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Multipliers

Miroljub Jevtié¢?

“Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia

Abstract. We describe the multiplier spaces (HP%*, H*), and (HPA<, H>"#), where H?"* are mixed norm
spaces of analytic functions in the unit disk ID and H* is the space of bounded analytic functions in ID. We
extend some results from [7] and [3], particularly Theorem 4.3 in [3].

1. Introduction

For 0 < p < o0, a function f analytic in the unit disk D, f € H(ID), is said to belong to the Hardy space H”

if
Ifll, = sup My(r, f) <00, 0<p<oo,
0<r<1

where

1 27 ) 1/p

My(r, f) = (—f If(re’t)l”’dt) <o, 0<p<oo,

21 Jo

and

Ma(r, f) = supf(2)] < co.

[z|=r

It belongs to the mixed norm space HP1%,0 < p,q < 00,0 < a < oo, if

1
Hmw=£64W%MMWKw,OW<%

and
“f”p,oo,a = sup(l - r)aMp(r/f) < 0o,

0<r<1

HE*™ will be the subspace of HP*“ of functions f for which

lyigrll(l = 1)*Mp(r, f) = 0.
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Obviously, H* is the space of all bounded analytic functions in ID. A closed subspace of H* consisting
of functions analytic in ID, continuous on D, will be denoted by A = A(D).

Let g(z) = Yo §(n)z" be analytic in ID. We define the multiplier transformation D°g of g, where s is any
real number, by

D'g(z) = Y (n+1)gm)z".
n=0
If0<p<o0,0<g<ooand0 <a < oo, the space of all analytic functions f on ID such that

”f”p,q,a;s = ”DSpr,q,a < 0

is denoted by D—*HP4. Similarly, are defined the spaces D*H}"™. If s # 0 we also write H," instead of
D~ HP~,

Let A and B be two quasi-normed spaces of functions analytic in ID. A function g(z) = Y.io, §(k)z" is said
to be multiplier from A to B if, whenever f(z) = Y.i2, f(k)z" belongs to A, then

(f * 9@ = ), flat2
k=0

belongs to B. The space C of all multipliers g from A to B with a quasi-norm

lglic =suplllf xglls: f €A, Iflla<1}

will be denoted by (4, B).

We denote the space of all Abel summable sequences by AS. The AS-dual of a space E of analytic
functions in ID, i.e. the space (E, AS), is known as the Abel dual of E and will be denoted by E*.

Our main goal of this paper is to describe the multiplier spaces (HP4%, H*), and (HP4, H*"#). We
extend some results from [7] and [3], especially Theorem 4.3 in [3].

2. The multiplier space (H?%*, H*)

Let w : R — R be nonincreasing function of class C* such that w(t) = 1, for t < 1, and w(t) = 0, for t > 2.
Let p(t) = w(t/2) — w(t), t € R, and let

2n+1
k
wo(z) =14z, and wy(z) = Z (p(Z”‘l 25, n=1,2,..
J=2n-1

In [4] the authors showed that for any f € H(ID) we have

f@ =Y @i * ), zeD
n=0

and
||wi’l *f”p S C“f“p/ 0 < P S o, n= 0/ 1/2/

For an extension of these results see [6].
The following two lemmas will be needed in sequel. For a proof of the first one see [3]. The proof of the
second is not too much different.

Lemmal. Let0<p,g<o0,0<a<ooand f e H(ID). Then the following statements are equivalent:
(i) feHP
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(i1)  The sequence {27"*||w, * fl|,} belongs to 1%;
(iti)  The sequence {||w, * D~ f||,} belongs to I.

Here, as usual, /7 is the space of all sequences A = {A,,} such that II)\II‘ZV = IIAIIZ =Yool Al < 00,0 < g < oo;

[* is the space of all bounded sequences and cy is its subspace consisting of zero sequences.

Lemma2. Let 0 <p < 00,0 <a <coand f € H(D). Then the following statements are equivalent:
(i) feHy™,

(i1)  The sequence {27"*|lw,, * f||,} belongs to co;

(iii)  The sequence {|lw, * D~ f||,} belongs to cy.

Recall that an analytic function f on the unit disk ID is a Cauchy transform if it admits representation

£2) = Clul@) = fT —du@), zeD, M

— 200

where y € M(T). Recall that M(T) is a Banach space of all complex Borel measures p on the boundary T of
D under the total variation norm ||y]|.
The space M. of all Cauchy transforms is a Banach space under the norm

Ifllv, = inf{llull - 4 € M(T) and (1) holds }.
First, we characterize the multipliers (HP4*, H®), for 0 < p < oo.
Theorem 1. Let 0 < p,q < 00,0 < a < oo, pg = min{1,p}, p1 = max{1,p}, q1 = max{1,q} and p, and let q, be the

conjugate exponents of p1 and gy respectively. Then

(HP, ) = I @

Proof. We consider the case p = oo, since the remaining cases have been considered in [7]. We will use the
fact that if g € H(ID), then

“g“(HMﬂ,HfX’) ~ “{2nal|wn * gH(HP,H“’)}“lq; , seel7]. 3)
Since, by Lemma 1, we have

D™ gl 1 ~ 127" llews % D* gl ~ 2"l * glh ]

,
p i

to prove (2), for p = oo, by (3) it is sufficient to prove that
[y * gllg Hey = |[w, * glla, = [lw, * gll.

By the equality (H*, H*) = M., (see [2]), we have that the first relation holds .
Obviously, [[w, * gll1 2 |lw, * gllam, -
Let f,(z) = (1-7z)2,0 <r < 1. Then

[, * g x filli < llwn * gllaz, 1l by

Recall that
el by = suplllfy * Al = h € My, [Ihllm, < 1}
h _ [ du€)
€ M, and ||A|lpy, <1, then h(z) = 1—5_, where ||yl < 1. Hence
-z
T

. C
lIfy % hlly = ID hlly ~ NIkl < -
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By taking r =1 - 27", we get
27"lw, * D'glh = |lw, * glli < Cllw, * gl -
O
A similar argument, based on Lemma 2, shows that the following is true:

Theorem 2. Let 0 < p < 00,0 < @ < 00, pg = min{1, p}, p1 = max{1,p}, and p’l is the conjugate of p1 . Then

p,00,0 oy p,,l,l
(Ho /H ) - HalJrl/pO' (4)

3. Multipliers (H?7¢, H>vP)

We definea©b = oo ifa < b, and

1 1 1
a@b_E_;, for 0<b<a.

If X is any quasi-normed space of analytic functions in ID that contains polynomials, then for 0 < g < oo,
we define the space

X[q] = {f € HID) : |fllxigr = I Il * fllx}llu} -

We will also write X[I7] instead of X[gq]. We define X][co] to be the subspace of X[I*°] consisting of functions
f € H(D) such that {|[w, * fllx} € co.
For a proof of the next theorem see [3]

Theorem 3. Let 0 < p,q,u,v < 00,0 < a, < 0. Then
(i) (H?[gl, H"[v]) = (H?, H")[g © v].
(i)(HP=[q], H**F[0]) = (HP=*, H"*F)[g © v].
(iii) (HP[col, H[I°] = (H?, H*)[(co, I')] = (HP, HY)[I"];
(iv) (HP[col, H"[co]) = (HP, H")[(co, co)] = (HP, H)[I*];
(v) (HP[I*], H*[eo]) = (HP, HY)[(I™, co)] = (HP, H")[col;
(vi) (HP[17], H*[co]) = (H?, HY)[(1", co)] = (H?, HY)[I"], 0 <g < oo
As a corollary we have
Theorem 4.
(i) (HP#, H**F) = (HP**, H**F)[gov], 0<p,q,u,0<00,0<a,p < co,
(ii) (P, H“0P) = {g € HD) : D**g € (H?,H")[g© v]}, 0<pquuv<o,0<a,p<co
Proof. (i) The statement (i) follows by Theorem 3 and the equalities
HPAY = HP®4[g] and H""F = H**F[v].
(ii) This statement follows from the equalities
HP% = {f e HID) : D™ f € HP[g]}

and
Hob = {f € H(D): D *fe H“[v]},

(see Lemma 1), and Theorem 3.
|
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As a corollary of Theorem 4 we have
Corollary 1. Let 0 < p,q,u,v < 00,0 <, < 00.Then
(HP=4, H>Fgov] = {g € H(D) : D**g € (H?, H")[g © v]}.

Theorem 5.
() (H™, H“2F) = (HP=2, H*F) = {g € H(D) : D*Fg e (H?, H”)[l”]};

(if) ()™, Hy™") = (HP>*, H*~F) = |g € H(D) : D*Fg € (H?, H")[I™]);
(ifi) (HP=><, Hy™*) = {g € H(D) : D*Fg € (HF, H")[col);
(iv) (HP<, Hy™F) = (HPAe, H"#) = {g € H(D) : D*Fg € (H, H)[I*]}, 0<q<oo.

Proof. We prove (i) only, the proofs of (ii) through (iv) being similar.
By Lemma 2
HY™ = {f e HID) : D™*f € H'[co]},

and, by Lemma 1,
H'"# = {f € H(D) : DF f € H'[I']}.

From this we conclude that
(H}y™", H"*F) = (g € H(D) : D" € (HP[col, H*[I"D}
={g € H(D) : D*Pg € (H”, H")[I']},

by Theorem 3.
The equality (HP>¢, H**#) = {g € H(D) : D**g € (H?, H")[I’]} is proved in Theorem 4.
0

The next theorem is a consequence of the equality (HF, H*) = H' 1< p < oo, and Theorem 4.
Theorem 6. Let 1 <p <coandp+p =pp . Then

(HP*, H=oPBy = H 198
Corollary 2. Let 1 <p <ocoandp+p = pp . Then
() (HY™", HooF) = H ¥,
(i) (H)™", Hg""""ﬁ) - Hﬁl"""ﬁ;
(iii) (HP*~, HSO'm'ﬁ) - D Hg',oo,ﬁ;
(iv) (HP*, HSO’DO”B) — HZ/,m,ﬁ, g # co.

Proof. The statements (i), (ii) and (iv) follow from Theorem 5 and Theorem 6. We prove the statement (iii).
By using Theorem 5 we get

(H"™*, Hy™") = (g € HD) : D" Fg & (B, H)[col}
= {g € H(D) : D*Fg € H [co])
= D_aHg/,oo,ﬁr

by Lemma2. [O
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Theorem 7. (H™%%, H"f) = H,1%F,
Theorem is a consequence of Theorem 4 and the following theorem

Theorem 8. Let 0 < a, § < o0. Then
(Hoo,oo,a/ Hoo,oo,ﬁ) — Hi’oo’ﬁ'

Proof. We will use the equalities (H; )" = Hi’i’ll, (HSO Py = H;fil, (H}X'i'll)” = H®*%*and (H;'jil)“ = Hooh,

All these results follows from Theorem 1 and Theorem 2, since the Abel dual of separable mixed norm
space HP* coincides with the space (H"*, H*), (see [7], [8], [5] ). See also [1].
Using this we find that
(Hgo,oo,a, Hgo,m,ﬁ) c ((HSO,DO,ﬁ)a/ (Hgo,oo,a)a) — (Hl,l,l Hl,l,l)

p+1 77 "a+l
C(HE HEY = (H HOP),

a

Now let A € (H**@, H**#). Then A € (Hy"™*,H,’ “*F) since A maps polynomials into polynomials and

these are dense in H*™" and in HSO oF Thus,

00,00 00,00, 00,00 00,00, 1, 1, _ 1,00,
e B0y = (e, Hm8) = 30, HY = H

For the last equality see Theorem 10 below. [

Corollary 3.

(1) (HS°’°°"”,H°°fU’ﬁ) = Hi’”’ﬁ;

(i) (HS >, 1) = Y™,

(iii) (H°°'°°'“,HS°'°°4‘) = D@ H(l)roo,ﬁl,

() (9,10 = HE, g

Proof. We should only prove (iii). By using Theorem 5 we obtain

(H™=*,Hy"™") = (g € H(D) : D* g € (H®, H")[co)
={g € H(D) : D*Fg € M,[co]}.

Since [l % D*Pgllu, = llwn * D*Fgllin, (see Section 2), we get
(H>™*, Hy) = {g € H(D) : D*Pg € H'[co])
= DiaH(l)IOO/ﬁ/
by Lemma 2. [J

Corollary 4. (8, H*?#) = H'*F and (8, H;"™*) = HY ™",

Asusual 8 =H" 1 denote the Bloch space and By is the little Bloch space.
If v = o0, more is true

Theorem 9. (A, H®>F) = (B, H®>>F) = HV>F,
In particular,
(A, B) = (B8,8)=H"".
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Proof. Tt suffices to show that (A, H**#) c H-*#. Now we give the proof of this inclusion.

(AH™F) € (H*F), A = (Hy Y, M")

1,11 pyLoeo 4By _ 171,11 11,001+
- (Hﬁ+1 /H1+}3 ) - (H /H ‘B)

= H™ = HY8,

Here, we used the fact that A* = M., (see [9]).
O

Note that Theorem 9 represents an extension of Theorem 4.3 in [3].
As final remark we note the multipliers (HPA=, H**#), for 0 < p <1,p <u < oo, are characterized in [7].
See also [3].

Theorem 10. ([7]) Let 0 <p <1, p<u<o00,0<q,v<00,0<q,p <oo.Then

(H'p,q,a,Hu,v,ﬁ) — {g c H(D) . Da+1/p—1g c Hu,q@v,ﬁ} — HZf(la/Z;fl

In particular, (HPA~, H®F) = H:Jﬁ;_ﬁl

Corollary 5. ([5)) Let 0 <p<1,p<u<oco,0<v<00,0<a,p < oo Then

(i) (HG ™ HoP) = HU

N PO B _ o
(i) (Hy" ™, Hy )_Ha+1/pfl’

(iii) (Hp,oo,a’ ng"o'ﬁ) — D—a—(l/l’)+1ng°°'ﬁ’.

(iv) (HP#<, Hy ™) = H;‘fj'/’; Lif 0<g<co.

We note that the statements (i), (if) and (iv) also follow from Theorem 10 and Theorem 5. A different
proof of these statements is given in [5].
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