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Abstract. We describe the multiplier spaces (Hp,q,α,H∞), and (Hp,q,α,H∞,v,β), where Hp,q,α are mixed norm
spaces of analytic functions in the unit diskD and H∞ is the space of bounded analytic functions inD. We
extend some results from [7] and [3], particularly Theorem 4.3 in [3].

1. Introduction

For 0 < p ≤ ∞, a function f analytic in the unit diskD, f ∈ H(D), is said to belong to the Hardy space Hp

if

|| f ||p = sup
0<r<1

Mp(r, f ) < ∞, 0 < p ≤ ∞,

where

Mp(r, f ) =
( 1

2π

∫ 2π

0
| f (reit)|pdt

)1/p
< ∞ , 0 < p < ∞,

and
M∞(r, f ) = sup

|z|=r
| f (z)| < ∞ .

It belongs to the mixed norm space Hp,q,α, 0 < p, q ≤ ∞, 0 < α < ∞, if

|| f ||qp,q,α =
∫ 1

0
(1 − r)qα−1Mp(r, f )qdr < ∞, 0 < q < ∞,

and
|| f ||p,∞,α = sup

0≤r<1
(1 − r)αMp(r, f ) < ∞.

Hp,∞,α
0 will be the subspace of Hp,∞,α of functions f for which

lim
r→1

(1 − r)αMp(r, f ) = 0.
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Obviously, H∞ is the space of all bounded analytic functions inD. A closed subspace of H∞ consisting
of functions analytic inD, continuous on D̄, will be denoted byA = A(D).

Let 1(z) =
∑∞

n=0 1̂(n)zn be analytic inD. We define the multiplier transformation Ds1 of 1, where s is any
real number, by

Ds1(z) =
∞∑

n=0

(n + 1)s1̂(n)zn.

If 0 < p ≤ ∞, 0 < q ≤ ∞ and 0 < α < ∞, the space of all analytic functions f onD such that

|| f ||p,q,α;s := ||Ds f ||p,q,α < ∞

is denoted by D−sHp,q,α. Similarly, are defined the spaces D−sHp,∞,α
0 . If s , 0 we also write Hp,q,α

s instead of
D−sHp,q,α.

Let A and B be two quasi-normed spaces of functions analytic inD. A function 1(z) =
∑∞

k=0 1̂(k)zk is said
to be multiplier from A to B if, whenever f (z) =

∑∞
k=0 f̂ (k)zk belongs to A, then

( f ⋆ 1)(z) =
∞∑

k=0

f̂ (k)1̂(k)zk

belongs to B. The space C of all multipliers 1 from A to B with a quasi-norm

||1||C = sup{|| f ⋆ 1||B : f ∈ A, || f ||A ≤ 1}

will be denoted by (A,B).
We denote the space of all Abel summable sequences by AS. The AS-dual of a space E of analytic

functions inD, i.e. the space (E,AS), is known as the Abel dual of E and will be denoted by Ea.
Our main goal of this paper is to describe the multiplier spaces (Hp,q,α,H∞), and (Hp,q,α,H∞,v,β). We

extend some results from [7] and [3], especially Theorem 4.3 in [3].

2. The multiplier space (Hp,q,α,H∞)

Let ω : R→ R be nonincreasing function of class C∞ such that ω(t) = 1, for t ≤ 1, and ω(t) = 0, for t ≥ 2.
Let φ(t) = ω(t/2) − ω(t), t ∈ R, and let

w0(z) = 1 + z, and wn(z) =
2n+1∑

k=2n−1

φ(
k

2n−1 )zk, n = 1, 2, ... .

In [4] the authors showed that for any f ∈ H(D) we have

f (z) =
∞∑

n=0

(wn ⋆ f )(z), z ∈ D

and
||wn ⋆ f ||p ≤ C|| f ||p, 0 < p ≤ ∞, n = 0, 1, 2, ....

For an extension of these results see [6].
The following two lemmas will be needed in sequel. For a proof of the first one see [3]. The proof of the

second is not too much different.

Lemma 1. Let 0 < p, q ≤ ∞, 0 < α < ∞ and f ∈ H(D). Then the following statements are equivalent:

(i) f ∈ Hp,q,α;
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(ii) The sequence {2−nα||wn ⋆ f ||p} belongs to lq;

(iii) The sequence {||wn ⋆D−α f ||p} belongs to lq.

Here, as usual, lq is the space of all sequences λ = {λn} such that ||λ||qlq = ||λ||
q
q =
∑∞

n=0 |λn|q < ∞, 0 < q < ∞;
l∞ is the space of all bounded sequences and c0 is its subspace consisting of zero sequences.

Lemma 2. Let 0 < p ≤ ∞, 0 < α < ∞ and f ∈ H(D). Then the following statements are equivalent:

(i) f ∈ Hp,∞,α
0 ;

(ii) The sequence {2−nα||wn ⋆ f ||p} belongs to c0;

(iii) The sequence {||wn ⋆D−α f ||p} belongs to c0.

Recall that an analytic function f on the unit diskD is a Cauchy transform if it admits representation

f (z) = C[µ](z) =
∫
T

1
1 − ze−iθ dµ(eiθ), z ∈ D, (1)

where µ ∈M(T). Recall that M(T) is a Banach space of all complex Borel measures µ on the boundary T of
D under the total variation norm ||µ||.

The space M+ of all Cauchy transforms is a Banach space under the norm

|| f ||M+ = inf
{||µ|| : µ ∈M(T) and (1) holds

}
.

First, we characterize the multipliers (Hp,q,α,H∞), for 0 < p ≤ ∞.

Theorem 1. Let 0 < p, q ≤ ∞, 0 < α < ∞, p0 = min{1, p}, p1 = max{1, p}, q1 = max{1, q} and p′1 and let q′1 be the
conjugate exponents of p1 and q1 respectively. Then

(Hp,q,α,H∞) = Hp′1,q
′
1,1

α+1/p0
. (2)

Proof. We consider the case p = ∞, since the remaining cases have been considered in [7]. We will use the
fact that if 1 ∈ H(D), then

||1||(Hp,q,α,H∞) ≈ ||{2nα||wn ⋆ 1||(Hp,H∞)}||lq′1 , see [7]. (3)

Since, by Lemma 1, we have

||Dα+11||1,q′1,1 ≈ ||{2
−n||wn ⋆Dα+11||1}||lq′1 ≈ ||{2

nα||wn ⋆ 1||1}||lq′1 ,

to prove (2), for p = ∞, by (3) it is sufficient to prove that

||wn ⋆ 1||(H∞,H∞) ≈ ||wn ⋆ 1||M+ ≈ ||wn ⋆ 1||1.

By the equality (H∞,H∞) =M+, (see [2]), we have that the first relation holds .
Obviously, ||wn ⋆ 1||1 ≥ ||wn ⋆ 1||M+ .
Let fr(z) = (1 − rz)−2, 0 < r < 1. Then

||wn ⋆ 1 ⋆ fr||1 ≤ ||wn ⋆ 1||M+ || fr||(M+,H1).

Recall that
|| fr||(M+,H1) = sup{|| fr ⋆ h||1 : h ∈M+, ||h||M+ ≤ 1}.

If h ∈M+ and ||h||M+ ≤ 1, then h(z) =
∫
T

dµ(ξ)
1 − zξ̄

, where ||µ|| ≤ 1. Hence

|| fr ⋆ h||1 = ||D1h||1 ≈ ||h
′
r||1 ≤

C
1 − r

.
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By taking r = 1 − 2−n, we get

2−n||wn ⋆D11||1 ≈ ||wn ⋆ 1||1 ≤ C||wn ⋆ 1||M+ .

A similar argument, based on Lemma 2, shows that the following is true:

Theorem 2. Let 0 < p ≤ ∞, 0 < α < ∞, p0 = min{1, p}, p1 = max{1, p}, and p′1 is the conjugate of p1 . Then

(Hp,∞,α
0 ,H∞) = Hp′1,1,1

α+1/p0
. (4)

3. Multipliers (Hp,q,α,H∞,v,β)

We define a ⊖ b = ∞ if a ≤ b, and

1
a ⊖ b

=
1
b
− 1

a
, for 0 < b < a.

If X is any quasi-normed space of analytic functions inD that contains polynomials, then for 0 < q ≤ ∞,
we define the space

X[q] =
{

f ∈ H(D) : || f ||X[q] = ||
{||wn ⋆ f ||X

} ||lq} .
We will also write X[lq] instead of X[q]. We define X[c0] to be the subspace of X[l∞] consisting of functions
f ∈ H(D) such that {||wn ⋆ f ||X} ∈ c0.

For a proof of the next theorem see [3]

Theorem 3. Let 0 < p, q,u, v ≤ ∞, 0 < α, β < ∞. Then

(i) (Hp[q],Hu[v]) = (Hp,Hu)[q ⊖ v].

(ii)(Hp,∞,α[q],Hu,∞,β[v]) = (Hp,∞,α,Hu,∞,β)[q ⊖ v].

(iii) (Hp[c0],Hu[lv] = (Hp,Hu)[(c0, lv)] = (Hp,Hu)[lv];

(iv) (Hp[c0],Hu[c0]) = (Hp,Hu)[(c0, c0)] = (Hp,Hu)[l∞];

(v) (Hp[l∞],Hu[c0]) = (Hp,Hu)[(l∞, c0)] = (Hp,Hu)[c0];

(vi) (Hp[lq],Hu[c0]) = (Hp,Hu)[(lq, c0)] = (Hp,Hu)[l∞], 0 < q < ∞.

As a corollary we have

Theorem 4.

(i) (Hp,q,α,Hu,v,β) = (Hp,∞,α,Hu,∞,β)[q ⊖ v], 0 < p, q,u, v ≤ ∞, 0 < α, β < ∞.

(ii) (Hp,q,α,Hu,v,β) =
{
1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[q ⊖ v]

}
, 0 < p, q,u, v ≤ ∞, 0 < α, β < ∞.

Proof. (i) The statement (i) follows by Theorem 3 and the equalities

Hp,q,α = Hp,∞,α[q] and Hu,v,β = Hu,∞,β[v].

(ii) This statement follows from the equalities

Hp,q,α =
{
f ∈ H(D) : D−α f ∈ Hp[q]

}
and

Hu,v,β =
{

f ∈ H(D) : D−β f ∈ Hu[v]
}
,

(see Lemma 1), and Theorem 3.
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As a corollary of Theorem 4 we have

Corollary 1. Let 0 < p, q,u, v ≤ ∞, 0 < α, β < ∞.Then

(Hp,∞,α,Hu,∞,β)[q ⊖ v] = {1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[q ⊖ v]}.

Theorem 5.

(i) (Hp,∞,α
0 ,Hu,v,β) = (Hp,∞,α,Hu,v,β) =

{
1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[lv]

}
;

(ii) (Hp,∞,α
0 ,Hu,∞,β

0 ) = (Hp,∞,α,Hu,∞,β) =
{
1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[l∞]

}
;

(iii) (Hp,∞,α,Hu,∞,β
0 ) =

{
1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[c0]

}
;

(iv) (Hp,q,α,Hu,∞,β
0 ) = (Hp,q,α,Hu,∞,β) =

{
1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[l∞]

}
, 0 < q < ∞.

Proof. We prove (i) only, the proofs of (ii) through (iv) being similar.
By Lemma 2

Hp,∞,α
0 = { f ∈ H(D) : D−α f ∈ Hp[c0]},

and, by Lemma 1,
Hu,v,β = { f ∈ H(D) : D−β f ∈ Hu[lv]}.

From this we conclude that

(Hp,∞,α
0 ,Hu,v,β) = {1 ∈ H(D) : Dα−β1 ∈ (Hp[c0],Hu[lv])}

= {1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[lv]},

by Theorem 3.
The equality (Hp,∞,α,Hu,v,β) = {1 ∈ H(D) : Dα−β1 ∈ (Hp,Hu)[lv]} is proved in Theorem 4.

The next theorem is a consequence of the equality (Hp,H∞) = Hp′ , 1 < p < ∞, and Theorem 4.

Theorem 6. Let 1 < p < ∞ and p + p′ = pp′ . Then

(Hp,q,α,H∞,v,β) = Hp′ ,q⊖v,β
α .

Corollary 2. Let 1 < p < ∞ and p + p′ = pp′ .Then

(i) (Hp,∞,α
0 ,H∞,v,β) = Hp′ ,v,β

α ;

(ii) (Hp,∞,α
0 ,H∞,∞,β0 ) = Hp′ ,∞,β

α ;

(iii) (Hp,∞,α,H∞,∞,β0 ) = D−αHp′ ,∞,β
0 ;

(iv) (Hp,q,α,H∞,∞,β0 ) = Hp′ ,∞,β
α , q , ∞.

Proof. The statements (i), (ii) and (iv) follow from Theorem 5 and Theorem 6. We prove the statement (iii).
By using Theorem 5 we get

(Hp,∞,α,H∞,∞,β0 ) = {1 ∈ H(D) : Dα−β1 ∈ (Hp,H∞)[c0]}
= {1 ∈ H(D) : Dα−β1 ∈ Hp′[c0]}
= D−αHp′,∞,β

0 ,

by Lemma 2.
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Theorem 7. (H∞,q,α,H∞,v,β) = H1,q⊖v,β
α .

Theorem is a consequence of Theorem 4 and the following theorem

Theorem 8. Let 0 < α, β < ∞. Then
(H∞,∞,α,H∞,∞,β) = H1,∞,β

α .

Proof. We will use the equalities (H∞,∞,α0 )a = H1,1,1
α+1 , (H∞,∞,β0 )a = H1,1,1

β+1 , (H1,1,1
α+1 )a = H∞,∞,α and (H1,1,1

β+1 )a = H∞,∞,β.
All these results follows from Theorem 1 and Theorem 2, since the Abel dual of separable mixed norm
space Hp,q,α coincides with the space (Hp,q,α,H∞), (see [7], [8], [5] ). See also [1].

Using this we find that

(H∞,∞,α0 ,H∞,∞,β0 ) ⊂ ((H∞,∞,β0 )a, (H∞,∞,α0 )a) = (H1,1,1
β+1 ,H

1,1,1
α+1 )

⊂ ((H1,1,1
α+1 )a, (H1,1,1

β+1 )a) = (H∞,∞,α,H∞,∞,β).

Now let λ ∈ (H∞,∞,α,H∞,∞,β). Then λ ∈ (H∞,∞,α0 ,H∞,∞,β0 ) since λmaps polynomials into polynomials and
these are dense in H∞,∞,α0 and in H∞,∞,β0 . Thus,

(H∞,∞,α0 ,H∞,∞,β0 ) = (H∞,∞,α,H∞,∞,β) = (H1,1,1
β+1 ,H

1,1,1
α+1 ) = H1,∞,β

α .

For the last equality see Theorem 10 below.

Corollary 3.

(i) (H∞,∞,α0 ,H∞,v,β) = H1,v,β
α ;

(ii) (H∞,∞,α0 ,H∞,∞,β0 ) = H1,∞,β
α ;

(iii) (H∞,∞,α,H∞,∞,β0 ) = D−αH1,∞,β
0 ;

(iv) (H∞,q,α,H∞,∞,β0 ) = H1,∞,β
α , q , ∞.

Proof. We should only prove (iii). By using Theorem 5 we obtain

(H∞,∞,α,H∞,∞,β0 ) = {1 ∈ H(D) : Dα−β1 ∈ (H∞,H∞)[c0]}
= {1 ∈ H(D) : Dα−β1 ∈M+[c0]}.

Since ||wn ⋆Dα−β1||M+ ≈ ||wn ⋆Dα−β1||H1 , (see Section 2), we get

(H∞,∞,α,H∞,∞,β0 ) = {1 ∈ H(D) : Dα−β1 ∈ H1[c0]}
= D−αH1,∞,β

0 ,

by Lemma 2.

Corollary 4. (B,H∞,v,β) = H1,v,β and (B,H∞,∞,β0 ) = H1,∞,β
0 .

As usual B = H∞,∞,11 denote the Bloch space and B0 is the little Bloch space.
If v = ∞, more is true

Theorem 9. (A,H∞,∞,β) = (B,H∞,∞,β) = H1,∞,β.
In particular,

(A,B) = (B,B) = H1,∞,1
1 .
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Proof. It suffices to show that (A,H∞,∞,β) ⊂ H1,∞,β. Now we give the proof of this inclusion.

(A,H∞,∞,β) ⊂ ((H∞,∞,β)a,Aa) = (H1,1,1
β+1 ,M

+)

⊂ (H1,1,1
β+1 ,H

1,∞,1+β
1+β ) = (H1,1,1,H1,∞,1+β)

= H1,∞,1+β
1 = H1,∞,β.

Here, we used the fact thatAa =M+, (see [9]).

Note that Theorem 9 represents an extension of Theorem 4.3 in [3].
As final remark we note the multipliers (Hp,q,α,Hu,v,β), for 0 < p ≤ 1, p ≤ u ≤ ∞, are characterized in [7].

See also [3].

Theorem 10. ([7]) Let 0 < p ≤ 1, p ≤ u ≤ ∞, 0 < q, v ≤ ∞, 0 < α, β < ∞. Then

(Hp,q,α,Hu,v,β) = {1 ∈ H(D) : Dα+1/p−11 ∈ Hu,q⊖v,β } = Hu,q⊖v,β
α+1/p−1.

In particular, (Hp,q,α,H∞,v,β) = H∞,q⊖v,β
α+1/p−1.

Corollary 5. ([5]) Let 0 < p ≤ 1, p ≤ u ≤ ∞, 0 < v ≤ ∞, 0 < α, β < ∞. Then

(i) (Hp,∞,α
0 ,Hu,v,β) = Hu,v,β

α+1/p−1;

(ii) (Hp,∞,α
0 ,Hu,∞,β

0 ) = Hu,∞,β
α+1/p−1;

(iii) (Hp,∞,α,Hu,∞,β
0 ) = D−α−(1/p)+1Hu,∞,β

0 ;

(iv) (Hp,q,α,Hu,∞,β
0 ) = Hu,∞,β

α+1/p−1, if 0 < q < ∞.

We note that the statements (i), (ii) and (iv) also follow from Theorem 10 and Theorem 5. A different
proof of these statements is given in [5].
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[6] M. Pavlović, Introduction to function spaces on the disk, Matematički Institut Sanu, Beograd, 2004.
[7] M. Pavlović, Mixed norm spaces of analytic and harmonic functions I, Publications de l’Institute mathematique 40(54) (1986),

117-141.
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