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Abstract. A bicirculant is a graph admitting an automorphism whose cyclic decomposition consists of
two cycles of equal length. In this paper we consider automorphisms of the so-called Tabačjn graphs, a
family of pentavalent bicirculants which are obtained from the generalized Petersen graphs by adding two
additional perfect matchings between the two orbits of the above mentioned automorphism. As a corollary,
we determine which Tabačjn graphs are vertex-transitive.

1. Introductory remarks

Tabačjn graphs were introduced recently in [1], as a natural generalization of generalized Petersen graphs
[3] and rose window graphs [7]. In [1], the initial motivation was concerned with determining which of
these graphs are arc-transitive. In particular, given natural numbers n ≥ 3 and 1 ≤ a, b, r ≤ n − 1 with
r , n/2 and a , b, the Tabačjn graph T(n; a, b; r) is a pentavalent graph with vertex set {xi | i ∈ Zn}∪ {yi | i ∈ Zn}

and edge set {xixi+1 | i ∈ Zn} ∪ {yiyi+r | i ∈ Zn} ∪ {xiyi | i ∈ Zn} ∪ {xiyi+a | i ∈ Zn} ∪ {xiyi+b | i ∈ Zn}. A
Tabačjn graph T(n; a, b; r) clearly admits a (2,n)-semiregular automorphism (x0 x1 . . . xn−1)(y0 y1 . . . yn−1)
(see Section 2 for formal definitions), and our goal is to obtain conditions on the quadruple (n; a, b; r) giving
rise to a Tabačjn graph admitting additional automorphisms. In particular, we describe certain families of
Tabačjn graphs which admits these additional automorphisms. As a consequence a complete classification
of vertex-transitive Tabačjn graphs is obtained (see Theorem 5.4). However, our results do not determine the
full automorphism groups of Tabačjn graphs, and thus they motivate us to propose the following problem.

Problem 1.1. Determine the full automorphism groups of Tabajčn graphs.

The paper is organized as follows. In Section 2 notions concerning this paper are introduced together
with the notation and some auxiliary results that are needed in the subsequent sections. The rest of the
paper is devoted to obtain conditions on the parameters (n; a, b; r) giving rise to Tabačjn graphs admitting
additional automorphisms next to the obvious (2,n)-semiregular automorphism, ending with Section 5
where vertex-transitive Tabačjn graphs are completely classified.
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2. Preliminaries

For a finite simple graph X let V(X), E(X), A(X) and Aut(X) denote its vertex set, its edge set, its arc set
and its automorphism group, respectively. For a vertex v ∈ V(X) let N(v) be the set of its neighbors. If for
x, y ∈ V(X) we have {x, y} ∈ E(X), we will abbreviate this as xy.

A subgroup G ≤ Aut(X) is said to be vertex-transitive, edge-transitive, and arc-transitive provided it acts
transitively on the sets of vertices, edges, and arcs of X, respectively. The graph X is said to be vertex-
transitive, edge-transitive, and arc-transitive if Aut(X) is vertex-transitive, edge-transitive, and arc-transitive,
respectively. An arc-transitive graph is also called symmetric. A vertex-transitive and edge-transitive graph
of odd valency is arc-transitive (see [8]). However, this is not true in general. There exist vertex-transitive
and edge-transitive graphs of even valency which are not arc-transitive.

Given a transitive permutation group G on a set V, we say that a partition B of V is G-invariant if the
elements of G permute the parts, that is, blocks of B, setwise. If the trivial partitions {V} and {{v} | v ∈ V}
are the only G-invariant partitions of V, then the action of G on V is said to be primitive, and is said to be
imprimitive otherwise.

Let G be a transitive permutation group on a finite set V containing an abelian semiregular subgroup H.
We say that 1 ∈ G is a mixer relative to H (in short, a mixer when the subgroup H is clear from the context),
if the orbits of H are not blocks of imprimitivity for 〈1〉.

A non-identity automorphism of a graph X is called semiregular (in particular (m,n)−semiregular), if it
has m cycles of equal length n in its cycle decomposition. A graph X is called n-bicirculant (bicirculant, for
short) if it admits a (2,n)-semiregular automorphism ρ.

The existence of a (2,n)-semiregular automorphism in a bicirculant enables us to label its vertex set and
edge set in the following way. Let X be a connected n-bicirculant and let ρ ∈ Aut(X) be its (2,n)-semiregular
automorphism. The vertices of X can be labeled by xi and yi with i ∈ Zn, such that

ρ = (x0 x1 . . . xn−1)(y0 y1 . . . yn−1). (1)

Observe that a mixer of X (relative to 〈ρ〉) is an automorphism α of X, for which partition

{{x0, x1, . . . , xn−1}, {y0, y1, . . . , yn−1}}

is not 〈α〉-invariant.
To label edges of X, define the following three sets: L := {i ∈ Zn | x0xi}, M := {i ∈ Zn | x0yi},

R := {i ∈ Zn | y0yi}. Note that L = −L, R = −R, M , ∅ and 0 < L ∪ R. Now the edge set E(X) can be
partitioned into three subsets:

L =
⋃
i∈Zn

{xixi+l | l ∈ L} (left edges),

M =
⋃
i∈Zn

{xiyi+m | m ∈M} (middle (or spoke) edges),

R =
⋃
i∈Zn

{yiyi+r | r ∈ R} (right edges).

We shall denote graph X by BCn[L,M,R] (this notation has been introduced in [6]). The vertices xi, i ∈ Zn,
will be referred to as left vertices and vertices yi, i ∈ Zn, will be referred to as right vertices of BCn[L,M,R].
Observe that the generalized Petersen graph GP(n, r) and a rose window graph Rn(a, r) are bicirculants
isomorphic to BCn[{±1}, {0}, {±r}] and BCn[{±1}, {0,−a}, {±r}], respectively.

Pick integers n ≥ 3, 1 ≤ a, b, r ≤ n − 1 with r , n/2 and a , b. A Tabačjn graph T(n; a, b; r) is a pentavalent
bicirculant isomorphic to BCn[{±1}, {0, a, b}, {±r}] (an example is given in Figure 1).

Of course, a Tabačjn graph does not determine the quadruple (n; a, b; r) uniquely. In the next two
propositions some isomorphisms are given.
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Figure 1: The Tabačjn graph T(10; 3, 4; 1).

Proposition 2.1. [6] Let L,M and R be subsets of Zn such that L = −L, R = −R, M , ∅ and 0 < L ∪ R. Then

BCn[L,M,R] � BCn[λL, λM + µ, λR] (λ ∈ Z∗n, µ ∈ Zn),

with the isomorphism φλ,µ given by φλ,µ(xi) = xλi+µ and φλ,µ(yi) = yλi.

Proposition 2.2. [1] Let n ≥ 3 and let 1 ≤ a, b, r ≤ n − 1 be such that a , b and r , n/2. Then

T(n; a, b; r) � T(n; a, b;−r) � T(n;−a,−b; r) � T(n;−a, b − a; r) � T(n;−b, a − b; r).

Moreover, if 1cd(n, r) = 1, then also T(n; a, b; r) � T(n;−ar−1,−br−1; r−1) holds.

Symmetric Tabačjn graphs are classified in [1]. In particular, it is proved in [1] that there are only three
such graphs:

Proposition 2.3. [1] A Tabačjn graph is symmetric if and only if it is isomorphic to one of the following graphs:
T(3; 1, 2; 1) � K6, T(6; 2, 4; 1) � K6,6 − 6K2, and T(6; 1, 5; 2), which is isomorphic to the icosahedron graph.

However, we will show that there are infinitely many vertex-transitive Tabačjn graphs (see Theorem 5.4).
In the following sections all arithmetic operations are to be taken modulo n if at least one argument is from
Zn.

3. Automorphisms of Tabačjn graphs

In this section we describe certain families of Tabačjn graphs, which admits automorphisms different
from the (2,n)-semiregular automorphism ρ defined in (1). Let X = T(n; a, b; r), let V(X) = L ∪ R, where
L = {xi | i ∈ Zn} and R = {yi | i ∈ Zn}. Let A(L,R) = {α ∈ Aut(X) | α(L) = L, α(R) = R} ≤ Aut(X) be
the subgroup of the automorphism group Aut(X) fixing the sets L and R set-wise. Note that ρ given
in (1) belongs to A(L,R), and that A(L,R)L . D2n. Let B(L,R) ≤ Aut(X) be the largest subgroup of the
automorphism group Aut(X) such that {L,R} is a B(L,R)-invariant partition. Observe that A(L,R) ≤ B(L,R),
and if there exists σ ∈ B(L,R) such that σ(L) = R (that is, A(L,R) , B(L,R)) we can conclude that X is
vertex-transitive.
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Proposition 3.1. Let X be a Tabačjn graph T(n; a, b; r). Then the following hold:

(i) There exists an automorphism γ ∈ A(L,R) such that γL = 1 and γR , 1 if and only if X � T(3m; m, 2m; r) for
some positive integer m.

(ii) A(L,R)L � D2n if and only if X � T(n; a,−a; r).

Proof. To prove part (i) suppose first that there exists an automorphism γ ∈ A(L,R) such that γL = 1 and
γR , 1. Then without loss of generality we may assume that γ(y0) = ya. Therefore N(y0) ∩ L = N(ya) ∩ L,
that is {x0, x−a, x−b} = {x0, xa, xa−b}. This implies that x−a = xa−b and x−b = xa, and consequently 2a = b and
a = −b. It follows that 3a = 3b = 0, and so n is of the form n = 3m for some positive integer m. Since a , b we
can conclude that a = m and b = 2m, and thus X � T(3m; m, 2m; r). Conversely, observe that the mapping γ
defined by

γ(xi) = xi and γ(yi) = yi+m , i ∈ Z3m,

is an automorphism of T(3m; m, 2m; r) such that γL = 1 and γR , 1. Namely,

γ(xixi+1) = xixi+1, γ(xiyi) = xiyi+m, γ(xiyi+m) = xiyi+2m,

γ(xiyi+2m) = xiyi, and γ(yiyi+r) = yi+myi+m+r

are all edges in T(3m; m, 2m; r).
To prove part (ii) suppose that A(L,R)L � D2n. Then there exists τ ∈ A(L,R) such that τ(xi) = x−i for

every i ∈ Zn. Assume first that one of the neighbours of x0 in R is fixed by τ. Without loss of generality we
may assume that this neighbour is y0: τ(y0) = y0. Then {x0, x−a, x−b} = N(y0) ∩ L = τ(N(y0) ∩ L) = {x0, xa, xb}.
If a = −a, then b = −b and so a = b, a contradiction. Therefore b = −a. Assume next that none of the
neighbours of x0 in R is fixed by τ. Without loss of generality we may assume that τ(ya) = yb. Then we have
{x0, x−a, xb−a} = τ(N(ya) ∩ L) = N(yb) ∩ L = {x0, xb, xb−a}. This shows that b = −a.

Conversely, observe that the mapping τ defined by

τ(xi) = x−i and τ(yi) = y−i (i ∈ Zn)

is an automorphism of T(n; a,−a; r). Namely, for any n, a and r the mapping τ maps edges of T(n; a,−a; r) to
its edges:

τ(xixi+1) = x−ix−i−1, τ(xiyi) = x−iy−i, τ(xiyi+a) = x−iy−i−a,

τ(xiyi−a) = x−iy−i+a, and τ(yiyi+r) = y−iy−i−r.

Therefore τ, ρ ∈ A(L,R), and consequently we have A(L,R)L � D2n in T(n; a,−a; r).

Proposition 3.2. Let X be a Tabačjn graph T(n; a, b; r) admitting an automorphism σ ∈ B(L,R) such that σ(L) = R.
Then one of the following holds:

(i) X � T(n; a, b; 1);

(ii) X � T(n; a, b; r) where r2
≡ 1 (mod n), ar ≡ −a (mod n) and br ≡ −b (mod n);

(iii) X � T(n; a; ar; r) where r2
≡ 1 (mod n).

Proof. Let G = B(L,R) and let x = x0. Then X can be viewed as the coset graph with respect to the vertex
stabilizer Gx. In particular the assumptions imply that there exists σ ∈ G such that L = {ρiGx | i ∈ Zn} and
R = {ρiσGx | i ∈ Zn}. Since L and R are orbits of 〈ρ〉 one can see that 〈ρ〉 is normal in G. Consequently,
σρGx = ρsσGx and σρσGx = ρsσ2Gx = ρs+tGx for some s ∈ Z∗n and t ∈ Zn, implying that

σρiGx = ρsiσGx and σρiσGx = ρsi+tGx, i ∈ Zn.

Moreover, applying the adjacency conditions we get s = ±r and t ∈ {0,−a,−b}.
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All these combined together imply that in the vertex labeling with xi and yi we can, without loss of
generality, assume that there exists σ ∈ B(L,R) such that σ(xi) = yri, and

either σ(yi) = xri or σ(yi) = xri−a, i ∈ Zn.

It follows that two cases need to be considered. Observe also, that since σ(yiyi+r) must be an edge inL, both
cases give r2

≡ ±1 (mod n).

Case 3.3.

σ(yi) = xri−a, i ∈ Zn.

Then σ(N(y0)) = N(x−a), implying that either −ar = −a + b and −br = −a, or −ar = −a and −br = −a + b. In
the first case −br2 = −br + b, and thus for r2

≡ −1 (mod n) we get −br = 0, a contradiction. If, however,
r2
≡ 1 (mod n) then since br = a it follows that b = ar and thus X � T(n; a; ar; r). In the second case

we have br = a − b, and thus Proposition 2.2 implies that T(n; a, b; r) � T(n; a − b,−b; r) = T(n; br,−b; r) �
T(n; (−b)(−r),−b;−r). If r2

≡ −1 (mod n) then ar = a implies that −a = ar2 = ar, and so a = −a and 2a = 0.
Since σ(N(y0)) = N(x−a), we also have xr2 = x−a±1, implying that −1 = r2 = −a ± 1, and so a = 2. This
combined together with 2a = 0 imply that n = 4, a contradiction (namely there is no element in Z∗4 whose
square is equal to −1 modulo 4). Therefore we must have r2

≡ 1 (mod n).

Case 3.4.

σ(yi) = xri, i ∈ Zn.

Then σ(x0ya) = y0xar and σ(x0yb) = y0xbr, and thus ar, br ∈ {−a,−b}. If r = −1 then X is isomorphic to
T(n; a, b; 1). We may therefore assume that r , ±1.

Suppose first that ar = −a. Then br = −b and r2
≡ 1 (mod n), giving the graphs stated in (ii). Namely,

for r2
≡ −1 (mod n) one can easily see that 2a = 2b = 0, which is impossible since a , b. Suppose now that

ar = −b. Then br = −a, and thus ar2 = −br and br2 = −ar. If r2
≡ −1 (mod n) then a = br and b = ar, implying

that a = ar2 = −a and b = br2 = −b, and thus 2a = 2b = 0, a contradiction. Therefore, we have r2
≡ 1 (mod n)

and T(n; a, b; r) = T(n; a,−ar; r) = T(n; a, a(−r);−r).

4. Tabačjn graphs admitting mixers

For a Tabačjn graph T(n; a, b; r) we will only consider mixers relative to 〈ρ〉. That is, we say that
T(n; a, b; r) admits a mixer in case it admits a mixer relative to 〈ρ〉. It is the aim of this section to characterize
Tabačjn graphs admitting mixers (see Proposition 4.3). In this respect the so-called rose window graphs,
first defined in [7], will be needed. A rose window graph Rn(a; r) is a tetravalent bicirculant isomorphic to
BCn[{±1}, {0,−a}, {±r}]. Observe that Rn(a; r) is isomorphic to a spanning subgraph of T(n;−a, b; r). Edge-
transitive rose window graphs were classified in [4] and the automorphism groups of these graphs were
determined in [5]. In particular the following proposition can be deduced from [4, Corollary 1.3] (see also
[5, 7]).

Proposition 4.1. [4, Corollary 1.3] A rose window graph Rn(a, r) is edge-transitive if and only if it is isomorphic to
a graph belonging to one of the following four families:

(i) Rn(2, 1),

(ii) R2m(m + 2,m + 1),

(iii) R12m(3m + 2, 3m − 1) and R12m(3m − 2, 3m + 1),

(iv) R2m(2b, r), for which b satisfies b2
≡ ±1 (mod m), 2 ≤ 2b ≤ m, and r satisfies r = 1, or r = m − 1 and m is

even.
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Coming back to Tabačjn graphs let the set of the spoke edges of a Tabačjn graph T(n; a, b; r) be partitioned
into

M =M0 ∪Ma ∪Mb,

whereM0 = {xiyi | i ∈ Zn},Ma = {xiyi+a | i ∈ Zn}, andMb = {xiyi+b | i ∈ Zn}.
With the help of computer package Magma [2] one can see that the following proposition holds.

Proposition 4.2. Let X be a Tabačjn graph T(n; a, b; r) such that the setO =Ma∪L∪R is an edge orbit for Aut(X).
Then X is isomorphic to T(8; 2, 4; 3), and Aut(X) has two edge orbits.

Proof. If a Tabačjn graph X = T(n; a, b; r) is such that the setO =Ma∪L∪R is an edge orbit for Aut(X) then the
graph (V(X),O) is isomorphic to a cubic vertex-transitive and edge-transitive bicirculant BCn[{±1}, {0}, {±r}],
that is, to a symmetric generalized Petersen graph GP(n, r). Recall that there are only seven symmetric
generalized Petersen graphs. These are GP(4, 1), GP(5, 2), GP(8, 3), GP(10, 2), GP(10, 3), GP(12, 5), and
GP(24, 5) (see [3]). With the use of program package Magma [2] one can then obtain the graph given in the
statement of the proposition.

Now we are ready to characterize Tabačjn graphs admitting mixers.

Proposition 4.3. A Tabačjn graph X = T(n; a, b; r) admits a mixer relative to 〈ρ〉 if and only if one of the following
holds:

(i) X is vertex-transitive and edge-transitive, in which case X � T(3; 1, 2; 1), or X � T(6; 2, 4; 1), or X � T(6; 1, 5; 2);

(ii) X−M0 is isomorphic to an edge-transitive rose window graph admitting a vertex-transitive and edge-transitive
subgroup giving an invariant partition consisting of blocks of the form {xi, y j};

(iii) X � T(8; 2, 4; 3).

Proof. The existence of a mixer implies that we may assume that there exists an automorphism of X mapping
an edge fromL to an edge fromMa. The assumptions clearly imply that Aut(X) is vertex-transitive and that
〈ρ〉 is not normal in Aut(X). In particular, if 〈ρ〉 is normal in Aut(X) then L and R are blocks of imprimitivity
for Aut(X), and thus edges inMa cannot be in the same orbit as edges in L. Also, the existence of a mixer
implies that the action of Aut(X) on the edge set of X has at most three orbits. In particular, we may, without
loss of generality, assume that Aut(X) on E(X) has one of the following orbits:

(i) O1 =M0 ∪Ma ∪Mb ∪ L ∪ R = E(X);

(ii) O1 =M0 and O2 =Ma ∪Mb ∪ L ∪ R;

(iii) O1 =M0 ∪Mb and O2 =Ma ∪ L ∪ R;

(iv) O1 =M0, O2 =Ma ∪ L ∪ R and O3 =Mb;

By Proposition 4.2, (iv) cannot occur. If (i) holds then X is edge-transitive, and thus Proposition 2.3
applies. If (ii) holds then Y = (V(X),O2) is a vertex-transitive and edge-transitive spanning subgraph of X,
which is isomorphic to a rose window graph given in Proposition 4.1, and Aut(X) ≤ Aut(Y). In particular,
Aut(X) is a vertex-transitive and edge-transitive subgroup of Aut(Y), implying that there must be an
Aut(X)-invariant partition in Y consisting of blocks of the form {xi, y j}. If (iii) holds then, by Proposition 4.2,
X � T(8; 2, 4; 3).

That the graphs given in the statement of the theorem indeed admit a mixer relative to 〈ρ〉 follows from
edge-transitivity of the graphs and edge-transitivity of the spanning subgraphs, respectively.

Remark 4.4. By [5] the automorphism groups of the rose window graphs Rn(2, 1) and R2m(m + 2,m + 1)
both act imprimitively with the corresponding invariant partition {{xi, yi−1} | i ∈ Zn} (see [5]). Therefore,
adding edges between vertices in the blocks of this partition results in a Tabačjn graph isomorphic to
T(n; 1,n − 1; 1) � Cn[K2] and T(2m; m − 2, 2m − 1; m + 1), respectively.
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5. Vertex-transitive Tabačjn graphs

In this section vertex-transitive Tabačjn graphs are characterized (see Theorem 5.4). In the following
two propositions we first show that three particular families of Tabačjn graphs consist of vertex-transitive
graphs.

Proposition 5.1. Given natural numbers n ≥ 3 and 1 ≤ a, b ≤ n − 1, where a , b, the Tabačjn graph T(n; a, b; 1) is
vertex-transitive.

Proof. The permutation

α =

n−1∏
i=0

(xi y−i)

is an automorphism of T(n; a, b; 1) which together with the automorphism ρ given in (1) gives a vertex-
transitive subgroup of automorphisms 〈α, ρ〉.

Proposition 5.2. For r ∈ Z∗n such that r2
≡ 1 (mod n) the Tabačjn graphs

(i) T(n; a, ar; r), and
(ii) T(n; a, b; r), where ar ≡ −a (mod n) and br ≡ −b (mod n),

are vertex-transitive graphs.

Proof. Since r2
≡ 1 (mod n), the mapping α defined by

α(xi) = y−ri and α(yi) = x−ri

is an automorphism of T(n; a, ar; r) as well as of T(n; a, b; r), if ar ≡ −a (mod n) and br ≡ −b (mod n). In
both graphs this automorphism α together with the automorphism ρ given in (1) gives a vertex-transitive
subgroup of automorphisms 〈α, ρ〉.

Remark 5.3. By Proposition 2.2, T(n; a, a + ar; r) � T(n;−a, (−a)(−r);−r), and thus, by Proposition 5.2, this graph
is vertex-transitive.

We are now ready to prove the main theorem of this paper.

Theorem 5.4. Let X be a Tabačjn graph T(n; a, b; r). Then the following hold:

(i) X is vertex-transitive and edge-transitive if and only if it is isomorphic to one of the graphs T(3; 1, 2; 1),
T(6; 2, 4; 1) and T(6; 1, 5; 2).

(ii) X is vertex-transitive but not edge-transitive if and only if it is isomorphic to one of the following graphs:

(a) X � T(n; a, b; 1), where (n, a, b) < {(3, 1, 2), (6, 2, 4)};
(b) X � T(n; a, b; r), where r2

≡ 1 (mod n), ar ≡ −a (mod n) and br ≡ −b (mod n);
(c) X � T(n; a; ar; r), where r2

≡ 1 (mod n);

or X − M0 is isomorphic to an edge-transitive rose window graph admitting a vertex-transitive and edge-
transitive subgroup giving an invariant partition consisting of blocks of the form {xi, y j}.

Proof. Let X be a vertex-transitive Tabačjn graph T(n; a, b; r). If it is also edge-transitive then Proposition 2.3
implies that it is isomorphic to one of the graphs T(3; 1, 2; 1), T(6; 2, 4; 1) and T(6; 1, 5; 2).

We may therefore assume that X is not edge-transitive, and thus that

(n, a, b, r) < {(3, 1, 2, 1), (6, 2, 4, 1), (6, 1, 5, 2)}.

If X does not admit a mixer then, by vertex-transitivity of X, we have A(L,R) , B(L,R) = Aut(X).
Thus there exists σ ∈ Aut(X) such that σ(L) = R, and {L,R} is an Aut(X)-invariant partition. Therefore,
by Proposition 3.2, either X � T(n; a, b; 1), or X � T(n; a, b; r), where r2

≡ 1 (mod n), ar ≡ −a (mod n) and
br ≡ −b (mod n), or X � T(n; a; ar; r), where r2

≡ 1 (mod n). That these graphs are indeed vertex-transitive
follows from Propositions 5.1 and 5.2, respectively. If, however, X admits a mixer relative to 〈ρ〉 then
Proposition 4.3 applies.
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