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Abstract. The problem of mean square bounded-input bounded-output(BIBO) stability is investigated for
a class of discrete-time stochastic control systems with time delays and non-linear perturbations. In this
paper, a special point δ in the time delay’s variation interval is introduced, and the variation interval is
divided into two subintervals. Then, by defining a special Lyapunov−Krasovskii functional and checking its
variation in the two subintervals, respectively, some novel delay-dependent stability criteria for the discrete-
time stochastic control systems are derived. These conditions are expressed in the forms of linear matrix
inequalities(LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Meanwhile, this
paper provides a new method for studying discrete-time stochastic mean square BIBO stability. Finally, a
numerical example is given to illustrate the validity of the main results.

1. Introduction

Because of the finite switching speed, memory effects and so on, time delay is unavoidable in technology
and nature, and commonly exists in various mechanical, chemical processes, nuclear reactors, engineering,
physical, biological, and economic systems. It is often an important source of instability and oscillation.
That makes the design and hardware implementation of the control system become difficult. Thus, the
stability of time-delay systems has been widely investigated. Please refer to [1]-[8], and there are some
references there. In recent years, Bounded-Input Bounded-Output(BIBO) stability has been investigated
by many researchers hoping to track out the reference input signal in real world, see [9]-[23] and some
references therein. In [17,18], the sufficient condition for BIBO stability of the control system with no
delays was proposed by the Bihari-type inequality. In [11,12], employing the parameters technique and
the Gronwall inequality, the authors investigate the BIBO stability of the system without distributed time
delays. In [19]-[21], based on Riccati-equations, by constructing appropriate Lyapunov functions, some
BIBO stability criteria for a class of delayed control systems with nonlinear perturbations were established.
In [22], the BIBO stability problem of a class of piecewise switched linear system was further investigated.

However, up to now, those previous results have been assumed to be in deterministic systems, but rarely
in stochastic systems [10,23]. In [10], Zhou and Zhong discussed the BIBO stability in mean square of the
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stochastic delay system with nonlinear perturbation by auxiliary algebraic Riccati matrix equations. In [23],
Yu and Liao got several BIBO stability in mean square in term of Razumikhin technique and comparison
principle. In practice, when modeling real control systems, stochastic disturbances are probably part of the
main sources leading to unwilling behaviors of concerned systems. The behavior of the stochastic process is
a non-deterministic factor, namely, the system’s later states are determined both by the process predictable
actions and by random elements. Stochastic control systems are more applicable to solving problems that
are environmental noise in nature or related to biological realities. Thus, the mean square BIBO stability
for stochastic control systems are necessary.

It should be pointed out that, to date, almost all results concerning BIBO stability analysis problems
for control systems have been on continuous-time models. In implementations and applications of control
systems, however, discrete-time control systems play a more important role than their continuous-time
counterparts in today’s digital world. If one wants to simulate or compute the continuous-time systems,
it is essential to formulate the discrete-time analogue so as to investigate the dynamical characteristics.
Unfortunately, so far, the problem of BIBO stability of discrete-time control systems has not been fully
investigated. It remains challenging. The relevant literature is also rare, Please refer to [9,10], and some
references there. Yet, as far as we know, the mean square BIBO stabilization for the discrete-time stochastic
variable delay systems has not been studied. The contribution of this paper is the initial attempt to study
the BIBO stability analysis problem for such kind of control systems.

Most of the aforementioned efforts have given stability conditions on how to construct a suitable Lya-
punov functional. Generally speaking, the more effective information about the time delay the constructed
Lyapunov functional includes, the less conservatism the induced criterion may provide. In [24], a delay
midpoint method was proposed to study the stability problem for a class of continuous-time linear systems.
By employing the midpoint, the time delays variation interval was divided into two subintervals with equal
length and the midpoint was involved in constructing the Lyapunov functional. This method then found
many successful applications in [7,25]. In fact, at any instant, the value of the time delay is located in one
subinterval since the point δ of the time delay’s variation interval is introduced, and motivated by which
we may exploit new analysis method to achieve novel BIBO stability criteria for discrete-time stochastic
systems.

Motivated by the above discussions, the main aim of this paper is to study the BIBO stabilization in mean
square for the discrete-time stochastic control systems with time delays and nonlinear perturbations. By
introducing a point in the time delay’s variation interval, the time delays variation interval is divided into
two subintervals. Then we constructed special Lyapunov−Krasovskii functional and checkied its variation
in the two subintervals respectively. That is, the proposed Lyapunov−Krasovskii functional is different
when the time delay belongs to different subintervals. So, some novel delay-dependent stability criteria
for the discrete-time stochastic control system are derived. At the end, a numerical example is provided to
demonstrate the effectiveness of the derived results.

Notations. The notations are quite standard. Throughout this paper, Rn and Rn×m denote, respectively,
the n-dimensioned Euclidean space and the set of all n × m real matrices. The superscript “T” denotes
the transpose and the notation X ≥ Y(respective X > Y) means that X and Y are symmetric matrices, and
that X − Y is positive semi-definitive (respective positive definite). ∥.∥ is the Euclidean norm in Rn. N+ is
the positive integer set. I is the identity matrix with compatible dimension. If A is a matrix, denote ∥A∥
as its operator norm, i.e., ∥A∥ = sup{∥Ax∥ : ∥x∥ = 1} =

√
λmax(ATA), where λmax(A) (respectively, λmin(A))

means the largest (respectively, smallest) of A. Moreover, let (Ω,F, {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e, the filtration contains all P-null sets and is right
continuous). E{.} stands for the mathematical expectation operator with respect to the given probability
measure P. A asterisk ∗ in a matrix is used to denote a term that is induced by symmetry. Matrices, if not
explicit and specified, are assumed to be of compatible dimensions. N[a, b] = {a, a+ 1, ..., b}. Sometimes, the
arguments of function will be omitted in the analysis when no confusion would arise.
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2. Problem formulation and Preliminaries

Consider the following discrete-time stochastic control system with time-varying delays and nonlinear
perturbations described by

x(k + 1) = Ax(k) + B1(x(k)) + C1(x(k − τ(k))) +Du(k) + f (k, x(k), x(k − τ(k)))
+ σ(k, x(k), x(k − τ(k)))ω(k + 1), k ∈ N+

y(k) =Mx(k),
(1)

where x(k) = [x1(k), x2(k), ..., xn(k)]T ∈ Rn denotes the state vector, u(k) = [u1(k),u2(k), ..., um(k)]T ∈ Rm

is the control input vector, y(k) = [y1(k), y2(k), ..., yn(k)]T ∈ Rn is the control output vector, 1(x(k)) =
[11(x(k)), 12(x(k)), ..., 1n(x(k))]T ∈ Rn, A,B,C,M ∈ Rn×n are constant matrices, and D ∈ Rn×m is a constant
matrix, the positive integer τ(k) is time varying delay satisfying

τ1 ≤ τ(k) ≤ τ2, k ∈ N+

with τ1 and τ2 are known positive integers. The initial condition associated with model (1) is given by

x(k) = ϕ(k), k ∈ [−τ2, 0]

and f (k, x(k), x(k − τ(k))) ∈ C(R+ × Rn × Rn,Rn) is the nonlinear vector-valued perturbation bounded in
magnitude as

∥ f (k, x(k), x(k − τ(k))))∥2 ≤ α1∥x(k)∥2 + α2∥x(k − τ(k))∥2, (2)

hereα1, α2 are known positive constants. ω(k) is a scalar Wiener process (Brownian motion) on (Ω,F, {Ft}t≥0,P)
with

E(ω(k)) = 0, E(ω(k)2) = 1, E(ω(i)ω( j)) = 0, i , j.

To obtain the control law described by (1) of tracking out the reference input of the system, we let the
controller be in the form of

u(k) = Kx(k) + r(k), (3)

where K is the feedback gain matrix, and r(k) is the reference input.
Assumption1. For any ξ1, ξ2 ∈ R, ξ1 , ξ2,

γ−i ≤
1i(ξ1) − 1i(ξ2)

ξ1 − ξ2
≤ γ+i , (4)

where γ−i and γ+i are known constant scalars.
Remark1. The constants γ−i , γ+i in Assumption 1 are allowed to be positive negative or zero. Hence,

the function 1(x(k)) could be non-monotonic and is more general than the usual sigmoid functions or the
recently commonly used Lipschitz conditions.

Assumption2. σ(k, x(k), x(k − τ(k))) : R × Rn × Rn → Rn is the continuous function, which is assumed to
satisfy

σT(k, x(k), x(k − τ(k)))σT(k, x(k), x(k − τ(k))) ≤
(

x(k)
x(k − τ(k))

)T (
G1 G2
∗ G3

) (
x(k)

x(k − τ(k))

)
, (5)

Remark2. Choose G1 = ρ1I,G2 = 0,G3 = ρ2I, we can find that (5) reduces to

σT(k, x(k), x(k − τ(k)))σT(k, x(k), x(k − τ(k))) ≤ ρ1∥x(k)∥2 + ρ2∥x(k − τ(k))∥2, (6)

where ρ1 > 0, ρ2 > 0 are known constant scalars. Thus the assumption condition (6), which was discussed
in many references, is a special case of the assumption condition (5). It should be pointed out that the
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delay-depended BIBO stability conditions of discrete stochastic control systems with varying time delays
and nonlinear perturbations by (5) are generally less conservative than that by (6).

At the end of this section, let us introduce some important definitions and lemmas which will be used
in the sequel.

Definition1([23,9]). A vector function r(k) = (r1(k), r2(k), ..., rn(k))T is said to be an element of Ln
∞, if

∥r∥∞ = supk∈N[0,∞) ∥r(k)∥ < +∞, where ∥.∥ denotes the Euclid norm in Rn or the norm of a matrix.
Definition2([23,9]). The nonlinear stochastic control system (1) is said to be BIBO stabilized in mean

square, if one can constructs a controller (3) such that the output y(k) satisfies

E(∥y(k)∥2) ≤ N1 +N2∥r∥2∞, (7)

where N1,N2 are positive constants.
The following Lemmas has been refered to in many references.
Lemma1. For any given vectors vi ∈ Rn, i = 1, 2, ..., n, the following inequality holds:

[
n∑

i=1

vi]T[
n∑

i=1

vi] ≤ n
n∑

i=1

vT
i vi.

Lemma2. Let x, y ∈ Rn and any n × n positive-definite matrix Q > 0. Then, we have

2xT y ≤ xTQ−1x + yTQy.

Lemma3. (Schur complement) Given the constant matricesΩ1,Ω2 andΩ3 with appropriate dimensions,
where Ω1 = Ω

T
1 and Ω2 = Ω

T
2 > 0. Then Ω1 +Ω

T
3Ω
−1
2 Ω3 < 0 if and only if(

Ω1 ΩT
3

∗ −Ω2

)
< 0 or

(
−Ω2 Ω3
∗ Ω1

)
< 0.

3. Mean square BIBO stability of nonlinear stochastic control systems

In this section, we shall establish our main criterion based on the LMI approach. For the convenience of
presentation , in the following, we denote

Γ1 = diag{γ−1 , γ−2 , .., γ−n },
Γ2 = diag{γ+1 , γ+2 , ..., γ+n },
Γ3 = diag{γ−1γ+1 , γ−2γ+2 , .., γ−nγ+n },

Γ4 = diag{
γ−1 + γ

+
1

2
,
γ−2 + γ

+
2

2
, ...,

γ−n + γ
+
n

2
},

δ =
τ1 + τ2

2
− min{(−1)τ1+τ2 , 0}

2
,

a = τ2 − τ1 + 1, b = τ2 − δ,

c =
{
δ − τ1, τ1 ≤ τ(k) ≤ δ
τ2 − δ, δ < τ(k) ≤ τ2

,

θ(k) =
{

x(k − τ1), τ1 ≤ τ(k) ≤ δ
x(k − τ2), δ < τ(k) ≤ τ2

,

β =

 τ(k)−τ1
δ−τ1

, τ1 ≤ τ(k) ≤ δ
τ2−τ(k)
τ2−δ , δ < τ(k) ≤ τ2

.

Theorem 1. For given positive integers τ1 > 0, τ2 > 0, under Assumption 1 and Assumption 2,
the nonlinear discrete-time stochastic control system (1) with the controller (3) is BIBO stabilizable in
mean square, if there exist symmetric positive-definite matrces P, Q1, Q2, Q3, Q4, Z1, Z2 with appropriate
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dimensional, positive-definite diagonal matrices H, R, Λ1, Λ2, constant λ∗ > 0 such that the following two
LMIs hold:

P + 2(δ2Z1 + c2Z2) ≤ λ∗I, (8)

Ξ =



Ξ11 λ∗G2 Ξ13 0 Z1 0 0
√

2(A +DK)
∗ Ξ22 0 Ξ24 Ξ25 Ξ26 0 0
∗ ∗ Ξ33 Ξ34 0 0 Ξ37

√
2

2 B
∗ ∗ ∗ Ξ44 0 0 Ξ47

√
2

2 C
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77

√
2

2 I
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

λ∗ I


< 0, (9)

where

Ξ11 = Q1 − 2aΓ1H + 2aΓ2R − Z1 +Q4 − Γ3Λ1 − P + (
a(τ2 − τ1)

2
+ τ2)Q2 + 2λ∗α1I + λ∗G1 + 2(δ2Z1 + C2Z2),

Ξ13 = aH − aR + Γ4Λ1,

Ξ22 = 2Γ1H − 2Γ2R − Γ3Λ2 −Q2 − 3Z2 + 2λ∗α2I − λ∗G3

Ξ24 = −H + R + Γ4Λ2,

Ξ25 = (1 + β)Z2,

Ξ26 = Z2 + (1 − β)Z2,

Ξ33 = −Λ1 + aQ3 +
3
2

BTλ∗IB,

Ξ34 =
1
2

BTλ∗IC,

Ξ37 =
1
2

BTλ∗I,

Ξ44 = −Λ2 −Q3 +
3
2

CTλ∗IC,

Ξ47 =
1
2

CTλ∗IC,

Ξ55 = −Q1 − Z2 − βZ2 − Z1,

Ξ66 = −Q4 − 2Z2,

Ξ77 = −
1
2
λ∗I,

Proof. In order to establish the stability conditions, we introduce the following Lyapunov-Krasovskii func-
tional candidate for system (1):

V(k) =
6∑

i=1

Vi(k), (10)

where

V1(k) = xT(k)Px(k),

V2(k) =
k−1∑

i=k−δ
xT(i)Q1x(i) +

−1∑
j=−τ(k)

k−1∑
i=k+ j

xT(i)Q2x(i) +
−τ1−1∑
j=−τ2

−1∑
i= j+1

k−1∑
l=k+i

xT(l)Q2x(l),
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V3(k) = 2
−τ1+1∑

j=−τ2+1

k−1∑
i=k−1+ j

[(1(x(i)) − Γ1x(i))TH + (Γ2x(i) − 1(x(i)))TR]x(i),

V4(k) = δ
−1∑

j=−δ

k−1∑
i=k−1+ j

ηT(i)Z1η(i), η(k) = x(k + 1) − x(k),

V5(k) =
−τ1+1∑

j=−τ2+1

k−1∑
i=k−1+ j

1T(x(i))Q31(x(i)),

V6(k) =



(δ − τ1)
−τ1−1∑
j=−δ

k−1∑
i=k+ j

ηT(i)Z2η(i)

+
k−1∑

i=k−τ1

xT(i)Q4x(i), τ1 ≤ τ(k) ≤ δ

(τ2 − δ)
−δ−1∑
j=−τ2

k−1∑
i=k+ j

ηT(i)Z2η(i)

+
k−1∑

i=k−τ2

xT(i)Q4x(i), δ < τ(k) ≤ τ2

.

Define ∆V(k) = V(k + 1) − V(k) then along the solution of (1), by lemma 1, we have

E{∆V1(k)} =E{xT(k + 1)Px(k + 1) − xT(k)Px(k)} (11)

E{∆V2(k)} = E{(
k∑

i=k−δ+1
−

k−1∑
i=k−δ

)xT(i)Q1x(i) + (
−1∑

j=−τ(k+1)

k∑
i=k+1+ j

−
−1∑

j=−τ(k)

k−1∑
i=k+ j

)xT(i)Q2x(i)

+
−τ1−1∑
j=−τ2

−1∑
i= j+1

(
k∑

l=k+i+1
−

k−1∑
l=k+i

)xT(l)Q2x(l)}

≤ E{xT(k)Q1x(k) − xT(k − δ)Q1x(k − δ) + (
−1∑

j=−τ2

k−1∑
i=k+1+ j

−
−1∑

j=−τ(k)

k−1∑
i=k+ j

)xT(i)Q2x(i)

+
−1∑

j=−τ2

xT(k)Q2x(k) + a(τ2−τ1)
2 xT(k)Q2x(k) −

−τ1−1∑
j=−τ2

k−1∑
i=k+ j+1

xT(i)Q2x(i)}

≤ E{xT(k)Q1x(k) − xT(k − δ)Q1x(k − δ) + (
−1∑

j=−τ2

k−1∑
i=k+1+ j

−
−1∑

j=−τ1

k−1∑
i=k+ j+1

)xT(i)Q2x(i)

+ τ2xT(k)Q2x(k) − xT(k − τ(k))Q2x(k − τ(k)) + a(τ2−τ1)
2 xT(k)Q2x(k) −

−τ1−1∑
j=−τ2

k−1∑
i=k+ j+1

xT(i)Q2x(i)}

≤ E{xT(k)Q1x(k) − xT(k − δ)Q1x(k − δ) − xT(k − τ(k))Q2x(k − τ(k))
+ ( a(τ2−τ1)

2 + τ2)xT(k)Q2x(k)},

(12)

E{∆V3(k)} = 2E{
−τ1+1∑

j=−τ2+1
(

k∑
i=k+ j
−

k−1∑
i=k−1+ j

)[(1(x(i)) − Γ1x(i))TH + (Γ2x(i) − 1(x(i)))TR]x(i)}

≤ 2E{a[1(x(k)) − Γ1x(k)]THx(k) + a[Γ2x(k) − 1(x(k))]TRx(k)
− [1(x(k − τ(k))) − Γ1x(k − τ(k))]THx(k − τ(k))
− [Γ2x(k − τ(k)) − 1(x(k − τ(k)))]TRx(k − τ(k))},

(13)

E{∆V4(k)} = E{δ
−1∑

j=−δ
(

k∑
i=k+ j
−

k−1∑
i=k−1+ j

)ηT(i)Z1η(i)

= E{δ2ηT(k)Z1η(k) − δ
k−1∑

j=k−δ
ηT( j)Z1η( j)}
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≤ E{δ2ηT(k)Z1η(k) −
k−1∑

j=k−δ
ηT( j)Z1

k−1∑
j=k−δ

η( j)}, (14)

(15)

Note that

−
k−1∑

i=k−δ
ηT(i)Z1

k−1∑
i=k−δ

η(i) =
(

x(k)
x(k − δ)

)T (
−Z1 Z1
∗ −Z1

) (
x(k)

x(k − δ)

)
,

E{∆V5(k)} = E{
−τ1+1∑

j=−τ2+1
(

k∑
i=k+ j
−

k−1∑
i=k−1+ j

)1T(x(i))Q31(x(i))}

≤ E{a1T(x(k))Q31(x(k))
k−τ1∑

j=k−τ2

1T(x( j))Q31(x( j))}

≤ E{a1T(x(k))Q31(x(k)) − 1T(x(k − τ(k)))Q31(x(k − τ(k)))},

(16)

E{∆V6(k)} = E{xT(k)Q4x(k) − θT(k)Q4θ(k) + c2ηT(k)Z2η(k) − cψ(k)}, (17)

where

ψ(k) =


k−τ1−1∑
i=k−δ

ηT(i)Z2η(i), τ1 ≤ τ(k) ≤ δ
k−δ−1∑
i=k−τ2

ηT(i)Z2η(i), δ < τ(k) ≤ τ2

,

When τ1 ≤ τ(k) ≤ δ, it is easy to compute that

−cψ(k) ≤ −(1 − β)
k−τ1−1∑
i=k−τ(k)

ηT(i)Z2

k−τ1−1∑
i=k−τ(k)

η(i) −
k−τ1−1∑
i=k−τ(k)

ηT(i)Z2

k−τ1−1∑
i=k−τ(k)

η(i)

−
k−τ(k)−1∑

i=k−δ
ηT(i)Z2

k−τ(k)−1∑
i=k−δ

η(i) − β(1 − β)
k−τ(k)−1∑

i=k−δ
ηT(i)Z2

k−τ(k)−1∑
i=k−δ

η(i).
(18)

When δ < τ(k) ≤ τ2, similarly we can have

−cψ(k) = −[(τ2 − τ(k)) + (τ(k) − δ)]
k−δ−1∑

i=k−τ(k)
ηT(i)Z2η(i) − [((τ2 − τ(k)) + (τ(k) − δ))]

k−τ(k)−1∑
i=k−τ2

ηT(i)Z2η(i)

≤ −β
k−δ−1∑

i=k−τ(k)
ηT(i)Z2

k−δ−1∑
i=k−τ(k)

η(i) −
k−δ−1∑

i=k−τ(k)
ηT(i)Z2

k−δ−1∑
i=k−τ(k)

η(i) −
k−τ(k)−1∑
i=k−τ2

ηT(i)Z2

k−τ(k)−1∑
i=k−τ2

η(i)

− (1 − β)
k−τ(k)−1∑
i=k−τ2

ηT(i)Z2

k−τ(k)−1∑
i=k−τ2

η(i),

(19)

Combining (16), (17) with (18), we have

E{∆V6(k)} = E
{

xT(k)Q4x(k) − θT(k)Q4θ(k) + c2ηT(k)Z2η(k)

+

x(k − τ(k))
x(k − δ)
θ(k)


T −2Z2 Z2 Z2

∗ −Z2 0
∗ ∗ −Z2


x(k − τ(k))

x(k − δ)
θ(k)


+ β

(
x(k − τ(k))

x(k − δ)

)T (
−Z2 Z2
∗ −Z2

) (
x(k − τ(k))

x(k − δ)

)
+ (1 − β)

(
x(k − τ(k))
θ(k)

)T (
−Z2 Z2
∗ −Z2

) (
x(k − τ(k))
θ(k)

) }
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From (4), it follows that

(1i(x(k)) − γ+i xi(k))(1i(x(k)) − γ−i xi(k)) ≤ 0, i = 1, 2, ..., n.

which are equivalent to(
x(k)
1(x(k))

)T (
γ−i γ

+
i eieT

i −γ
−
i +γ

+
i

2 eieT
i

∗ eieT
i

) (
x(k)
1(x(k))

)
≤ 0, (20)

(
x(k − τ(k))
1(x(k − τ(k)))

)T (
γ−i γ

+
i eieT

i −γ
−
i +γ

+
i

2 eieT
i

∗ eieT
i

) (
x(k − τ(k))
1(x(k − τ(k)))

)
≤ 0, (21)

where ei denotes the unit column vector having one element on its i-th row and zeros elsewhere.
Then from (19) and (20), for any matrices Λi = dia1{λi1, λi2, ..., λin} > 0, i = 1, 2, it follows

(
x(k)
1(x(k))

)T (
−Γ3Λ1 Γ4Λ1
∗ −Λ1

) (
x(k)
1(x(k))

)
≥ 0, (22)

(
x(k − τ(k))
1(x(k − τ(k)))

)T (
−Γ3Λ2 Γ4Λ2
∗ −Λ2

) (
x(k − τ(k))
1(x(k − τ(k)))

)
≥ 0, (23)

then from (11) to (22), we have

E{∆V(k)} ≤ E{ξT(k)Ωξ(k) + δ2ηT(k)Z1η(k) + c2ηT(k)Z2η(k) + xT(k + 1)Px(k + 1)} (24)

where

ξT(k) = [xT(k), xT(k − τ(k)), 1T(x(k)), 1T(x(k − τ(k))), xT(k − δ), θT(k), f T].

Ω̃ =



Ω̃11 0 Ω̃13 0 Z1 0 0
∗ Ω̃22 0 Ω̃24 Ω̃25 Ω̃26 0
∗ ∗ Ω̃33 0 0 0 0
∗ ∗ ∗ Ω̃44 0 0 0
∗ ∗ ∗ ∗ Ω̃55 0 0
∗ ∗ ∗ ∗ ∗ Ω̃66 0
∗ ∗ ∗ ∗ ∗ ∗ 0


with

Ω̃11 = Q1 − 2aΓ1H + 2aΓ2R − Z1 +Q4 − Γ3Λ1 − P + (
a(τ2 − τ1)

2
+ τ2)Q2,

Ω̃13 = aH − aR + Γ4Λ1,

Ω̃22 = 2Γ1H − 2Γ2R − Γ3Λ2 −Q2 − 3Z2

Ω̃24 = −H + R + Γ4Λ2,

Ω̃25 = (1 + β)Z2,

Ω̃26 = Z2 + (1 − β)Z2,

Ω̃33 = −Λ1 + aQ3,

Ω̃44 = −Λ2 −Q3,

Ω̃55 = −Q1 − Z2 − βZ2 − Z1,

Ω̃66 = −Q4 − 2Z2.
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Note that, from (8), we have

E{δ2ηT(k)Z1η(k) + c2ηT(k)Z2η(k) + xT(k + 1)Px(k + 1)}
≤ E{xT(k + 1)[p + 2(δ2Z1 + c2Z2)]x(k + 1) + xT(k)2(δ2Z1 + c2Z2)x(k)}
≤ E{xT(k + 1)λ∗Ix(k + 1) + xT(k)2(δ2Z1 + c2Z2)x(k)}

(25)

from (1) and lemma 2,

E{xT(k + 1)λ∗Ix(k + 1)} ≤ E{ξT(k)Ω̃Tλ∗IΩ̃ξ(k) + σTλ∗Iσ +
3
2
1T(x(k))BTλ∗IB1(x(k))

+
3
2
1T(x(k − τ(k)))CTλ∗IC1(x(k − τ(k))) + 1T(x(k))BTλ∗IC1(x(k − τ(k)))

+ 1T(x(k))BTλ∗I f (k, x(k), x(k − τ(k))) + 5rT(k)DTλ∗IDr(k)

+ 1T(x(k − τ(k)))CTλ∗I f (k, x(k), x(k − τ(k)))

+
3
2

f T(k, x(k), x(k − τ(k)))λ∗I f (k, x(k), x(k − τ(k)))}

(26)

where

Ω̃ = (
√

2(A +DK), 0,

√
2

2
B,
√

2
2

C, 0, 0,
√

2
2

I)

Then from (11) to (25), by (2), we have

E{∆V(k)} ≤ E{ξT(k)[Ω̂ + Ω̃Tλ∗IΩ̃]ξ(k)} + ρ∥r∥2∞ (27)

where

ρ = 5λ∗∥D∥2

Ω̂ =



Ω̂11 λ∗G2 Ω̂13 0 Z1 0 0
∗ Ω̂22 0 Ω̂24 Ω̂25 Ω̂26 0
∗ ∗ Ω̂33 Ω̂34 0 0 Ω̂37

∗ ∗ ∗ Ω̂44 0 0 Ω̂47

∗ ∗ ∗ ∗ Ω̂55 0 0
∗ ∗ ∗ ∗ ∗ Ω̂66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̂77


with

Ω̂11 = Q1 − 2aΓ1H + 2aΓ2R − Z1 +Q4 − Γ3Λ1 − P + (
a(τ2 − τ1)

2
+ τ2)Q2 + 2λ∗α1I + λ∗G1 + 2(δ2Z1 + C2Z2),

Ω̂13 = aH − aR + Γ4Λ1,

Ω̂22 = 2Γ1H − 2Γ2R − Γ3Λ2 −Q2 − 3Z2 + 2λ∗α2I − λ∗G3

Ω̂24 = −H + R + Γ4Λ2,

Ω̂25 = (1 + β)Z2,

Ω̂26 = Z2 + (1 − β)Z2,

Ω̂33 = −Λ1 + aQ3 +
3
2

BTλ∗IB,
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Ω̂34 =
1
2

BTλ∗IC,

Ω̂37 =
1
2

BTλ∗I,

Ω̂44 = −Λ2 −Q3 +
3
2

CTλ∗IC,

Ω̂47 =
1
2

CTλ∗IC,

Ω̂55 = −Q1 − Z2 − βZ2 − Z1,

Ω̂66 = −Q4 − 2Z2,

Ω̂77 = −
1
2
λ∗I,

If the LMI (9) holds, by using lemma 3 and (26), it follows that there exists a sufficient small positive ϵ > 0,
such that

E{∆V(k)} ≤ −ϵE{∥x(k)∥2} + ρ∥r∥2∞. (28)

It is easy to derive that

V(k) ≤ µ1∥x(k)∥2 + µ2

k−1∑
i=k−τ2

∥x(i)∥2, (29)

with

µ1 = λmax(P),
µ2 = λmax[Q1) + a(∥H∥2 + λmax(Γ1H) + λmax(RTR)] + 4δ2λmax(Z1) + λmax(Q4) + 4a2λmax(Z2)
+ a[2 + λmax(Q3)]ΓT

2Γ2 + [τ2 + (τ2 − τ1)(τ2 − 1)]λmax(Q2).

For any θ > 1, from (27) and (28), it follows that

θ j+1V( j + 1) − θ jV( j) = θ j+1∆V( j) − θ j(θ − 1)V( j)

≤ θ j[(−ϵθ + (θ − 1)µ1)∥x( j)∥2 + ρθ∥r∥2∞ + (θ − 1)µ2

j−1∑
i= j−τ2

∥x(i)∥2]. (30)

Summing up both sides of (29) from 0 to k − 1, we can obtain

θkV(k) − V(0) ≤ (µ1(θ − 1) − ϵθ)
k−1∑
j=0
θ j∥x( j)∥2 + ρ

k−1∑
j=0
θ j+1∥r∥2∞ + µ2(θ − 1)

k−1∑
j=0

j−1∑
i= j−τ2

θ j∥x(i)∥2. (31)

Also it is easy to compute that

k−1∑
j=0

j−1∑
i= j−τ2

θ j∥x(i)∥2 ≤ (
−1∑

i=−τ2

i+τ2∑
j=0
+

k−1−τ2∑
i=0

i+τ2∑
j=i+1
+

k−1∑
i=k−τ2

k−1∑
i+1

)µ j∥x(i)∥2

≤ τ2θτ2 sups∈[−τ2,0] ∥x(s)∥2 + τ2θτ2
k−1∑
i=0
θi∥x(i)∥2.

(32)

Substituting (31) into (30) leads to

θkV(k) − V(0) ≤ η1(θ) sup
s∈[−τ2,0]

∥x(s)∥2 + η2(θ)
k−1∑
i=0
θi∥x(i)∥2 + ρ

k−1∑
j=0
θ j+1∥r∥2∞, (33)

where

η1(θ) = µ2(θ − 1)τ2θτ2 ,
η2(θ) = µ2(θ − 1)τ2θτ2 + µ1(θ − 1) − ϵθ.
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Since η2(1) < 0, there must exist a positive θ0 > 1 such that η2(θ0) < 0. Then we have

V(k) ≤ η1(θ0)( 1
θ0

)k sup
s∈[−τ2,0]

∥x(s)∥2 + ( 1
θ0

)kV(0) + ρ
k−1∑
j=0

1
θk− j−1 ∥r∥2∞

≤ (η1(θ0) + µ1 + µ2τ2) sup
s∈[−τ2,0]

∥x(s)∥2 + ρ
θ0−1∥r∥2∞.

(34)

On the other hand, by (10) we can get

V(k) ≥ λmin(P)∥x(k)∥2. (35)

Combining (33) with (34), we have

E{∥x(k)∥2} ≤ η1(θ0)+µ1+µ2τ2

λmin(P) sup
s∈[−τ2,0]

E∥x(s)∥2 + ρ
θ0−1∥r∥2∞. (36)

Thus

E{∥y(k)∥2} ≤ ∥M∥2E{∥x(k)∥2} ≤ N1 +N2∥r∥2∞, (37)

where

N1 = ∥M∥2 η1(θ0)+µ1+µ2τ2

λmin(P) sup
s∈[−τ2,0]

E∥x(s)∥2,

N2 =
ρ

θ0−1∥M∥2.

By Definition 2, the nonlinear discrete-time stochastic control system (1) is said to be BIBO stabilized in
mean square. This completes the proof.

If the stochastic term ω(k) is removed in (1), the following results can be obtained.
Corollary 1. For given positive integers τ1 > 0, τ2 > 0, under Assumption 1 and Assumption 2, the

nonlinear discrete-time stochastic control system (1) with the controller (3) is BIBO stabilizable in mean
square, if there exist symmetric positive-definite matrices P, Q1, Q2, Q3, Q4, Z1, Z2, with appropriate
dimensional, positive-definite diagonal matrices H, R, Λ1, Λ2, constant λ∗ > 0 such that the following two
LMIs hold:

P + 2(δ2Z1 + c2Z2) ≤ λ∗I, (38)

Ξ =



Ξ11 0 Ξ13 0 Z1 0 0
√

2(A +DK)
∗ Ξ22 0 Ξ24 Ξ25 Ξ26 0 0
∗ ∗ Ξ33 Ξ34 0 0 Ξ37

√
2

2 B
∗ ∗ ∗ Ξ44 0 0 Ξ47

√
2

2 C
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77

√
2

2 I
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

λ∗ I


< 0 (39)

where

Ξ11 = Q1 − 2aΓ1H + 2aΓ2R − Z1 +Q4 − Γ3Λ1 − P + (
a(τ2 − τ1)

2
+ τ2)Q2 + 2λ∗α1I + 2(δ2Z1 + C2Z2),

Ξ13 = aH − aR + Γ4Λ1,

Ξ22 = 2Γ1H − 2Γ2R − Γ3Λ2 −Q2 − 3Z2 + 2λ∗α2I
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Ξ24 = −H + R + Γ4Λ2,

Ξ25 = (1 + β)Z2,

Ξ26 = Z2 + (1 − β)Z2,

Ξ33 = −Λ1 + aQ3 +
3
2

BTλ∗IB,

Ξ34 =
1
2

BTλ∗IC,

Ξ37 =
1
2

BTλ∗I,

Ξ44 = −Λ2 −Q3 +
3
2

CTλ∗IC,

Ξ47 =
1
2

CTλ∗IC,

Ξ55 = −Q1 − Z2 − βZ2 − Z1,

Ξ66 = −Q4 − 2Z2,

Ξ77 = −
1
2
λ∗I,

Proof. The proof is straightforward and hence omitted.

Corollary 2 . System (1) is also stabile in mean square when all the conditions in Theorem 1 and
Corollary 1 are satisfied, if the bounded input r(t) = 0 in (3).

Remark 3. It is obvious that δ divides the time delay’s variation interval into two subintervals, [τ1, δ] and
(δ, τ2]. Then the Lyapunov-Krasovskii functional is constructed for each subinterval, that is, the proposed
Lyapunov-Krasovskii functional is different when the time-delay τ(k) belongs to different subintervals. It
has two features. Firstly, it makes full use of the information on the considered time delay. Secondly, the
new state x(k − δ) is introduced by V(k).

Remark 4. In this paper, novel BIBO stability conditions for the system (1) are derived from checking
the variation of derivatives of the Lyapunov-Krasovskii functional in each subinterval. It is different from
[9], which checked the variation of the Lyapunov functional in the whole variation interval of the delay.

Remark 5. The BIBO stability conditions for the discrete−time system had been investigated in the
recently reported paper [9]. However, the stochastic disturbances and nonlinear perturbations in the
control systems had not been taken into consideration . In [9], the time delay was a constant, which was a
special case of this paper when τ1 = τ2.

4. Example

In this section, a numerical example is presented to show the validity of the main results derived from
Section 3.

Considering the stochastic control system (1) with control law (3), the parameters are given by

A =
(
−0.1 0
0.1 −0.2

)
, B =

(
−0.1 0.1
−0.1 0.5

)
, C =

(
0.5 0.1
0.5 0.5

)
, D =

(
0.1 0.1
0 0.2

)
,

G1 = 0.001I, G2 = 0.002I, G3 = 0.02I, f = [0.1x(k),
√

0.2x(k − τ(k))]T, 11(s) = sin(0.2s) − 0.6 cos(s), 12(s) =
tanh(−0.4s), εi = 1, i = 1, 2, 3, 4. So it can be very easy to be verified that

Γ1 =

(
−0.8 0

0 −0.4

)
, Γ2 =

(
−0.8 0

0 0

)
, Γ3 =

(
−0.64

0 0

)
, Γ4 =

(
0 0
0 −0.2

)
.

τ1 = 1, τ2 = 5, meantime, we have a = 5, b = 2, c = 2, δ = 3.
Meanwhile, the corresponding values of β for various τ(k) are listed as follows.
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When τ(k) = 1; 5 then β = 0; when τ(k) = 2 then β = 1; when τ(k) = 3; 4 then β = 0.5;
By using the Matlab LMI Toolbox, we solved LMI(8)and LMI(9) and obtained the feasible solutions as
follows:
when β = 0,

P =
(
173.3668 0.2021
0.2021 112.6277

)
, Z1 =

(
0.8581 0.0070
0.0070 0.3097

)
, Z2 =

(
3.3990 −0.0027
−0.0027 2.6835

)
,

Q1 =

(
11.3028 0.0310
0.0310 14.0202

)
, Q2 =

(
1.4484 0.0010
0.0010 0.7920

)
, Q3 =

(
4.6486 0.2164
0.2164 4.7879

)
,

Q4 =

(
15.1835 −0.0018
−0.0018 15.0268

)
, R =

(
3.3329 0

0 7.4569

)
, H =

(
3.3431 0

0 8.6943

)
,

Λ1 =

(
35.8656 0

0 42.0701

)
, Λ2 =

(
17.4126 0

0 25.0698

)
, K =

(
24.5051 −1.9133
−1.9133 20.7397

)
and λ∗ = 238.9518.
when β = 0.5,

P =
(
171.7588 0.2540
0.2540 111.8846

)
, Z1 =

(
0.9518 0.0031
0.0031 0.4241

)
, Z2 =

(
3.3952 −0.0025
−0.0025 2.6953

)
,

Q1 =

(
11.2321 0.0155
0.0155 13.1525

)
, Q2 =

(
1.4611 0.0007
0.0007 0.8352

)
, Q3 =

(
4.4460 0.2055
0.2055 4.5303

)
,

Q4 =

(
14.0165 −0.0019
−0.0019 14.0519

)
, R =

(
3.2462 0

0 7.1631

)
, H =

(
3.2553 0

0 8.3139

)
,

Λ1 =

(
34.3462 0

0 40.0259

)
, Λ2 =

(
17.1514 0

0 24.2894

)
, K =

(
23.4860 −1.7442
−1.7442 20.0778

)
,

and λ∗ = 234.9575.
when β = 1,

P =
(
171.3560 0.2578
0.2578 111.3159

)
, Z1 =

(
0.9531 0.0031
0.0031 0.4286

)
, Z2 =

(
3.3791 −0.0029
−0.0029 2.7095

)
,

Q1 =

(
11.5764 0.0182
0.0182 13.0461

)
, Q2 =

(
1.4514 0.0006
0.0006 0.8124

)
, Q3 =

(
4.4404 0.2055
0.2055 4.5245

)
,

Q4 =

(
13.6802 −0.0015
−0.0015 13.8779

)
, R =

(
3.2446 0

0 7.1255

)
, H =

(
3.2534 0

0 8.2736

)
,

Λ1 =

(
34.2897 0

0 39.9642

)
, Λ2 =

(
17.0144 0

0 24.2527

)
, K =

(
23.4731 −1.7453
−1.7453 20.0593

)
,

and λ∗ = 233.0185.
Remark6. From this example, we can see that the stability criterion in Theorem 1 in this paper also

depends on actual time delays themselves, not just on the difference between the maximum and minimum
time-delay bounds, that is , not just depends on the time-delay interval.
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5. Conclusions

The problem of bounded-input bounded-output(BIBO) stabilization in mean square sense for a class
of discrete-time stochastic control systems with time varying delays and nonlinear perturbations has been
considered in this paper. A point of the time delay’s variation interval has been introduced, and the
variation interval has been divided into two subintervals. Then, by defining a special Lyapunov−Krasovskii
functional and checking its variation in the two subintervals respectively, some novel delay-dependent
stability criteria for the discrete-time stochastic control system has been obtained. These stability conditions
in this paper depended on actual time delays themselves as well, not just on the difference between the
maximum and minimum time-delay bounds, that is , not just depended on the time-delay interval. And
they were expressed in the forms of linear matrix inequalities(LMIs), whose feasibility can be easily checked
by using Matlab LMI Toolbox. Meanwhile, this paper provided a new method for studying discrete-time
stochastic BIBO stabilization. At the end, a numerical example has been given to illustrate the validity of
the main results.
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