1 : (Y, σ) −→ (Z, ψ) be
functions.

(1) If f is Dδ-supercontinuous and 1 is continuous then 1 ◦ f is Dδ-supercontinuous.
(2) If f is Dδ-supercontinuous and 1 is almost continuous then 1 ◦ f is almost Dδ-supercontinuous.
(3) If f is almost Dδ-supercontinuous and 1 is δ-continuous then 1 ◦ f is almost Dδ-supercontinuous.
(4) If f is almost Dδ-supercontinuous and 1 is supercontinuous then 1 ◦ f is Dδ-supercontinuous.
(5) If f is Dδ-continuous and 1 is Dδ-supercontinuous then 1 ◦ f is continuous.
(6) If f is Dδ-continuous and 1 is almost Dδ-supercontinuous then 1 ◦ f is almost continuous.
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