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Rodrigues formula for the Dunkl-classical
symmetric orthogonal polynomials
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Abstract. We find Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

1. Introduction

Different authors (see [2],[3], [5], [8], among others), in various contexts dealt with Rodrigues’ formula.
In this work, we are concerned with Rodrigues type formula for the Dunkl-classical symmetric orthogonal
polynomials which have been introduced in [1].

We begin by reviewing some preliminary results needed for the sequel. The vector space of polynomials
with coefficients in C (the field of complex numbers) is denoted by # and by #”’ its dual space, whose
elements are called forms. The set of all nonnegative integers will be denoted by IN. The action of u € £’
on f € P is denoted by (u, f). In particular, we denote by (u), := (u,x"),n € IN, the moments of u.
For any form u, any a € C — {0} and any polynomial h let Du = u’, hu, hu, &y and x'u be the forms

defined by: (u/, f) = —<u, f'), {hu, f) ::_(ubhf> , (hau, £y = (b f) = Cu, f(ax)) (o, f) := f(0), and
(x1u, £) = (u, O f) where (0o f)(x) = M feP.

Then, it is straightforward to prove that for f € £ and u € #’, we have

x7Hocu) = u — ()b, 1)

(fu) = flu+ fu'. 2)

We will only consider sequences of polynomials {P,},»o such that deg P,, < n,n € N. If the set {P,},,50 spans
%, which occurs when deg P, = n,n € N, then it will be called a polynomial sequence (PS). Along the
text, we will only deal with PS whose elements are monic, that is, monic polynomial sequences (MPS). It
is always possible to associate to {P,},>0 a unique sequence {u,},>0, 4, € ', called its dual sequence, such
that (u,, Py,) = 6pm ,n,m > 0, where 6,,,, is the Kronecker’s symbol [6].

The MPS {P,,},>0 is orthogonal with respect to u € £’ when the following conditions hold: (u, P,P,,) =
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TuOum , n,m 20,1, #0, n >0 [2]. In this case, we say that {P,},50 is a monic orthogonal polynomial
sequence (MOPS) and the form u is said to be regular. Necessarily, u = Augp, A # 0. Furthermore, we have

-1
y = (o, P2)) " Pytto,n >0, 3)
and the MOPS {P,},»¢ fulfils the second order recurrence relation

Po(x)=1 , Pi(x)=x-po 4)
Puiz = (¥ = Bue1)Prs1 (%) = Yns1Pu(®) ,yne1 #0, n20.

A form u is said symmetric if and only if (1)2,+1 = 0,7 > 0, or, equivalently, in (4) §, = 0,n > 0.
Let us introduce the Dunkl operator

f0) - f(=x)
2x

Tu(f) = f +2uH1f, (Hof)(x) = , fePucC.

This operator was introduced and studied for the first time by Dunkl [4]. Note that Ty is reduced to the
derivative operator D. The transposed T, of Ty is 'T, = =D — H_.; = T, leaving out a light abuse of
notation without consequence. Thus we have

(Tyu, f) = —u,Tuf), ueP, feP, uecl
In particular, this yields (T, u, x") = —p,(4),-1,1 > 0, where (u)_; = 0 and
n=n+pl - (1", n>0. (5)

It is easy to see that

T[.L(fu) = fT,Uu + f/u + 2# (H—lf) (h—lu)/ f € Pl ue 7)/1 (6)

hyoT,=aT,oh, in®, aeC-{0}. (7)
Remark 1.1 When u is a symmetric form, (6) becomes

Tu(fu)= fTuu+(Tuf)u, feP, uef, ®)

Now, consider a MPS {P,,},>0 and let

1 1
P, p) = Tt (TyPnJrl)(x)/ p#E-n-5, nz0. (9)

Definition 1.1. [1, 7] A MOPS {P,,},»0 is called Dunkl-classical or T~classical if{PE](., hnso is also a MOPS. In
this case, the form uyg is called Dunkl-classical or T,~-classical form.

2. Rodrigues type formula
The following was proved in [7]

Theorem 2.1. For any symmetric MOPS {P,}us0, the following statements are equivalent

(a) The sequence {Py}n>o is Dunkl-classical.
(b) There exist two polynomials ®© (monic) and Y with deg ® < 2 and degV = 1 such that the associated regular
form ug satisfies

Ty (Pug) + Witg = 0 (10)

w(0) - %(D”(O)yn #£0, n>0. (11)
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T’”Pn m
Proposition 2.2. If {P,},»0 is Dunkl-classical symmetric MOPS, then { m]( w) = it . } ,m > 1isalso
k=1 Hn+k ) >0
a Dunkl-classical symmetric MOPS and we have
Ty (@u (W) + (W = mT, @) ul (1) = 0, (12)
ul™ (1) = Ky ®"ug,m > 1 (13)

where @ and \V are the same polynomials as in (10), {uL’"I([J)}n>0 is the dual sequence of {P,Em](., y)}n>0 and ky, is
defined by the condition (ug’”](y))o =

For the proof, the following lemma is needed.
Lemma 2.3. [7]If {Py}ns0 is Dunkl-classical symmetric MOPS, then

ul(u) = kdug (14)
where k is a normalization factor and @ is the same polynomials as in (10).

Proof of Proposition 2.2. Suppose m = 1. The form u satisfies (10). Multiplying both sides by ® and on
account of (8) and (14), we get

Ty (@ull () + (W = T, @) ull () =
Therefore, (12) and (13) are valid for m = 1. By induction, we easily obtain the general case. 0

The main result of this paper follows:

Theorem 2.4. The symmetric MOPS {P,},»o is Dunkl-classical if and only if there exist a monic polynomial @,
deg @ < 2 and a sequence {A,}n>0, An # 0, n > 0 such that

Puug = AuT (P"ug), n 0. (15)
We may call (15) a (functional) Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

Proof. Necessity. Consider <Tf,ug‘],Pm> = (-1)" < u, ,TﬁP > n,m>0. ForO0<m<n-1,n2>1, wehave

TZPm=0. Form>n,putm=n+k,k>0. Then

() TP, [mkw] (ul), 17 [Huv]éok

following the definitions. Consequently

n
Tl = (-1" [H yv] U, 1>0.
v=1

But from (3) so that, in accordance with (13), we obtain (15) where

, P2

Ay = 1y oPady s, (16)
Hv 1 |uV

Sufficiency. Making n = 1 in (15), we have Pjug = AT, (Pup) and (11) is satisfied since ug is regular.

Therefore, the sequence {P,},>o is Dunkl-classical according to Theorem 2.1. O

The next proposition summarizes some properties of the the generalized Hermite polynomials {H’;(x)},0
and the generalized Gegenbauer ones { S,(f’ﬁ ) (¥)}n=0 (see [2]). It will be used in the sequel.
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Proposition 2.5. 1) The sequence {H};(x)} =0 is orthogonal with respect to H(), this last form satisfies
D (xH(w)) + (22% = (2 + 1)) H(u) = 0. (17)
In addition, {H', (x)},s0 verifies (4) with

Brn=0, Vps1 = %(n+1 +u+-=D"), 2u#-2n-1, n>=0. (18)

2) The sequence {S,(f’ﬁ )(x)}nzo is orthogonal with respect to GG(«, B), this last form satisfies
D (x(:? - 1)GG(a, p)) + (—2(a + B+ 2)2* + 2(8 + 1)) GG(a, p) = 0. (19)

In addition, {S,(f(’ﬁ )(X)}nzo verifies (4) with

nm+1+4+06,)(n+1+2a+0,) 1+ (-1)"
= -~ a>
dn+a+p+)n+a+p+2) On=(2p+1) 2 120
at-nB+-na+pf+-nnx1

n=0, Ynr1 =
p V1 20)

Lemma 2.6. If ug is a symmetric Dunkl-classical form , then iip = h,-1uq is also for every a # 0.

Proof. It is easy to see that 7y is symmetric. Applying the operator &, to the functional equation (10) and
using (7), we obtain

T, (®do) + Wity = 0, 1)

where ®(x) = a7 '®(ax), W(x) =al"'W(ax), t=deg®.
We have W’(0) — 10 (0)u, = a*>* (\I”(O) - %@”(O)yn) # 0, by (11). Hence the desired result. 0O

Lemma 2.7. If ug is a symmetric Dunkl-classical form then it satisfies (10) with
Ddx)=ax’*+c, W) =dx, dc#0.

Proof. From the statement b) of Theorem 2.1., we have ® monic, deg® < 2 and deg¥ = 1. So, there exist
(a,b,c,d,e) € C° such that D(x) = ax? + bx + ¢, W(x) = dx + ¢, |a| + |b| + |c| # 0 and d # 0. From (10), we have

(T, (Puo) + Wi, ) = 0,1 > 0.

For n = 0, we obtain d(u); + e = 0. Then e = 0 since uy is symmetric.
For n = 2, we get —2b(up); = 0, then b = 0 because (up), = 1 # 0.
Now, suppose that ¢ = 0. We will necessarily have a # 0. Otherwise, we would have, from (10) and the last
results
<Ty (axzuo) + dxuo,x2”+1> =0, n=>0

this gives (d —a(2n + 1 + 2u)) (up)2n+2 = 0. Then we deduce that (1), = and (up)22 = 0,n > 1

4
a(l+2u)
which is a contradiction with the regularity of uy. Hence ¢ # 0 0

Using Lemmas 2.6 and 2.7, we distinguish two canonical cases for ®: ®(x) = 1, ®(x) = x* — 1. Any
so-called canonical situation will be denoted by .

First case: ®(x) = 1.

Let W(x) = dx, it is possible to choose d = 2 by the dilatation & Nt then

T, (@) +2xii = 0 (22)
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which is equivalent to

D (xit) + (2x* = (2 + 1)) = 0. (23)
In fact, multiplying (22) by x, we obtain (23) by taking into account (8) and the fact H_; (xi1) = 0. Conversely,
multiplying (23) by x~! and using (1), we obtain (22) since (Ty (@) +2x11,1) = 0 and H_4(xi1) = 0.
In other word, from (23), we have the moments (1), n > 0 satisfy

2(ﬁ)ﬂ+2 = (Tl + 2# + 1)(12)1’11 n Z 0/

and the set of solutions is a 1-dimensional linear space since # is symmetric.
Hence, in this case @ = H(u) by virtue of (17).

Second case: ®(x) = x> — 1.
Let W(x) = dx. Puttingd = -2(a + 1), @ # -1, we get

T, (2 - 1)a) - 2(a + 1xit = 0. (24)

Since H_1(x(x?> — 1)i1) = 0, by applying the same process as we did in the first case, we prove that (24) is
equivalent to

D (x(x* = 1)) + (-2 = 2 = 3)x* + Qu + 1)) 21 = 0
And, we deduce that in this case i = GG (a, = %) by comparing the last equation with (19).
As a conclusion, we can state:

Theorem 2.8. (Compare with [1]) Up to a dilatation, the only Dunkl-classical symmetric MOPS are:
(a) The generalized Hermite polynomials {Hj (x)}0 for u # —n — 3,1 > 0. Moreover,

T (H(w)) + 2H(u) = 0. (25)

1
(b) The generalized Gegenbauer polynomials {Si,a’“ 2)(x)}nzo fora # na+p # -—n+ %,[u + —n+ %,n > 1.
Moreover,

T, ((x2 ~ 166 (a, . %)) ~ 2+ 1)xGG (a, . %) 0. 26)

Finally, we characterize the generalized Hermite polynomials and the generalized Gegenbauer ones in
terms of the Rodrigues type formula as follows:

Theorem 2.9. We may write

_1)”ﬁv+1+y(1+(—1)v

)
mre = (5 ) [ ooy T e, nzo @)

S VWG (- 5) = ATy (@2 - 176G (a,u- 5)), n=0 8)

1"(a+y+n+%)l"(a+1) - v +6,)(v+2a+0,) n>0

with A,, = , >
T(a+n+1)T (a +u+ %) E W+ud-=(D))2v+2a+2u - 1)2v + 20 + 2u)

Proof. Use Theorems 2.4 and 2.8, Proposition 2.5 and equation (16). 0
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