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Abstract. In this paper we prove the existence of fixed points of certain self-maps in the context of partial
metric spaces. In fact, the fixed point theorems presented here can be considered as a continuation, in part,
of the works of L.B. Ćirić on the existence of fixed points but not uniqueness in the realm of metric spaces.
Our results generalize, enrich and improve earlier results on the topic in the literature.

1. Introduction and preliminaries

Fixed point theory has been a subject of great interest since its wide application potential in nonlinear
functional analysis. The existence and uniqueness of fixed points of operators in metric spaces have been
studied intensively by many authors since the report of Banach [9] on the topic appeared in 1922. In this
celebrated paper, Banach proved that every contraction in a complete metric space has a unique fixed point.
Following this initial paper, a number of fixed point theorems proved in various types of abstract spaces
such as metric spaces, quasi-metric spaces, cone metric spaces, Menger spaces, fuzzy metric spaces, b-metric
spaces, G-metric spaces (see e.g. [1, 10, 12–15, 18, 19]). Following this trend, Matthews [30] introduced a
new abstract space called partial metric space. In this distinguished paper, the author proved a fixed point
theorem which is an analog of the Banach contraction mapping principle. Later some interested authors
showed that partial metric spaces have many applications both in mathematics and computer science (see.
e.g. [28, 29, 33, 37–39]). Recently, some more results on fixed point theory on partial metric spaces appeared
in [2, 3, 6, 7, 17, 20–27, 32, 35, 36, 41], etc.

In the sequel, the lettersR+,N andωwill denote the set of non-negative real numbers, the set of positive
integer numbers and the set of non-negative integer numbers, respectively.

The definition of partial metric space is given by Matthews [30] as follows:

Definition 1.1. A partial metric on a (non-empty) set X is a function p : X × X → R+ satisfying the following
conditions for all x, y, z ∈ X:

(P1) x = y⇔ p(x, x) = p(y, y) = p(x, y),
(P2) p(x, x) ≤ p(x, y),
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(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

Then, the pair (X, p) is called a partial metric space.
Observe that from (P1) and (P2) it follows that if p(x, y) = 0 then x = y.

Example 1.2. (See e.g. [30, 31]) Let X = R+ and p on X defined by p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p)
is a partial metric space.

Example 1.3. (See e.g. [26, 40]) Let (X, d) and (X, p) be a metric space and a partial metric space, respectively.
Functions ρi : X × X→ R+ (i ∈ {1, 2, 3}) given by

ρ1(x, y) = d(x, y) + p(x, y),
ρ2(x, y) = d(x, y) +max{u(x),u(y)},
ρ3(x, y) = d(x, y) + a,

define partial metrics on X, where u : X→ R+ is an arbitrary function and a ≥ 0.

Example 1.4. (See [30, 31]) Let X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d} −min{a, c}.
Then (X, p) is a partial metric space.

Example 1.5. (See [30]) Let X = [0, 1]∪[2, 3] and define p : X×X→ R+ by p(x, y) =
{

max{x, y}, {x, y} ∩ [2, 3] , ∅,
|x − y|, {x, y} ⊂ [0, 1].

Then (X, p) is a partial metric space.

Each partial metric p on a set X induces a T0 topology τp on X, which has as a base the family of open
p-balls

{
Bp(x, ϵ) : x ∈ X, ϵ > 0

}
where Bp(x, ϵ) =

{
y ∈ X : p(x, y) < p(x, x) + ϵ

}
for all x ∈ X and ϵ > 0.

From the definition of the topology τp it immediately follows that a sequence {xn}n∈N in a partial metric
space (X, p) converges to a point x ∈ X (xn → x, in short) with respect to τp if and only if p(x, x) = lim

n→∞
p(x, xn).

Notice that the limit of a sequence in partial metric space is not necessarily unique. For example,
consider the sequence

{
1

n+1

}
n∈N in the partial metric space defined in Example 1.2. It is clear that

p(1, 1) = lim
n→∞

p
(
1,

1
n + 1

)
and p(2, 2) = lim

n→∞
p
(
2,

1
n + 1

)
.

However, under certain conditions, the limit of a sequence is unique as the following lemma shows.

Lemma 1.6. (See e.g [26, 40]) Let (X, p) be a partial metric space and let {xn}n∈N be a sequence in X such that xn → x
and xn → y with respect to τp. If

lim
n→∞

p(xn, xn) = p(x, x) = p(y, y),

then x = y.

The usual metric spaces are closely connected to partial metric spaces. One can easily show (see e.g.
[31]) that the function dp : X × X→ R+ defined as

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y), (1)

is a metric on X.
The functions dp

m and p0 defined on X × X by
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dp
m(x, y) = max{p(x, y) − p(x, x), p(x, y) − p(y, y)}

= p(x, y) −min{p(x, x), p(y, y)}, (2)

and by p0(x, x) = 0 for all x ∈ X and p0(x, y) = p(x, y) for x , y, are also metrics on X (see [5] and [16],
respectively).

Observe that if p is a metric on X then p = dp
m.

The following topological inclusions are well-known and easy to check: τp ⊆ τdp = τdm
p
⊆ τp0 .

Furthermore, the following equivalence will be useful later on:

lim
n→∞

dp(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm). (3)

Note that in the partial metric space (X, p) of Example 1.2 both dp and dm
p are the Euclidean metric on X.

Some fundamental concepts like Cauchy sequence and completeness in a partial metric space are defined
in the next.

Definition 1.7. (See e.g.[25, 30, 31]) Let (X, p) be a partial metric space.

1. A sequence {xn}n∈N in X is called a Cauchy sequence in (X, p) if lim
n,m→∞

p(xn, xm) exists and is finite.

2. (X, p) is called complete if every Cauchy sequence {xn}n∈N converges with respect to τp to a point x ∈ X such
that p(x, x) = lim

n,m→∞
p(xn, xm).

The following lemma provides nice characterizations of Cauchyness and completeness for partial metric
spaces. Its proof is easily accessible in the literature or can be derived by elementary means.

Lemma 1.8. (See [31]) Let (X, p) be a partial metric space.

1. A sequence {xn}n∈N in X is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space
(X, dp).

2. (X, p) is complete if and only if the metric space (X, dp) is complete.

The partial metric spaces of Example 1.2, Example 1.4 and Example 1.5 are complete.
In our context the following characterization will be useful.

Lemma 1.9. Let (X, p) be a partial metric space. A sequence {xn}n∈N in X is a Cauchy sequence in (X, p) if and only
if it satisfies the following condition:

(∗) for each ε > 0 there is n0 ∈N such that p(xn, xm) − p(xn, xn) < ε whenever n0 ≤ n ≤ m.

Proof. We first prove the “if” part. Let {xn}n∈N be a sequence in (X, p) satisfying (∗). We shall show
that then the sequence {p(xn, xn)}n∈N converges for the Euclidean metric on R+. Indeed, let ε = 1. Then,
by (∗), there is n0 ∈ N such that p(xn, xn) ≤ p(xn0 , xn) < 1 + p(xn0 , xn0 ) whenever n ≥ n0. Thus, the sequence
{p(xn, xn)}n∈N is bounded in R+, so it has a subsequence {p(xnk , xnk )}k∈N that converges to an a ∈ R+ for the
Euclidean metric. Now choose an ε > 0. Then, there is k0 ∈N such that condition (∗) is satisfied whenever
m ≥ n ≥ nk0 , and condition

∣∣∣p(xnk , xnk ) − a
∣∣∣ < ε also holds for all k ≥ k0. Take any n ≥ nk0 . Then, we have

p(xn, xn) − a ≤ p(xn, xnk0
) − a < ε + p(xnk0

, xnk0
) − a < 2ε,

and for k ∈Nwith nk ≥ n, we deduce that

a − p(xn, xn) < ε + p(xnk , xnk ) − p(xn, xn) < 2ε.

Consequently lim
n→∞

p(xn, xn) = a. Then, by (∗), it immediately follows that lim
n,m→∞

p(xn, xm) = a.We conclude

that {xn}n∈N is a Cauchy sequence in (X, p).
The converse follows from Lemma 1.8.
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Lemma 1.10. Let (X, p) be a partial metric space and let {xn}n∈N and {yn}n∈N be sequences in X such that xn → x
and yn → y with respect to τdp . Then

lim
n→∞

p(xn, yn) = p(x, y).

For our purposes, we need to recall the following notion

Definition 1.11. (cf. [11]) Let (X, p) be a partial metric space and T a self-map of X.

1. T is called orbitally continuous if

lim
i, j→∞

p(Tni x,Tn j x) = lim
i→∞

p(Tni x, z) = p(z, z), (4)

implies

lim
i, j→∞

p(TTni x,TTn j x) = lim
i→∞

p(TTni x,Tz) = p(Tz,Tz), (5)

for each x ∈ X.
Equivalently, T is orbitally continuous provided that if Tni x → z with respect to τdp , then Tni+1x → Tz with
respect to τdp , for each x ∈ X.

2. (X, p) is called orbitally complete if every Cauchy sequence of type {Tni x}i∈N converges with respect to τdp , that
is, if there is z ∈ X such that

lim
i, j→∞

p(Tni x,Tn j x) = lim
i→∞

p(Tni x, z) = p(z, z). (6)

In this paper, we prove some non-unique fixed point theorems for certain type of self-maps in the
context of partial metric spaces. In fact, the fixed point theorems presented here can be considered as a
continuation, in part, of the work of Ćirić [11], that is, the given theorems investigate conditions only for
the existence of fixed points but not uniqueness. Our results generalize, enrich and improve some earlier
results on the topic in the literature (see e.g. [4, 11, 22, 34]). We also give examples that show the advantages
of using partial metric spaces instead of metric spaces in this context.

2. The results

In this section we give some non-unique fixed point theorems for partial metric spaces and present some
examples illustrating our results.

Theorem 2.1. Let T be an orbitally continuous self-map of a T-orbitally complete partial metric space (X, p). If there
is k ∈ (0, 1) such that

min{p(Tx,Ty), p(x,Tx), p(y,Ty)} −min{dp
m(x,Ty), dp

m(Tx, y)} ≤ k(p(x, y) − p(x, x)) + p(y, y), (7)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈ω converges with respect to τdp to a fixed point of T.

Proof. Take an arbitrary point x0 ∈ X. We define the iterative sequence {xn}n∈ω as follows:

xn+1 = Txn, n ∈ ω.

If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T. Assume then that xn , xn+1 for each
n ∈ ω.

Substituting x = xn and y = xn+1 in (7) we find the inequality
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min{p(xn+1, xn+2), p(xn, xn+1), p(xn+1, xn+2)} −min{dp
m(xn, xn+2), dp

m(xn+1, xn+1)}
≤ k(p(xn, xn+1) − p(xn, xn)) + p(xn+1, xn+1).

Substituting now x = xn+1 and y = xn in (7), we obtain

min{p(xn+2, xn+1), p(xn+1, xn+2), p(xn, xn+1)} −min{dp
m(xn+1, xn+1), dp

m(xn+2, xn)}
≤ k(p(xn+1, xn) − p(xn+1, xn+1)) + p(xn, xn),

which imply that

min{p(xn, xn+1), p(xn+1, xn+2)} ≤ k(p(xn, xn+1) − p(xn, xn)) + p(xn+1, xn+1), (8)

and

min{p(xn, xn+1), p(xn+1, xn+2)} ≤ k(p(xn, xn+1) − p(xn+1, xn+1)) + p(xn, xn). (9)

Suppose p(xn0 , xn0+1) ≤ p(xn0+1, xn0+2) for some n0 ∈ ω. Then, from the preceding two inequalities we
deduce that

(1 − k)p(xn0 , xn0+1) ≤ min{p(xn0+1, xn0+1) − kp(xn0 , xn0 ), p(xn0 , xn0 ) − kp(xn0+1, xn0+1)}.

If, for instance, p(xn0+1, xn0+1) ≤ p(xn0 , xn0 ), we have

(1 − k)p(xn0 , xn0+1) ≤ p(xn0+1, xn0+1) − kp(xn0 , xn0 )
≤ (1 − k)p(xn0+1, xn0+1)
≤ (1 − k)p(xn0 , xn0 ),

so, by using (P2), p(xn0 , xn0+1) = p(xn0 , xn0 ) = p(xn0+1, xn0+1), and hence xn0 = xn0+1, a contradiction.
Therefore p(xn, xn+1) > p(xn+1, xn+2) for all n ∈ ω.
Hence, by (8) we get

p(xn+1, xn+2) − p(xn+1, xn+1) ≤ k(p(xn, xn+1) − p(xn, xn))
≤ k2(p(xn−1, xn) − p(xn−1, xn−1))
≤ ... ≤ kn+1((p(x0, x1) − p(x0, x0)),

(10)

for all n ∈ ω.
We shall show that {xn}n∈ω is a Cauchy sequence in (X, p). Indeed, let n,m ∈ ω with n < m. Then, by

using (10) and (P4), we derive that

p(xn, xm) − p(xn, xn) ≤ p(xn, xn+1) + · · · + p(xm−1, xm) −
m−1∑
k=n

p(xk, xk)

≤ (kn + · · · + km−1)p(x0, x1).

Therefore, the sequence {xn}n∈ω satisfies condition (∗) of Lemma 1.9, so it is a Cauchy sequence in (X, p).
Since xn = Tnx0 for all n, and (X, p) is T-orbitally complete, there is z ∈ X such that xn → z with respect to τdp .
By the orbital continuity of T, we deduce that xn → Tz with respect to τdp . Hence z = Tz which concludes
the proof.

Corollary 2.2. [11, Theorem 1]. Let T be an orbitally continuous self-map of a T-orbitally complete metric space
(X, d). If there is k ∈ (0, 1) such that

min{d(Tx,Ty), d(x,Tx), d(y,Ty)} −min{d(x,Ty), d(Tx, y)} ≤ kd(x, y), (11)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈ω converges to a fixed point of T.
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The following are examples where Theorem 2.1 can be applied but not Corollary 2.2 for the metrics dp

and dp
m, and p0, respectively.

Example 2.3. Let X = {0, 1, 2} and let p be the partial metric on X given by p(x, y) = max{x, y} for all x, y ∈ X.
Define T : X→ X by T0 = T1 = 0 and T2 = 1. Since (X, p) is complete, then it is T-orbitally complete. Moreover, it
is obvious that T is orbitally continuous. An easy computation shows that

min{p(Tx,Ty), p(x,Tx), p(y,Ty)} −min{dp
m(x,Ty), dp

m(Tx, y)} ≤ 1
2 (p(x, y) − p(x, x)) + p(y, y),

for all x, y ∈ X. So the conditions of Theorem 2.1 are satisfied. However,

min{dp(T1,T2), dp(1,T1), dp(2,T2)} −min{dp(1,T2), dp(T1, 2)} = 1 − 0 = 1 > k = kdp(1, 2),

for any k ∈ (0, 1), so Corollary 2.2 cannot be applied to the complete metric space (X, dp). In fact, it cannot be applied
to (X, dp

m), because dp
m = dp, in this case.

Example 2.4. Let X = [1,∞) and let p be the partial metric on X given by p(x, y) = max{x, y} for all x, y ∈ X.
Define T : X→ X by Tx = (x+ 1)/2 for all x ∈ X. Since (X, p) is complete, then it is T-orbitally complete. Obviously
T is continuous with respect to τdp , so it is orbitally continuous.

Next we show that T satisfies the contraction condition (7) for any k ∈ (0, 1).We distinguish two cases for x, y ∈ X:
Case 1. x = y. Then

min{p(Tx,Ty), p(x,Tx), p(y,Ty)} −min{dp
m(x,Ty), dp

m(Tx, y)}

= min
{x + 1

2
, x, x
}
−
(
x − x + 1

2

)
= 1

≤ x = p(x, x) = k((p(x, y) − p(x, x)) + p(y, y).

Case 2. x , y. We assume without loss of generality that x > y.
If Tx ≥ y, we have

min{p(Tx,Ty), p(x,Tx), p(y,Ty)} −min{dp
m(x,Ty), dp

m(Tx, y)}

= min
{x + 1

2
, x, y
}
−min

{
x − y + 1

2
,

x + 1
2
− y
}

= y −
(x + 1

2
− y
)
= 2y − x + 1

2
≤ y = p(y, y) = k((p(x, y) − p(x, x)) + p(y, y).

If Tx < y, we have

min
{
p(Tx,Ty), p(x,Tx), p(y,Ty)

} −min{dp
m(x,Ty), dp

m(Tx, y)}

= min
{x + 1

2
, x, y
}
−min

{
x − y + 1

2
, y − x + 1

2

}
=

x + 1
2
−
(
y − x + 1

2

)
= x + 1 − y

< y = p(y, y) = k((p(x, y) − p(x, x)) + p(y, y).

Therefore, the conditions of Theorem 2.1 are satisfied. In fact T has a (unique) fixed point, x = 1.
Finally, we show that Corollary 2.2 cannot be applied to the self-map T and the complete metric space (X, p0).

Indeed, given k ∈ (0, 1), choose x > 1 such that x + 1 > 2kx, and let y = Tx. Then

min{p0(Tx,Ty), p0(x,Tx), p0(y,Ty)} −min{p0(x,Ty), p0(Tx, y)}

= min
{x + 1

2
, x
}
−min {x, 0} = x + 1

2
> kx = kp0(x, y).

Hence, the contraction condition (11) is not satisfied.
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Our next result extends [11, Theorem 3] to partial metric spaces.

Theorem 2.5. Let T be an orbitally continuous self-map of a partial metric space (X, p). Suppose that T satisfies the
inequality

min{p(Tx,Ty), p(x,Tx), p(y,Ty)} −min{dp
m(x,Ty), dp

m(Tx, y)} < p(x, y) − p(x, x) + p(y, y), (12)

for all x, y ∈ X with x , y. If for some x0 ∈ X the sequence {Tnx0}n∈ω has a cluster point z ∈ X with respect to τdp ,
then z is a fixed point of T.

Proof. Let x0 ∈ X be such that the sequence {Tnx0}n∈ω has a cluster point z ∈ X with respect to τdp . Define
the iterative sequence {xn}n∈ω as xn+1 = Txn, n ∈ ω.

If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T. Assume then that xn , xn+1 for
each n ∈ ω.

As in the proof of Theorem 2.1, substituting x = xn and y = xn+1 in (12) we find the inequality

min{p(xn, xn+1), p(xn+1, xn+2)} < p(xn, xn+1) − p(xn, xn) + p(xn+1, xn+1),

and substituting x = xn+1 and y = xn in (12), we obtain

min{p(xn, xn+1), p(xn+1, xn+2)} < p(xn, xn+1) − p(xn+1, xn+1) + p(xn, xn).

If p(xn0 , xn0+1) ≤ p(xn0+1, xn0+2) for some n0 ∈ ω, we deduce from the preceding two inequalities that
p(xn0 , xn0 ) < p(xn0+1, xn0+1) and p(xn0+1, xn0+1) < p(xn0 , xn0 ), respectively, a contradiction.

Consequently p(xn, xn+1) > p(xn+1, xn+2) for all n ∈ ω, and thus the sequence {p(Tnx0,Tn+1x0)}n∈ω is
convergent. Since {Tnx0}n∈ω has a cluster point z ∈ X with respect to τdp , then there is a subsequence
{Tni x0}i∈ω of {Tnx0}n∈ω which converges to z with respect to τdp . By the orbital continuity of T we have
Tni+1x0 → Tz with respect to τdp , so by Lemma 1.10,

lim
i→∞

p(Tni x0,Tni+1x0) = p(z,Tz). (13)

Therefore

lim
n→∞

p(Tnx0,Tn+1x0) = p(z,Tz). (14)

Again, by the orbital continuity of T we have Tni+2x0 → T2z with respect to τdp and hence

lim
n→∞

p(Tn+1x0,Tn+2x0) = p(Tz,T2z),

so

p(Tz,T2z) = p(z,Tz). (15)

Assume Tz , z, that is, p(z,Tz) > 0. So, one can replace x and y with z and Tz, respectively, in (12) to
deduce that

min{p(z,Tz), p(Tz,T2z)} < p(z,Tz),

which yields that p(Tz,T2z) < p(z,Tz). This contradicts the equality (15). Thus, Tz = z. The proof is complete.

Motivated by Ćirić’s theorems [11], Pachpatte proved in [34, Theorem 1] that if T is an orbitally contin-
uous self-map of a T-orbitally complete metric space (X, d) such that there is k ∈ (0, 1) with

min{[d(Tx,Tx)]2, d(x, y)d(Tx,Ty), [d(Ty, y)]2} −min{d(x,Tx)d(y,Ty), d(x,Ty)d(y,Tx)} ≤ kd(x,Tx)d(Ty, y)
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(16)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈ω converges to a fixed point of T.
However, Pachpatte’s theorem has a very limited field of application since under its conditions, if we

denote by z any fixed point of T, it follows that for each y ∈ X, Ty = z or Ty = y. Indeed, let y , z and
suppose Ty , z. Then from

min{[d(Tz,Ty)]2, d(z, y)d(Tz,Ty), [d(y,Ty)]2} −min{d(z,Tz)d(y,Ty), d(z,Ty)d(y,Tz)} ≤ kd(z,Tz)d(y,Ty),

it follows

min{[d(z,Ty)]2, d(z, y)d(z,Ty), [d(y,Ty)]2} = 0.

Hence d(y,Ty) = 0, i.e., y = Ty.
In our next result we modify the contraction condition (16) and thus obtain a new fixed point theorem

that avoids the incovenient indicated above. In fact, this will be done in the more general setting of partial
metric spaces and, to this end, the following notation will be used: If p is a partial metric on a set X we
denote by p′ the function defined on X × X by p′(x, y) = p(x, y) − p(x, x) for all x, y ∈ X. (Of course, p′ = p
whenever p is a metric on X.)

Theorem 2.6. Let T be an orbitally continuous self-map of a T-orbitally complete partial metric space (X, p). If there
is k ∈ (0, 1) such that

min{[p′(x,Tx)]2, p′(x, y)p′(Tx,Ty), [p′(y,Ty)]2} −min{dp
m(x,Tx)dp

m(y,Ty), dp
m(x,Ty)dp

m(y,Tx)}
≤ k min{p′(x,Tx)p′(y,Ty), [p′(x, y)]2}, (17)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈ω converges with respect to τdp to a fixed point of T.

Proof. As in the proof of Theorem 2.1, take an arbitrary point x0 ∈ X and define the iterative sequence
{xn}n∈ω as xn+1 = Txn, n ∈ ω.

If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T. Assume then that xn , xn+1 for
each n ∈ ω.

Substituting x = xn and y = xn+1 in (17) we find the inequality

min{[p′(xn, xn+1)]2, p′(xn, xn+1)p′(xn+1, xn+2), [p′(xn+1, xn+2)]2}
≤ k min{p′(xn, xn+1)p′(xn+1, xn+2), [p′(xn, xn+1)]2}. (18)

By (18) we deduce that

min{[p′(xn, xn+1)]2, p′(xn, xn+1)p′(xn+1, xn+2), [p′(xn+1, xn+2)]2}
= [p′(xn+1, xn+2)]2,

and hence

p′(xn+1, xn+2) ≤ kp′(xn, xn+1),

for all n ∈ ω. Therefore

p(xn, xn+1) − p(xn, xn) ≤ kn(p(x0, x1) − p(x0, x0)),

for all n ∈N. As in the proof of Theorem 2.1, we deduce that the sequence {xn}n∈ω is Cauchy in (X, p). Since
xn = Tnx0 for all n, and (X, p) is T-orbitally complete, there is z ∈ X such that xn → z with respect to τdp . By
the orbital continuity of T, we deduce that xn → Tz with respect to τdp . Hence z = Tz which concludes the
proof.
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Corollary 2.7. Let T be an orbitally continuous self-map of a T-orbitally complete metric space (X, d). If there is
k ∈ (0, 1) such that

min{[d(x,Tx)]2, d(x, y)d(Tx,Ty), [d(y,Ty)]2} −min{d(x,Tx)d(y,Ty), d(x,Ty)d(y,Tx)}
≤ k min{d(x,Tx)d(y,Ty), [d(x, y)]2}, (19)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈ω converges to a fixed point of T.

Remark 2.8. Note that if (X, p) is the complete partial metric space of Example 1.2, then each orbitally continuous
self-map T of X such that Tx ≤ x for all x ∈ X has a fixed point. Indeed, for such a T we have p′(x,Tx) = 0 for all
x ∈ X, so condition (17) in Theorem 2.6, is trivially satisfied.

The following is an example where Theorem 2.6 can be applied but not Corollary 2.7 for any of the
metrics dp, dp

m and p0.

Example 2.9. Let (X, p) be the partial metric space of Example 1.2. Define T : X → X by Tx = x − 1 if x ≥ 2
and Tx = 0 if x < 1. Then T is orbitally continuous because for each x ∈ X one has Tnx → 0 with respect to τdp ,
and T0 = 0. Moreover, by Remark 2.8 the contraction condition (17) is also satisfied, and thus all the conditions of
Theorem 2.6 hold.

Now take x ≥ 3 and y = Tx. Then x − y = 1, and y ≥ 2. Hence

min{[dp(x,Tx)]2, dp(x, y)dp(Tx,Ty), [dp(y,Ty)]2} −min{dp(x,Tx)dp(y,Ty), dp(x,Ty)dp(y,Tx)}
= min{1, (x − y)2, 1} − 0 = 1
= min{dp(x,Tx)dp(y,Ty), [dp(x, y)]2}.

Therefore, condition (19) is not satisfied for any k ∈ (0, 1), so we cannot apply Corollary 2.7 to (X, dp) (and thus to
(X, dp

m) and the self-map T.
Finally, given k ∈ (0, 1), choose x ≥ 3 with x > 1/(1 − k), and y = Tx. Then

min{[p0(x,Tx)]2, p0(x, y)p0(Tx,Ty), [p0(y,Ty)]2} −min{p0(x,Tx)p0(y,Ty), p0(x,Ty)p0(y,Tx)}
= min{x2, x(x − 1), (x − 1)2} − 0 = (x − 1)2

> kx(x − 1)
= k min{p0(x,Tx)p0(y,Ty), [p0(x, y)]2}.

Therefore, we cannot apply Corollary 2.7 to (X, p0) and the self-map T (note that, in fact, T is orbitally continuous for
(X, p0)).

References

[1] M. Abbas, T. Nazir and P. Vetro, Common fixed point results for three maps in G- metric spaces, Filomat 25:4 (2011), 117.
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[3] T. Abedelljawad, E. Karapınar and K. Taş, A generalized contraction principle with control functions on partial metric spaces,

Comput. Math. Appl. 63 (2012), 716–719.
[4] J. Achari, Results on non-unique fixed points, Publications de L’Institut Mathématique 26 (1978), 5–9.
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[34] B.G. Pachpatte, On Ćirić type maps with a nonunique fixed point, Indian J. Pure Appl. Math. 10 (1979), 1039–1043.
[35] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl. 159 (2012), 194-199.
[36] S. Romaguera, Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen. Topology,

12 (2011), 213–220.
[37] S. Romaguera and M. Schellekens, Partial metric monoids and semivaluation spaces, Topology Appl. 153 (2005), 948-962.
[38] S. Romaguera and O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Math.

Struct. Comp. Sci. 19 (2009), 541-563.
[39] M.P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theoret. Comp. Sci. 305 (2003), 409-432.
[40] N. Shobkolaei, S.M. Vaezpour and S. Sedghi, A common fixed point theorem on ordered partial metric spaces, J. Basic. Appl. Sci.

Res. 1 (2011), 3433-3439.
[41] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topology 6 (2005), 229–240.


