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Abstract. In this paper we consider the functionals
¢
Al(t, x) = f 110’m)(x — B?'K)ds
0

t
Az(f, x) = f 1[0/00)(3( _ Bg‘I/K)SZHK—ldS,
0

where BPX is a bifractional Brownian motion with indices H € (0,1), K € (0, 1]. We find a constant pr ¢ € (1,2)
such that p-variation of the process Aj(t, BAKy — fot Zi(s, BIKygBHK (j = 1,2) equals to 0 if p > prx, where

Z;,j = 1,2, are the local times of BF’K. This extends the classical results for Brownian motion (Rogers-
Walsh [17]).

1. Introduction

Given H € (0,1),K € (0, 1]. The bifractional Brownian motion on R with indices H and K is a mean zero
Gaussian process BK = {B?’K,t > O} such that

E [BtH,KBSH,K] _ le [<t2H + S2H)K - S|2HK] (1)

for all s,t > 0. Clearly, if K = 1, the process is a fractional Brownian motion with Hurst parameter H. This
process was first introduced by Houdré and Villa [8]. Russo and Tudor [20] have established some properties
on the strong variations, local times and stochastic calculus of real-valued bifractional Brownian motion.

2010 Mathematics Subject Classification. Primary 60G15; 60J55; Secondary 60H05

Keywords. Bifractional Brownian motion, local time, self-intersection local time, p-variation, stochastic area integrals.

Received: 28 May 2012; Accepted: 23 February 2013

Communicated by Miljana Jovanovi¢

* Research supported by Mathematical Tianyuan Foundation of China (Grant No.11226198), NSFC (11171062), NSFC (11201232),
NSFEC (11271020), NSFC (81001288), NSRC (10023), Innovation Program of Shanghai Municipal Education Commission (122Z063),
NSF of Jiangsu Educational Committee (12KJB110008), Humanity and Social Science Youth foundation of Ministry of Education
(12YJCZH128), Priority Academic Program Development of Jiangsu Higher Education Institutions and and Major Program of Key
Research Center in Financial Risk Management of Jiangsu Universities Philosophy Social Sciences (N0:2012JDXMO009).

Email addresses: jordanjunfeng@163.com (Junfeng Liu), litanyan@dhu.edu.cn (Litan Yan), tdonglei@nau. edu.cn (Donglei
Tang)



Junfeng Liu et al. / Filomat 27:6 (2013), 995-1009 996

An interesting property is that the quadratic variation of this process on [0, {] equals to 2%t provided
2HK = 1. Tudor-Xiao [23] studied some sample path properties of bifractional Brownian motion. A Tanaka
formula for multidimensional bifractional Brownian motion was given by Es-sebaiy and Tudor [6].

The self-intersection local time of BEX is formally defined, for any ¢ > 0 and x € R, by

t S
a(t,x) = f f S(BEK — BEK _ xydrds,
0 0

which exists as a limit in L%(Q) if we approximate the “6” by f,. Intuitively, for x = 0, the random variable
a(t, 0) measures the amount of time the bifractional Brownian motion intersects with itself in the real time
interval [0, t] (see Jiang and Wang [13]).

In this paper we consider the integral functionals of the forms

t
Al(t, x) = f 1[0,00)(.76' — Bf’K)dS,
0

t
As(t,x) = f Tj0,00) (X — B?’,K)SZHK—ldS.
0

Our main aim is to study the p-variation of the following processes:

t
X0 = (5% - [ A BB
0

t
X i= 2,8 - [t B,
0

with HK € (0, 3), where the stochastic integral is of the Skorohod type and

t

t
At x) = f S(BEK —xyds,  A(tx) = f S(BEK — x)s2H-1 s,
0 0

are the local time and weighted local time of BPX, respectively. In particular, by using Itd’s formula

for bifractional Brownian motion BZX, one can connect the processes XE'), i = 1,2 with the derivative of
self-intersection local time (DSLT) of BK. See Section 3 for more details.

For K = 1 and H = 1, the process B#X is classical Brownian motion B. In the study of stochastic
area integral for standard Brownian motion B, Rogers and Walsh [17], [18], [19] were led to analyze the
functional of the form

t
A(t, Bt) = f 1[0,00)(Bt — Bs)ds
0

In particular, by using the classical It6 formula, essentially the Burkholder-Davis-Gundy inequalities of
martingales and the decomposition of the expression

on

Z 1Xjjon = X1y,
=

with X; = A(t, By), they showed that the process A(t, B;) is not a semimartingale, and in fact showed that the
process

t
A(t,By) — fo (s, B;)dB, 2)
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has finite non-zero 4/3-variation. Here .Z(t, Bs) is the local time of B at x, which is formally defined by

ZL(t,x) = fot O0(Bs — x)ds. Hu et al [12] also compute the %-Variation of the derivative of self-intersection
Brownian local time by using techniques from the theory of fractional martingales (Hu et al [11]).

Recently, Yan et al. [24] considered the similar integral functional driven by fractional Brownian motion
B with Hurst index H € (0, 1) which arises in the study of integration with respect to fractional local times
of fractional Brownian motion (see Yan ef al. [28]). In the general case, that is K # 1, this question has not
been studied. On the other hand, in recent years the fBm has become an object of intense study, due to
its interesting properties and its applications in various scientific areas including telecommunications, tur-
bulence, image processing and finance. However, contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other self-similar Gaussian processes. The main
reasons for this are the complexity of dependence structures and the non-availability of convenient stochas-
tic integral representations for self-similar Gaussian processes which do not have stationary increments.
Therefore, it seems interesting to study the problem.

This paper is organized as follows. In Section 2 we presents some preliminaries for bifractional Brownian
motion. In order to study the functionals A;(f, B?’K) and Ax(t, B?’K) as above, in Section 3 we define the
so-call weighted self-intersection local times and consider their derivatives (see Rosen [22]). In Section 4
we will use the results established in Section 3 to give our main theorem. Some technical estimates are
included in the appendix.

2. Preliminaries for bifractional Brownian motion

In this section, we briefly recall some basic definitions and results of bifractional Brownian motion.
For simplicity we let Cyx > 0 stand for a positive constant depending only on H, K and its value may
be different in different appearance. As we pointed out before, bifractional Brownian motion (bi-fBm)

BHK — {Bf“(,() <t< T}, on the probability space (Q,.%, P) with indices H € (0,1) and K € (0,1] is a rather

special class of self-similar Gaussian processes such that Bg’K =0and
1 K
R(,9) = E[BPBI] = ¢ [(P 4 ) = = 5P|, vt 0. (3)
The process is HK-self similar and satisfies the following estimates (the quasi-helix property)
2
27Kt - 5P < E [(BtH’K — B ] < 217K — PP, (4)

Thus, Kolmogorov’s continuity criterion implies that bifractional Brownian motion is Hélder continuous
of order 6 for any 6 < HK. More works for bi-fBm can be found in Houdré and Villa [8], Tudor-Xiao [23],
Russo-Tudor [20], Es-sebaiy and Tudor [6], Kruk ef al [15], Yan ef al [25-27], and the references therein.

As a Gaussian process, it is possible to construct a stochastic calculus of variations with respect to BFK,
We refer to Nualart [16] and Al6s et al [4] for a complete description of stochastic calculus with respect to
Gaussian processes, in particular, we refer to Es-sebaiy and Tudor [6] for stochastic calculus with respect to
BHX with 2HK > 1 and Yan and Xiang [25] with 0 < 2HK < 1. We will use the notation

T
f uSdBf’K,
0

to express the Skorohod integral of an adapted process u.

Theorem 2.1 (Itd’s formula [6] and [25]). Let f € C*}(R x R,) . Suppose that HK € (0, 1), then we have

"9 "9
£(B*,t) = £(0,0) + fo a—ic(Bf'K,s)dBf'K+ j; a—J;(Bf’K,s)ds

t 2
+ HK E(BE’K, s)s2=1gs,
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Recall that bi-fBm B”X has a local time 27K (x,t) continuous in (x,t) € R X [0, ) which satisfies the
occupation formula (see Geman-Horowitz [7])

t
fo (B )ds = fR ()L (x, Hdx, (5)

for every continuous and bounded function ¢(x) : R — R and any ¢ > 0, and such that
¢
1
HK _ HK o HK
LK, 1) = fo O(B;™ — x)ds = lim 2—6/\(5 €[0,1], B -2 <e),
where A denotes Lebesgue measure and 0(-) is the Dirac delta function. Set
L (x, t) = 2HK f MK 2K (x, ds),
0
¢
= 2HK f S(BIK — x)s2HK=1gs,
0

It follows from (5) that
t
2HK f H(BEK)s2HEA gg = f D)2 (x, t)dx.
0 R

At the end of the section, we give some estimates for the following expresses:
A=E|@BI-BM?],  p=E[BI-BMY],
and
u=E[BM - BB - BN,
forO<r<s<T0<?¥ <s <T.

Lemma?2.2. Let2HK #1. ForO<r<s<T,0< 1 <5 < T we we have

PHK | |5 — p/[2HK _|g _ g2HK _ | _ 7 [2HK

lu>(-=|sl_r

Proof. The inequalities (6) are two calculus exercises. By symmetry one may assume that s < s’, and we
have

u=E [(B?,K _ BHKy( BHK BHK)]

— 2—K (V + |S, _ T|2HK + |S —r |2HK _ |S, _ S|2HK _ |7’ _ r/|2HK),

where

y= (sle + SZH)K _ (S/ZH + r2H)K _ (SZH + r/ZH)K + (72 + r/ZH)

Letnow O <7 <r<s<s <T. Set

Gs’,r’(x) — (S/ZH + xZH)K _ (T’,ZH + xZH)K

and
Fyp(x) = (x - r,)ZHK - (' - x)ZHK'



Junfeng Liu et al. / Filomat 27:6 (2013), 995-1009

Mean value theorem implies that there are &, 17 € (7, s) such that

y= (s/2H + SZH)K _ (S/ZH + T2H)K _ (SZH + r/ZH)K + (72H + r/ZH)K

d
= Gs’,r’ (5) - Gs’,r’ (7) = (S - r)aGs',r'(é)

2HK oH1 (r/2H + £2H)17K _ (SIZH + 52H)17K <0
= (s—1)¢ (s2H + E2H)I-K(p2H 4 g2HyI-K ~

and

v+ (S, _ r)ZHK + (S _ r/)ZHK _ (S’ _ S)ZHK _ (7’ _ r/)ZHK
= Gs’,r’ (S) - Gs’,r’(r) + Fs’,r’ (S) - Fs’,r’ (T)
2H-1 2H-1

=2HK(s — ) n 1 )R 4 (sr — n)

(s2H 4 2H)1-K C(rH 12H) 1=K + (-

>0.

999

Similarly, one can show that (6) hold for 0 < v <7 <s<s’ <Tand 0 <r <s <1 <s < T, respectively.

This gives the estimates (6). [

Lemma 2.3. Let 2HK = 1.
(1) Forall0 <r<s <7t <s <T, we have

0<-u<(2H- 1)2*%#;

(2) Forall 0 <1 <r<s<s <T, wehave
0<u<2s-7);

(B) Forall 0 <r <1 <s<s <T, wehave
0<u<2Ks-7).

Proof. (1) For m > 0 we define the function x — G,,(x) on [0, T] by

Gn(x) = (m2H + XZH)K_l .

Thanks to mean value theorem, we see that there are & € (r,5) and n € (v, s’) such that

Gu(s) = Gu(r) = 2H(K — 1)E*H (s — 7) (mZH + £2H)K_2

and

Gu(s') = Gu(r') = 2H(K = )71 (s" = #/) (2! + ™)

(7)
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It follows from the duality relationship that
HK _ pHKypHK _ pHK P
-E(B;”" —B,")B," —B.") =— R(u, v)dud
B = BB -8 = [ [ SR odude

s s K2
=2H(1 - K)Z‘Kf f (uZH + UZH) w12 qudy
r r

S
K-2
W21, f (qu Jrz]2H) 2100
r

=2H(1 - K)27% f S

1%
’

= _Z_K fs qu_l {Gu(s) - G,,,(T)} du

S

= —2H(K — 1)27K&2H (5 - r)f TaE (uZH + EzH)K_Z du
= 25215 - 1) [Gels)) - Ger)
= 2H(1 - K)25(s = (s’ = )& (£ +27) > 0.

Combining this with
(£2H + TIZH)K—Z < n1—4H

and &n < n?, we obtain (7). Moreover, (8) and (9) follow from the proof of Lemma 2.2. Thus, we completes
the proof. O

According to the property of strong local nondeterminism of bi-fBm and (4), we can obtain the next lemma.

Lemma 2.4. There is a constant x > 0 such that the following statements hold:
(Dforany0<r<r <s<s <T,

Ap — yz > «[(s — r)?K(s" — s)2HK 4 (s — ' )HK(r — 1)2HK]; (10)
(2) forany0<r <r<s<s <T,

Ap — 12 > k(s — ry2HK(s’ — ¢ )2HE, (11)
(3)forany0<r<s<r <s <T,

Ap — 12 = x(s — )K" — ) 2K, (12)

3. Derivative of weighted self-intersection Local Times

To study our main aim, in this section we consider the weighted self-intersection local times of bi-fBm,
defined as

t S
a(f) = f f S(BIK — BHK)2HKA 34
0 0

t S
a(t) = f f S(BEK — BEKY(sr)2HK 1 drds
0 0

Suppose that Z(t, x) = fot d(BHK — x)ds and % (t, x) = fot S(BIX — x)s2HK-14s are the local time and weighted
local time of BPK, respectively, then we have

t
aj(t) = f Zi(s, BH)s*K g, j=1,2.
0
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which leads to the existence of aj, j = 1,2 in 12. Define the functionals A; and A, as follow
f
At = [T B (13)
0

t
As(t,x) = f 1[0,00) (x — BEF)sHK 1 s, (14)
0
Then we have
At x) = f Lt ydy, Aty = f Lt y)dy,

which imply that A; E C'(R; x R) for j =1,2. A formal application of 1t6’s formula for bi-fBm, using
%1[0,00)(30 o(x) and 3 1[0,m)(x) = §'(x), yields

£ £ S
Ayt B =t + f (s, BB + HK f f &' (B — B")s? K drds,
0 0 Jo
and

As(t, Bi") = + f D (s, BEKYdBHK

+HK f f o' (BEK — BIKY (s 2K drds
0 0

in the setting of distributional sense, where ¢’ is the distributional derivative of the Dirac-delta function,
and the stochastic integral is of the Skorohod type. For 0 < t < T, define two processes as follow

t S
a(t) = f f &' (BAK — BHKY2HKA gy 4,
0 0

h 2HK

t S
ay(t) = f f &' (BEX = B (K drds.
0 Jo
Thus, the expressions A; and A, can be rewritten as
t
A, By =t + f Zi(s, Y )dBI X + HKa () (15)
0
and

As(t, Bi"F) = + f (s, BPVIBEK + HKal(1). (16)

B 2HK

Now, let us prove the existence of the processes a;(t), j =1,2. Consider the heat kernel

T2 1 ixe e
fe(x) = \/2_6 w=am | e TdE, reR,
ne R

and define

£ S
aj(te): = f f FL(BEK — BEKYS2HKA 4y ds
0 Jo

. t S
=t f f 2K gy dg f Eei(B?K_B?K)‘Ee_S%dE
2n Jo Jo R
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t
ay(t, €)= fo f: FL(BE — B (s K drds

. t S
= — f f (1) drds f £ BB NE e g
21 Jo Jo R

Proposition 3.1. The processes oz;.(t), j=1,2existin L? if 0 < HK < %
Proof. Denote

T:={(rs7,s):0<r<s<t0<r <s <th
Suppose that ; = (rsr’s’)?HE1 ¢, = (ss)?K1 and

A = Var(BY - BI"X),  p = Var(BZ* - BI'),

and

u = Cov(BI"® — BPX, BIVK — BITK)

forall (s,,5’,7") € T. Then we have for j = 1,2,

. t s )
Ed'(t, €) = — Cdrds | EE (e -5%) e 5 dg = 0
/ 2 Jo Jo ! R

and

’ A2\ -1 f . ' 3o’
E(azj(t,e) ) = o2 TC]dralsdr ds

| ENElexp(E(BI ~ B + in(BIX ~ B)le " dedy
R
-1

" @np
1 1
f &n exp(—z(/\ + )& - uén — E(P + S)nz)dédn
]RZ

= i HG) ~drdsdr’ds’.
21t Jr [(A + &)(p + &) — u?]2

5

Cidrdsdr’ds’-

Thus, by Lemma 3.2, for 0 < HK < 2 we can define, in Lz—space,
aj(t) = Pﬁ%ai(t’ e), j=12
O

Lemma 3.2. For 0 < HK < % and j = 1,2, we have

f H—stdsdrds’dr’ < o0.
T (Ap — )2

The proof of the lemma will be given at Appendix.

1002

(17)

(18)
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4. p-variations

In this section, we give the main result of this note. The idea used here is essentially due to Rosen [22].
Fixt > 0andlet {0 =ty <t; <t <---t, = t} be a partition of [0, t] such that |A,| = max;|t; —t;4| > Oasn
tends to infinity. For a stochastic process X = {X;;t > 0}, we denote

n—1
VI, D = ) X, = Xyl
j=0

where p > 0. Recall that the process X is of bounded p-variation if the limit of V};(X, t) exists in L' as n tends
to infinity. We denote this limit by V(X t) and call it p-variation of X on [0,t]. For any t,#' € [0, T],t < ¥,
we denote

D1 ={0<r<v <s<s <t,t<ss <t}

D ={0<?¥ <r<s<g <t,t<ss <t}

Lemma 4.1. For % <HK < % and j = 1,2, we have

; C]‘df’deT’/dS, N |£n|e—%Var{ff(B_f’,K_Bf',K)+TI(B:,"K_B:,’,K)}dédn < C(t/ _ t)3—3HK (19)
and
f MY dsards < C( — p2HK, 20)
7 (Ap — 1)}

where C; = (ss")*X1 and Cp = (rsr's’)?HK-1,
This lemma will be proved in Appendix.
Theorem 4.2. For 3 < HK < 2, we have

V@, H=0, j=12

ifp> 73mx

Proof. For 3 < HK < % and j = 1,2, we have that

t S 4 s’
E[(a}(t’,e)—(a;.(t,e))z]=—(2711)2f; LI j; Cidrdsdr’ds’

RHK  pHK | pHK pHK .
XLZ énEelé(B,» =B,")+in(B,"-B, )'6_5(52+'72)d5d17

1 t fi ft' fs/
= - C;drdsdr’ds’
(2m)? ft‘ 0 Jt 0 !

% f Enem 2 VarleB BB BT =5 4 g g
R2
1
=——2f Cidrdsdr’ds’
2n)? Jg,
X f Enem 2 Varle B BB B O] L o5 () g g
R2

+ L e ~drdsdr’ds’.
2 Ja [(A+ )(p + &) — 2]
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Combining this with a;.(t, &) - a;.(t) (j =1,2) in L? as ¢ tends to zero, we get

L , 1 uCidrdsdr’ds’

El@() - (0] < o [ AR
21 Jg, (Ap - u?)?
1 ' ot — 1 Var[&(BI" B} )+n(BI/*~BI/)]
+ W Ll Cjdrdsdr’ds fu;z |En|e2 Varlé(®: By =B dgdn
< C(tl _ t)Z—HK + C(tl _ t)3—3HK < C(t/ _ t)3_3HK

by Lemma 4.1 because of 2 — HK > 3 — 3HK. It follows thatfor0 <p <2and j=1,2,
n—1 n-1
’ _ ’ ’ ’ 7 2\E
E[Vj(a), 0] = ) Ela, —af, P < ) (Elaf, - af, )"
k=0 k=0
nd p(3-3HK)
SCZlka -l 2,
k=0

which shows that the p-variation of the process a;. (j = 1,2) is zero provided p > 52 This completes the
proof. O

For the case 0 < HK < 1. We first give a lemma which is similar to Lemma 4.1.
Lemma 4.3. For 0 < HK < % and i, j = 1,2, we have

drdsdy’ds’
HCArdsdr'ds’ -y _ ppetik. 1)
P; (Ap - .uz)E

Thanks to the above lemma, one can easily obtain the following theorem by similar proof of Theorem 4.2.

Theorem 4.4. For 0 < HK < % and j = 1,2, we have

Vp(a;, ) =0.

ifp > v
Remark 4.5. From the above proof of Theorem 4.2 and Theorem 4.4, we obtain that,
1. for } <HK < 3,
’(qt ’ 2 ’ 3-3HK ;—
E[l(t) - /()] < Clt' = tPHK, j=1,2.
That means the DSLT a;(t), j = 1,2, has a modification which is a.s. Holder continuous in t of any order less
3-3HK
than ===,
2. for0 <HK < 3,
1y /(12 ’ 2-HK -
E[l(t) - a0l < Clt' = 171K, j=1,2.
That means the DSLT a;.(t), j = 1,2, has a modification which is a.s. Holder continuous in t of any order less

than =K,
Hence (15) and (16) are identities as functions of t when 0 < HK < .

Remark 4.6. On the other hand, the Holder continuity of the DSLT a;(t), j=1,2with 0 < HK <  can also

be proved by the methods developed in Jung and Markowsky [14] with the covariance structure and strong local
nondeterminism of bifractional Brownian motion. It is therefore omitted.
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We now can consider the p-variations of the processes X1, j = 1,2 given by
X\ .= At BIK) - fo t (s, BK)aBIK,
for0 < HK < 2.
Corollary 4.7. For < HK < %, we have
v,xV,n=0, j=12,
ifp > ik
Corollary 4.8. For 0 < HK < §, we have
V,xV,=0, j=1,2,

ifp > 2—%—1[('

Appendix A. Some technical estimates

In the appendix, we will give the proofs of the estimates (18), (19), (20) and (21). Denote
T:={(r,s7,s):0<r<s<t0<?r <s <t}
Suppose that ; = (ss")?K71, ¢, = (rsr’s’)? K71, For any (r,s,7’,s’) € T, we set s < s’ and denote
Ti={0<r<r <s<s <t}
T, ={0<r <r<s<s <t}
T;={0<r<s<r <s <t}

Let us first obtain the inequalities (20) and (21). Set

o f uCidrdsdr’ds’
" Ja (p- )

[1]

fori, j =1,2. We claim that
Bpi < C(t' — > 1K,
and
= /' _ p2-HK 1
Eji <Ct -t ,0<HK<§.
It follows from (6), (11) and the inequality

S —r > =) +(r—7)> (s —8)i(r—r)}

1005

(A.1)

(A.2)
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that for all (r,s,7,s') € T, and 3 < HK < .
U (s _ r)%HK(S _ r)l—%HK(S/ _ 7,/)2H1<—1
(Ap— )i (s — r)HK(s7 — p/)3HK
< (s — ) HK(s — ) ~3HK

< x(s - r)—gHK(S/ _ S)—HK(’, _ r/)_gHK

which yields
uCidrdsdr’ds’
% (Ap— )

<C f Cidrdsdr’ds’
- 7 (5— ;,)%HK(S; — s)HK(r — ;,/)%HK

drdsdr’ds’
<C > -
P, (S _ Y)EHK(S/ - S)HK(T — r’)EHK

< C(t —p)FHK

for } < HK < 3. This gives the inequality (A.1) fori=1,2.
Now suppose 0 < HK < 1, let us consider the inequalities (A.2). For (r,s,7’,s") € % by applying Young
inequality(see Beckenbach et al. [5]) and (10), we have

/\p — [JZ > K(S _ r)%HK(s/ _ S)%HK(SI _ r/)%HK(r/ _ r)%HK

Combining this with (11) and the Schwartz inequality y*> < Ap we obtain

=

~ (ss” ) drdsdr’ ds' <cC p(rr Y drdsdr’ ds’

=il = 3 = 3

Z; (Ap—p?)? Z (Ap—p?)?

v ,
<C f ds’ f (s —s)MRds < C(t' — 1> HK
t t
and

N f p(rsr’s’ YK drdsdr' ds' <cC f (rsr’s")?HRdrdsdr’ ds’
—12 .« = 7 (Ap _ [uz)% = 7 (S/ _ S)HK(S/ _ r/)HK(rI _ r)ZHK

<C f (rsr’s" )y H8Vdrdsdr’ ds’
=% o, (& — 9)HK(s — r)HK(y7 — py2HK

! g 2HK-1 HK (" rr’ 2K
< ’ ’ -_— ! _ - /
a C]; s [ (ss') & =s) dsf(; jo‘ (s — r")HK(r" — r)2HK drdr

s’
t

v
< Cf (S/)ZHK—ldslf SSHK—l(SI _ S)—HKdS < C(t/ _ t)Z—HK
t

Similar, one can obtain the estimate

1
Epo < C(H - MK,0 < HK < 5
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These show the inequalities (A.2) hold.
Next, we obtain the inequality (19). Suppose 1 < HK < 5 By the strong local nondeterminism property

of the bi-fractional Brownian motion proved by Tudor and Xiao [23], we have

Var[£(BEX — BEK) + n(BEYX — BEK))]
= Var[é(Bg,K _ BJ:I,K) +(E+ T])(Bﬁf’K _ Blr‘/{,K) n U(BE'K _ Bﬁ{,K)]

> K[CSZ(T, _ r)ZHK + (5 + T])Z(S _ r/)ZHK + nZ(s/ _ S)ZHK]

for some constant ¥ > 0 and (,s,7/,5") € %;. It follows that
Y= f C;drdsdr’ds’
D
x [ Jenlexpl-S1E07 =P € P61 P e
R
<C f \Enldédn f exp{——[52 4 (& + )P+ P K drodrsdry
R? 17

where ;5 = {t < Z?:l rp<t,t< Z?:l ri <t,0 <ry,r,13,14 < T}). Noting that

t'or=r=rs 2 ,2HK T 2 ,2HK
_K — K —
f e dry < (t’—t)”(f e T )t
t—r1—rpy—r3 0

1
<Clt —t)!'——=
1+ |n|m®

by Holder inequality with parameters 1 and = and 0 < a < 1, then we get

[ expl- 51 1 (€ P P i
Ds

e mm f f expl-S (23 + (& + P A Ndror,

1
1+IUIW1+I£|W1+I5+UIW

< C(t/ _ t)1+u

where we have used a basic inequality

1
_j2HK 2 Cc
f PR < 1
0 1 + |x|8&

for all x € R. Thus, asa < 2 — 3HK, i.e., when }{;K“ -1+ ﬁ -1>1,weget

1 1 1

Y; < C(t’ - t)1+af |én| s 1 1 dédT]
R T+ 7 1+ |E[AR 1+ | + |k

< C(t, _ t)l+a < C(t/ _ t)3_3HK.

which shows the inequality (19) holds for all § < HK < 3.



Junfeng Liu et al. / Filomat 27:6 (2013), 9951009 1008

Finally, let us prove the estimates (18). Because of the above proof, we just need to prove the estimate
f uCjdrdsdr’ds’

T (Ap - )

for j =1,2and 0 < HK < 3. This will be done in two cases.

Case 1. Let HK € (0, %) U (%, %). The estimates (6) and the estimate for y* in Hu [9, 248] imply that

< 00

i < C(T” _ S)Za(HK—l)[(S _ r)(sl _ r/)]Zﬁ(HK—l)+1

fora >0, > 0 and a + 2 = 1. Combining this with (12), we get

H - < C(s - r)Zﬁ(HK—1)+1—3HK(r/ _ S)Za(HK—l)(S/ _ r/)Zﬁ(HK—1)+1—3HK'
(Ap—p?):
Taking 0 < B < 228K leads to 2B(HK — 1) + 1 — 3HK > -1 and 2a(HK — 1) > -1 and so that when
HK € (0, 3) U (3, %), we have

f y—cj3drdsdr’ds’ < oo.
T; (Ap — .Uz)E
Case 2. Let HK = % It follows from (7) and (12) that
s e e
Ap—p):  r(s=ni(s-r):
which deduces

f &“drdsdr’ds' < Kf drdsldr ds - < 0o,
T; (Ap — p?)2 T (s —1)i(s’ —1')2

Thus we have proved (18).
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