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Abstract. In two BIT papers error expansions in the Gauss and Gauss-Turán quadrature formulas with
the Chebyshev weight function of the first kind, in the case when integrand is an analytic function in some
region of the complex plane containing the interval of integration in its interior, have been obtained. On
the basis of that, using a representation of the remainder term in the form of contour integral over confocal
ellipses, the upper bound of the modulus of the remainder term, in the cases when certain parameter
s (s ∈ N0) takes the specific values s = 0, 1, 2, has been obtained. Its form for a general s (s ∈ N0) has been
supposed in one of the mentioned papers. Here, we prove that formula.

1. Introduction

Let Γ be an arbitrary simple closed curve in the complex plane surrounding the interval [−1, 1] and f a
function analytic in its interiorD = intΓ and continuous inD.

Here, we consider the remainder term Rn,s( f ) of the well know Gauss-Turán quadrature formula with
multiple nodes∫ 1

−1
f (t)ω(t)dt =

n∑
ν=1

2s∑
i=0

Ai,ν f (i)(τν) + Rn,s( f ) (n ∈N, s ∈N0). (1)

The weight functionω is a nonnegative and integrable function on the interval [−1, 1]. The Gauss-Turán
quadrature (1) has the algebraic degree of precision 2n(s+ 1)− 1. In the case s = 0 it reduces to the standard
Gaussian quadrature formula.

The nodes τν in (1) are zeros of the orthogonal polynomials πn(t) ≡ πn,s(t), known as “s−orthogonal”
polynomials with respect to the weight function ω, which satisfy∫ 1

−1
[πn(t)]2s+1tkω(t)dt = 0 (k = 0, 1, . . . ,n − 1).
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mspalevic@mas.bg.ac.rs (Miodrag M. Spalević)
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We use the same notation as in [3]. In the sequel, Γ is an elliptical contour Eρ with foci at ∓1 and the
sum of semi-axes ρ > 1,

Eρ =
{
z ∈ C | z =

1
2

(
ξ + ξ−1

)
, 0 ≤ θ ≤ 2π

}
, ξ = ρ eiθ. (2)

Using [3, Eq. (4.4)] (see also [1]), from [3, Eq. (3.8)] we get the error bound

∣∣∣Rn,s( f )
∣∣∣ ≤ +∞∑

k=0

|α2n(s+1)+k||ε(s)
n,k| ≤

2
ρ2n(s+1)

(
max
z∈Eρ
| f (z)|

) +∞∑
k=0

|ε(s)
n,k|
ρk
. (3)

When ω represents the Chebyshev weight function of the first kind, i. e.,

ω(t) = (1 − t2)−1/2, (4)

the explicit expressions of the last sum in (3) have been obtained for the cases s = 1 and s = 2 in [3, Eqs.
(4.6), (4.5)]. Previously, Hunter derived the corresponding explicit expression for the case s = 0 in [2, Eq.
(4.4)] (see also [3, Eq. (4.7)]). Subject to those explicit expressions in [3, Remark 4.2] there was suggested
the conjecture about the explicit expression for this sum in the general case s ∈ N0 (see also (6) below). In
the following section we prove that conjecture.

2. An upper bound for |Rn,s( f )| of the Gauss-Turán quadrature formula with the Chebyshev weight
function of the first kind (4)

Lemma 2.1. For each number t ∈N0, it holds

t∑
i=0

(−1)i
(
m + s + i

2s

)(
2s + 1

i

)
= (−1)t 2s + 1

m + s + 1

(
m + s + t + 1

2s + 1

)(
2s
t

)
. (5)

Proof. For t = 0 we have to show that(
m + s

2s

)(
2s + 1

0

)
=

2s + 1
m + s + 1

(
m + s + 1

2s + 1

)(
2s
0

)
,

which is obvious.
If we now suppose that (5) holds for some t ∈N0, for proving that it holds for t+ 1 we have to show the

identity

(−1)t 2s + 1
m + s + 1

(
m + s + t + 1

2s + 1

)(
2s
t

)
+ (−1)t+1

(
m + s + t + 1

2s

)(
2s + 1
t + 1

)

= (−1)t+1 2s + 1
m + s + 1

(
m + s + t + 2

2s + 1

)(
2s

t + 1

)
,

i. e.,

− 2s + 1
m + s + 1

m + t + 1 − s
2s + 1

(
m + s + t + 1

2s

)(
2s
t

)
+

(
m + s + t + 1

2s

)
2s + 1
t + 1

(
2s
t

)

=
2s + 1

m + s + 1
m + t + s + 2

2s + 1

(
m + s + t + 1

2s

)
2s − t
t + 1

(
2s
t

)
,
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which is equivalent to the following equality

−m + t + 1 − s
m + s + 1

+
2s + 1
t + 1

=
(m + t + s + 2)(2s − t)

(m + s + 1)(t + 1)
,

i. e.,

−(m + t + 1 − s)(t + 1) + (2s + 1)(m + s + 1) = (m + t + s + 2)(2s − t),

where the last one is obviously an identity.

Theorem 2.2. For the Gauss-Turán quadrature formula (1) with the Chebyshev weight function of the first kind (4),
if the function f is analytic in the interiorD of the ellipse Eρ, given by (2), and continuous inD, then there holds the
following error bound

∣∣∣Rn,s( f )
∣∣∣ ≤ 2π

(
max
z∈Eρ
| f (z)|

) s∑
k=0

(−1)k
(
2s + 1
s − k

)
ρ2n(s−k)

(ρ2n − 1)2s+1 . (6)

Proof. As first, we are expressing the numbers ε(s)
n,k defined by (3.9) (and (3.7), (4.2), (4.3)) in [3]. According

to (3.7), (4.2) and (4.3) from [3], we have that for all n ∈N, k ∈N0, holds

ω(s)
n,k =

[k/(2n)]∑
j=0

β
(s)
n,2njγ

(s)
n,k−2nj,

i. e.,

ω(s)
n,k =

+∞∑
j=0

β
(s)
n,2njγ

(s)
n,k−2nj.

If we define γ(s)
n,l = 0 for l < 0 and ω(s)

n,k = 0 for k < 0, we have

ϵ(s)
n,k =

1
4

(ω(s)
n,k − ω

(s)
n,k−2) =

1
4

+∞∑
j=0

β
(s)
n,2nj

[
γ(s)

n,k−2nj − γ
(s)
n,k−2−2nj

]
=

1
4

+∞∑
j=0

β
(s)
n,2nj

[
γ(s)

n,k−2nj − γ
(s)
n,k−2−2nj

]
for all n ∈ N0, k ∈ Z. It is easy to see from (4.3) in [3] that γ(s)

n,k−2nj , γ
(s)
n,k−2−2nj if and only if k ≡ 0 (mod 2n)

and 0 ≤ k − 2nj ≤ 2sn, i. e., k = 2nm for some m ∈N0, j ≤ m ≤ j + s.
Let us note that [3, Eq. (4.3)] can be modified in the following way:

γ(s)
n,k =


π

22s−1

j∑
ν=0

(
2s + 1
s − ν

)
, k = 2nj, 2nj + 2, . . . , 2n( j + 1) − 2,

0, otherwise,

(7)

where j ∈N0, since

π

22s−1

s∑
ν=0

(
2s + 1
s − ν

)
=

1
2

 π22s−1

2s+1∑
ν=0

(
2s + 1
s − ν

) = 1
2
π

22s−1 22s+1 = 2π.
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Here, we used that
(
n
k

)
= 0 for n ∈N0, k < 0.

Hence for j ∈N0, according to (7),

γ(s)
n,k−2nj − γ

(s)
n,k−2−2nj =


π

22s−1

(
2s + 1

s − (m − j)

)
, k = 2nm, m ≥ j,

0, otherwise,

where m ∈N0, i. e.,

γ(s)
n,k−2nj − γ

(s)
n,k−2−2nj =


π

22s−1

(
2s + 1

s − (m − j)

)
, k = 2nm, m − s ≤ j ≤ m,

0, otherwise.
(8)

Finally, according to [3, Eq. (4.2)] and (8), we have

ε(s)
n,k =

 π
m∑

j=m−s

(−1) j
(

j + 2s
2s

)(
2s + 1

s − (m − j)

)
, k = 2nm, m ∈N0,

0, otherwise.

(9)

The sum from (9) can be rewritten in the form

π
s∑

i=0

(−1)i+m−s
(
m + s + i

2s

)(
2s + 1

i

)
(10)

and calculated by using Eq. (5) from the previous lemma.
Hence, if we put t = s into (5), we get that (10) is equal to

(−1)s 2s + 1
m + s + 1

(
m + 2s + 1

2s + 1

)(
2s
s

)
,

and then (9) becomes

ε(s)
n,k =

 π(−1)m 2s + 1
m + s + 1

(
m + 2s + 1

2s + 1

)(
2s
s

)
, k = 2nm, m ∈N0,

0, otherwise.

According to this, (3) obtains the form∣∣∣Rn,s( f )
∣∣∣ ≤ 2π∥ f ∥ρ
ρ2n(s+1)

+∞∑
m=0

2s + 1
m + s + 1

1
ρ2mn

(
m + 2s + 1

2s + 1

)(
2s
s

)
= 2π∥ f ∥ρF(x),

where ∥ f ∥ρ = max
z∈Eρ
| f (z)| and x = ρ−2n (therefore, x ∈ (0, 1)) and

F(x) = (2s + 1)
(
2s
s

) +∞∑
m=0

(
m + 2s + 1

2s + 1

)
xm+s+1

m + s + 1
.

Further, we have that

F′(x) = (2s + 1)
(
2s
s

) +∞∑
m=0

(
m + 2s + 1

2s + 1

)
xm+s

= (s + 1)
(
2s + 1

s

) +∞∑
m=0

(
2s + 2 +m − 1

m

)
xm+s

= (s + 1)
(
2s + 1

s

)
xs

(1 − x)2s+2 .
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The right-hand side of the inequality in (6), expressed as a function of x, is equal to

2π∥ f ∥ρ

s∑
k=0

(−1)k
(
2s + 1
s − k

)
xs+k+1

(1 − x)2s+1 = 2π∥ f ∥ρ

s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1

(1 − x)2s+1 .

Therefore, it remains to check the identity

d
dx



s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1

(1 − x)2s+1


= (s + 1)

(
2s + 1

s

)
xs

(1 − x)2s+2 . (11)

We have

(1 − x)2s+2 d
dx

 s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1

(1 − x)2s+1


= (1 − x)

s∑
k=0

(−1)k(s + k + 1)
(

2s + 1
s + k + 1

)
xs+k + (2s + 1)

s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1.

For 0 ≤ k ≤ s − 1 the coefficient which multiplies xs+k+1 on the right hand side in the previous equality is
equal to

(−1)k+1(s + k + 2)
(

2s + 1
s + k + 2

)
− (−1)k(s + 1 + k)

(
2s + 1

s + k + 1

)
+ (2s + 1)(−1)k

(
2s + 1

s + k + 1

)

= (−1)k
(
−(2s + 1)

(
2s

s + k + 1

)
+ (s − k)

(
2s + 1

s + k + 1

))

= (−1)k
(
−(2s + 1)

(
2s

s + k + 1

)
+ (s − k)

(
2s + 1
s − k

))

= (−1)k
(
−(2s + 1)

(
2s

s + k + 1

)
+ (2s + 1)

(
2s

s − k − 1

))

= (−1)k
(
−(2s + 1)

(
2s

s + k + 1

)
+ (2s + 1)

(
2s

s + k + 1

))
= 0,

while the coefficient which multiplies xs in the corresponding expression is equal to

(s + 1)
(
2s + 1
s + 1

)
= (s + 1)

(
2s + 1

s

)
.

This confirms the identity (11), which implies that F(x) has the form

F(x) =

s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1

(1 − x)2s+1 + C,
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where C is a constant for which we can easily deduce that C = 0, if we put x→ 0+ in the equality

(2s + 1)
(
2s
s

) +∞∑
m=0

(
m + 2s + 1

2s + 1

)
xm+s+1

m + s + 1
=

s∑
k=0

(−1)k
(

2s + 1
s + k + 1

)
xs+k+1

(1 − x)2s+1 + C.

The proof of the theorem is completed.
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