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A new characterization of markets that don’t replicate any option
through minimal-lattice subspaces. A computational approach.
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Abstract. In this paper the notion of strongly resolving markets with respect to the positive basis of a
minimal lattice-subspace Y ofRm is defined. It is proved that if the number of securities is less than half the
dimension of Y, then not a single (non-trivial) option can be replicated. This result extends already known
results regarding the notion of a market being strongly resolving. Both theoretical and computational
methods are provided in order to establish criteria for the characterization of markets that do not replicate
any option.

1. Introduction

In a seminal study, [12], Ross shows that if security markets are resolving then there exist non-redundant
options that generate complete security markets. This result poses the following natural question: Can we
ever replicate an option if markets are not complete? Complementing the work of Ross, the authors in [1] gave
a characterization of markets that do not replicate any option. In particular, they show that if security
markets are strongly resolving and the number of primitive securities is less than half the number of states,
then every option is non-redundant, i.e., not a single (non-trivial) option can be replicated. The replication
of options in strongly resolving markets has been studied in [1], [2] and [11]. In [1] the authors defined the
notion of strongly resolving markets by considering the payoff matrix with respect to the standard basis
of Rm while in [11], a generalization of the previous definition was presented by taking the payoff matrix
with respect to the positive basis of F1(X), where F1(X) denotes the completion of X by options i.e., the
subspace of Rm generated by all options written on the elements of X ∪ {1}. On the other hand, in [2], the
result presented in [1] is extended to the case when the condition on the number of primitive securities
is not imposed. Since any replicated option can be priced directly, considered as a portfolio of primitive
securities it is evident that the replication of options is one of the most important problems in finance.

In this article, we extend the definition of strongly resolving markets by taking the payoff matrix with
respect to the positive basis of a minimal lattice-subspace Y, generated by the x1, x2, ..., xn non-redundant
securities. In addition, we present a new characterization of markets that do not replicate any option. Our
main result states that if the number of securities is less than half the dimension of Y, then not a single
(non-trivial) option can be replicated. Besides the theoretical approach, we provide computational methods
in order to verify if a market is strongly resolving. To this end, we combine previous knowledge developed
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in [3–10] together with some new theoretical and computational ideas. Note that, the vector lattice theory
founds great applications in the theory of options since the different kind of options are expressed through
lattice operations.

The material in this article is spread out in 6 sections. In section 2, the fundamental properties of lattice-
subspaces and vector sublattices are presented. Moreover, we discuss the basic results for vector sublattices,
lattice-subspaces and positive bases of Rm together with the solution to the problem of whether a finite
collection of linearly independent, positive vectors ofRm generates a lattice-subspace or a vector sublattice.
In section 3, we discuss the theoretical background for option replication. Also, section 3 emphasis the
most important interrelationship between positive bases and the problem of option replication. In section
4, we present three different notions of strongly resolving markets and we prove our main result, theorem
4.4. Section 5 is divided in two subsections; in the first we construct a new Matlab function for verifying if
a market is strongly resolving (for each one of the three definitions), whereas in the second we discuss the
use of the proposed Matlab function together with important numerical examples. Moreover, subsection
5.2 concludes with three open questions regarding the aforementioned different kinds of strongly resolving
markets. Conclusions are provided in section 6.

2. Preliminaries

Let Rm = {x = (x(1), x(2), ..., x(m))|x(i) ∈ R, for each i}, where we view Rm as an ordered space. The
pointwise order relation in Rm is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ...,m.

The positive cone of Rm is defined by Rm
+ = {x ∈ Rm|x(i) ≥ 0, for each i} and if we suppose that X is a vector

subspace of Rm then X ordered by the pointwise ordering is an ordered subspace of Rm, with positive cone
X+ = X ∩Rm

+ . By {e1, e2, ..., em} we shall denote the standard basis of Rm. A point x ∈ Rm is an upper bound
(resp. lower bound) of a subset S ⊆ Rm if and only if y ≤ x (resp. x ≤ y), for all y ∈ S. For a two-point set
S = {x, y},we denote by x∨ y (resp. x∧ y) the supremum of S i.e., its least upper bound (resp. the infimum of
S i.e., its greatest lower bound). Thus, x∨ y (resp. x∧ y) is the componentwise maximum (resp. minimum)
of x and y defined by

(x ∨ y)(i) = max{x(i), y(i)} ((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ...,m.

For any x = (x(1), x(2), ..., x(m)) ∈ Rm, the set supp(x) = {i|x(i) , 0} is the support of x. We say that the vectors
x, y ∈ Rm have disjoint supports if supp(x) ∩ supp(y) = ∅.

An ordered subspace X of Rk is a lattice-subspace of Rk if it is a vector lattice in the induced ordering,
i.e., for any two vectors x, y ∈ X the supremum and the infimum of {x, y} both exist in X. Note that the
supremum and the infimum of the set {x, y} are, in general, different in the subspace from the supremum
and the infimum of this set in the initial space. An ordered subspace Z ofRm is a vector sublattice or a Riesz
subspace of Rm if for any x, y ∈ Z the supremum and the infimum of the set {x, y} in Rm belong to Z.

Assume that X is an ordered subspace of Rm and B = {b1, b2, ..., bµ} is a basis for X. Then B is a positive
basis of X if for each x ∈ X it holds that x is positive if and only if its coefficients in the basis B are positive.
In other words, B is a positive basis of X if the positive cone X+ of X has the form,

X+ =

x =
µ∑

i=1

λibi | λi ≥ 0, for each i

 .
Then, for any x =

µ∑
i=1
λibi and y =

µ∑
i=1
ϱibi we have x ≤ y if and only if λi ≤ ϱi for each i = 1, 2, ..., µ. A positive

basis B = {b1, b2, ..., bµ} is a partition of the unit if the vectors bi have disjoint supports and
µ∑

i=1
bi = (1, 1, ..., 1).

Recall that a nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies
x = λx0, for a real number λ. Since each element bi of the positive basis of X is an extremal point of X+, a
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positive basis of X is unique in the sense of positive multiples. The existence of positive bases is not always
ensured, but in the case where X is a vector sublattice of Rm then X always has a positive basis. Moreover,
it holds that an ordered subspace of Rk has a positive basis if and only if it is a lattice-subspace of Rk. If
B = {b1, b2, ..., bn} is a positive basis for a lattice-subspace (or a vector sublattice) X then the lattice operations
in X, namely x∇y for the supremum and x △ y for the infimum of the set {x, y} in X, are given by

x∇y =
n∑

i=1

max{λi, µi}bi and x △ y =
n∑

i=1

min{λi, µi}bi,

for each x =
n∑

i=1
λibi, y =

n∑
i=1
µibi ∈ X. A vector sublattice is always a lattice-subspace, but the converse is not

true. Let A ⊆ Rm
+ , A , ∅ and S be the set of lattice-subspaces of Rm each of which contains A. If B ∈ S and

for any C ∈ S it holds C ⊆ B⇒ C = B, then we say that B is a minimal lattice-subspace of Rm containing A.
The function

β : {1, 2, ...,m} → Rn such that β(i) =
1∑n

j=1 |x j(i)|
(x1(i), x2(i), ..., xn(i))

for each i ∈ {1, 2, ...,m}with
∑n

j=1 |x j(i)| , 0 is the basic function of the vectors x1, x2, ..., xn. The set

R(β) =

β(i) | i = 1, 2, ...,m, with
n∑

j=1

|x j(i)| , 0

 ,
is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of different elements
of R(β). Also, D(β) denotes the domain of β. If cardR(β) = µ then n ≤ µ ≤ m. We shall denote by K the convex
hull of R(β) which is, as the convex hull of a finite subset of Rm, a polytope with d vertices and each vertex
of K belongs to R(β). It is clear that n ≤ d ≤ µ. We enumerate the range of the basic function as follows,
R(β) = {P1,P2, ...,Pµ} such that the first n vertices P1,P2, ...,Pn are linearly independent and P1,P2, ...,Pd are
the vertices of K. The following theorem is important for our study. We shall present it in a suitable form
for our analysis, as in [8].

Theorem 2.1. [8, Theorem 2]. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of Rm if and only if R(β) has exactly n points (i.e., µ = n). In such a case, a positive
basis b1, b2, ..., bn for X is defined by the formula

b1
b2
...

bn

 = U−1


x1
x2
...

xn

 ,
where U is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., n.

(ii) Let µ > n. If Is = β−1(Ps), and

xs =
∑
i∈Is

n∑
j=1

|x j(i)|ei, s = n + 1,n + 2, ..., µ,

then

Z = [x1, x2, ..., xn, xn+1, ..., xµ]

is the vector sublattice generated by x1, x2, ..., xn and dim Z = µ.
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Consider the basic function γ of the vectors x1, x2, ..., xµ with range,

R(γ) = {P′1,P′2, ...,P′µ}.

Then, the relation


b1
b2
...

bµ

 = V−1


x1
x2
...

xµ

 ,
where V is the µ × µ matrix with the vectors P′1,P

′
2, ...,P

′
µ specified as columns, defines a positive basis for Z.

(iv) Let d > n. If ξi : D(β)→ R+, i = 1, 2, . . . , d such that
d∑

i=1
ξi( j) = 1 and β( j) =

d∑
i=1
ξi( j)Pi for each j ∈ D(β), and

xn+i, i = 1, 2, . . . , d − n, are the following vectors of Rm :

xn+i =
∑

j∈D(β)

ξn+i( j)
n∑

j=1

|x j(i)|e j,

then

Y = [x1, . . . , xn, xn+1, . . . , xd]

is a minimal lattice-subspace of Rm containing x1, x2, . . . , xn and dim Y = d.

In [5, 8] algorithmic procedures as well as computational methods are provided for the calculation of
the vector sublattice and the minimal lattice-subspace generated by a finite set of positive vectors of Rk.

In particular, let X = [x1, x2, ..., xn] be the vector subspace generated by the linearly independent, positive
vectors x1, x2, ..., xn of Rm. If X is a lattice-subspace or a vector sublattice of Rm a computational method
that determines a positive basis in X is provided in [5]. In the opposite case, the computational method
presented in [8], provides a minimal lattice-subspace and a vector sublattice containing X as well as
their corresponding positive bases. In addition, in [5, 8] the interconnection between the aforementioned
computational methods with problems arising in mathematical economics is further analyzed.

For computational methods in positive bases theory with applications in economics we refer to [3–9].

3. The economic model-Options replication

In our economy there are two time periods, t = 0, 1, where t = 0 denotes the present and t = 1 denotes
the future. We consider that at t = 1 we have a finite number of states indexed by s = 1, 2, ...,m, while at
t = 0 the state is known to be s = 0.

Suppose that, agents trade x1, x2, ..., xn non-redundant (linearly independent) securities in period t = 0,
future payoffs of x1, x2, ..., xn are collected in a matrix

A =
[
xi( j)
] j=1,2,...,m

i=1,2,...,n
∈ Rm×n

where xi( j) is the payoff of one unit of security i in state j. In other words, A is the matrix whose columns
are the non-redundant security vectors x1, x2, ..., xn. It is clear that the matrix A is of full rank and the asset
span is denoted by X = Span(A). So, X is the vector subspace of Rm generated by the vectors xi. That is,
X consists of those income streams that can be generated by trading on the financial market. A portfolio is
a column vector θ = (θ1, θ2, ..., θn)T of Rn and the payoff of a portfolio θ is the vector x = Aθ ∈ Rm, which
offers payoff x(i) in state i, where i = 1, ...,m. A vector in Rm is said to be marketed or replicated if x is the
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payoff of some portfolio θ (called the replicating portfolio of x), or equivalently if x ∈ X. If m = n, then
markets are said to be complete and the asset span coincides with the spaceRm. On the other hand, if n < m,
the markets are incomplete and some state contingent claim cannot be replicated by a portfolio. Recall that
a two-period security market is said to be resolving if the collection of securities x1, x2, ..., xn is resolving; in
the sense that for any two distinct states j1 and j2 there is some security xi such that xi( j1) , xi( j2). Also, a
two-period security market is strongly resolving if for any choice of n states and any contingent claim x there
is a unique portfolio whose payoff coincides with x on the n selected states, i.e. any n× n square submatrix
of A is non-singular. If a two-period security market is strongly resolving, then it is also resolving. As it is
noted in [1] and [2], it is easy to see that the set of security markets that are not strongly resolving is small,
therefore the condition that a security market is strongly resolving is not particularly restrictive. Note that

the matrix A =
[
xi( j)
] j=1,2,...,m

i=1,2,...,n
is considered regarding the standard basis {e1, ..., em} of Rm. Let {b1, ..., bk} be

a positive basis of a vector sublattice or a lattice-subspace of Rm containing X and xi =
k∑

j=1
xb

i ( j)b j is the

expansion of the security xi, i = 1, ..., n in terms of the positive basis {b1, ..., bk}. Then the matrix

Ab =
[
xb

i ( j)
] j=1,2,...,k

i=1,2,...,n
∈ Rk×n

is the payoff matrix of vectors xi with respect to the basis {bi}.
Definition 3.1. A two-period security market is strongly resolving with respect to the (positive) basis {bi} if any n×n
square submatrix of Ab is non-singular.

In the following, we shall denote by 1 the riskless (or risk-free) bond i.e., the vector 1 = (1, 1, ..., 1). The
call option written on the vector x ∈ Rm with exercise price α is the vector c(x, a) = (x − α1)+ = (x − α1) ∨ 0,
where 0 = (0, 0, ..., 0). The put option written on the vector x ∈ Rm with exercise price α is the vector
p(x, a) = (α1− x)+ = (α1− x)∨ 0. If y is an element of a Riesz space then the following lattice identities hold,
y = y+−y− and y− = (−y)+. It is clear that x−α1 = (x−α1)+−(x−α1)− = (x−α1)+−(α1−x)+ = c(x, α)−p(x, α).
Therefore we have the identity

x − a1 = c(x, a) − p(x, a),

which is called put-call parity. In economic terms, the put-call parity states that a call option on a portfolio
x with a given exercise price a is redundant to a put option on x with the same exercise price a, to a riskless
bond and a portfolio x.

If both c(x, α) > 0 and p(x, α) > 0, we say that the call option c(x, α) and the put option p(x, α) are non
trivial and the exercise price α is a non trivial exercise price of x. If c(x, α) and p(x, α) belong to X then we say
that c(x, α) and p(x, α) are replicated. If we suppose that 1 ∈ X and at least one of c(x, a), p(x, a) is replicated,
then both of them are replicated since, x− α1 = c(x, α)− p(x, α). For notation not defined here the interested
reader may refer to [7, 11] and the references therein.

Suppose that a security market X is generated by a given collection of linearly independent vectors
x1, x2, ..., xn of Rm. In the theory of security markets it is a usual practice to take call and put options with
respect to the riskless bond 1 = (1, 1, ..., 1). The completion, F1(X), of X by options is the subspace of Rm

generated by all options written on the elements of X ∪ {1}. Since the payoff space is Rm, which is a vector
lattice, in the case where 1 ∈ X then F1(X) is exactly the vector sublattice generated by X. In addition, if X is
a vector sublattice ofRm then F1(X) = X therefore any option is replicated. Note that the vectors x1, x2, ..., xn
are not presupposed to be positive. In addition, since F1(X) is a vector sublattice it has a positive basis B
which is a partition of the unit, i.e., B = {b1, b2, ..., bµ} is a positive basis where bi have disjoint supports and∑µ

i=1 bi = 1.

4. Strongly resolving markets

In [12], Ross shows that if security markets are resolving then there exist non-redundant options that
generate complete security markets. Complementing the work of Ross, the authors in [1] gave a char-
acterization of markets that do not replicate any option by showing that if security markets are strongly
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resolving and the number of primitive securities is less than half the number of states, then every option is
non-redundant, i.e., not a single (non-trivial) option can be replicated.

The replication of options in strongly resolving markets has been studied in [1], and [11]. In [1] the
authors defined the notion of strongly resolving markets by considering the payoffmatrix with respect to the
standard basis of Rm while in [11], a generalization of the previous definition was presented by taking the
payoffmatrix with respect to the positive basis of F1(X). In this article, we extend the definition of strongly
resolving markets by taking the payoffmatrix with respect to the positive basis of a minimal lattice-subspace
generated by the x1, x2, ..., xn non-redundant securities. Moreover, we present a new characterization of
markets that do not replicate any option.

Now, as before, suppose that agents trade x1, x2, ..., xn non-redundant securities. If X = [x1, x2, ..., xn]
then according to (iv) from Theorem 2.1 we construct the subspace Y = [x1, . . . , xn, xn+1, . . . , xd] which is
a minimal lattice-subspace of Rm containing x1, x2, . . . , xn and dim Y = d. Suppose that {β1, β2, ..., βd} is a

positive basis for Y. We expand the vectors x1, x2, ..., xn in terms of the basis {β1, β2, ..., βd} so xi =
d∑

j=1
xβi ( j)β j,

for each i = 1, ..., n. We collect the future payoffs of x1, x2, ..., xn in the following matrix

Aβ =
[
xβi ( j)
] j=1,2,...,d

i=1,2,...,n
∈ Rd×n

where xβi ( j) is the payoff of one unit of security i in state j. Recall that, a two-period security market is
strongly resolving with respect to the basis {βi} if any n × n square submatrix of Aβ is non-singular. In
the next example we shall see that it is possible for a market to be strongly resolving with respect to the
positive basis of the minimal lattice-subspace Y but is neither strongly resolving nor strongly resolving with
respect to the positive basis of F1(X). Throughout the paper we shall preserve the notation and terminology
presented so far.

Example 4.1. Consider four vectors x1, x2, x3, x4 in R6, with

A =



1 2 2 1
1 3 2 1
1 1 2 1
1 1 1 2
2 1 3 0
1 1 1 2


and X = [x1, x2, x3, x4] is the marketed space. Note that 1 =

x3 + x4

3
, so the riskless-bond is marketed. It is

clear that X is not strongly resolving since the fourth row is equal to the sixth row, i.e., there exists a 4 × 4
singular submatrix. We use the computational methods presented in [7, 8], so we have that the completion
by options, F1(X), is the subspace of R6 generated by the vectors

y1 = (1, 1, 1, 1, 2, 1), y2 = (2, 3, 1, 1, 1, 1), y3 = (2, 2, 2, 1, 3, 1), y4 = (1, 1, 1, 2, 0, 2), y5 = (0, 0, 5, 0, 0, 0).

A positive basis (which is also a partition of the unit) of F1(X) consists of the following five vectors of R6 :

b1 = (1, 0, 0, 0, 0, 0), b2 = (0, 1, 0, 0, 0, 0), b3 = (0, 0, 0, 1, 0, 1), b4 = (0, 0, 0, 0, 1, 0), b5 = (0, 0, 1, 0, 0, 0).

Then the matrix

Ab =


1 2 2 1
1 3 2 1
1 1 1 2
2 1 3 0
1 1 2 1


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is the payoffmatrix of vectors x1, ..., x4 with respect to the basis {bi}. Note that the following 4× 4 submatrix
of Ab, is singular:

1 2 2 1
1 3 2 1
1 1 1 2
1 1 2 1

 .
Therefore X is not strongly resolving with respect to the positive basis of F1(X).

As before, we use the computational methods presented in [8] in order to construct the minimal lattice-
subspace Y generated by x1, x2, x3, x4. A positive basis for Y consists of the following four vectors:

β1 =
(7

2
, 7, 0, 0, 0, 0

)
, β2 = (0, 0, 0, 5, 0, 5), β3 =

(5
2
, 0, 5, 0, 0, 0

)
, β4 = (0, 0, 0, 0, 6, 0).

Note that, the positive basis for Y is not a partition of the unit. Then the matrix

Aβ =



1
7

3
7

2
7

1
7

1
5

1
5

1
5

2
5

1
5

1
5

2
5

1
5

1
3

1
6

1
2

0


is the payoff matrix of vectors x1, ..., x4 with respect to the basis {βi}. Since Aβ is non-singular we have that
X is strongly resolving with respect to the positive basis of the minimal lattice-subspace Y.

In what follows we shall say that:

• X has the SR-property, if X is strongly resolving.

• X has the SR1-property, if X is strongly resolving with respect to the positive basis of F1(X).

• X has the SR2-property, if X is strongly resolving with respect to the positive basis of Y.

Remark 4.2. From [11], theorem 5.2, we have that if n ≥ 2 and F1(X) is a proper subspace of Rm, then the market is
not strongly resolving. The following example proves that if Y is a proper subspace of Rm, then we cannot say that
the market is not strongly resolving. Therefore, theorem 5.2 from [11] does not hold if we replace F1(X) with Y.

Example 4.3. Consider the following three vectors x1, x2, x3 in R5, x1
x2
x3

 =
 1 0 3 4 5

5 6 3 2 1
8 10 11 12 5


and X = [x1, x2, x3] is the marketed space.

Then, X has the SR-property, the SR1-property and the SR3-property. Moreover, Y is a four dimensional
subspace of R5.

In view of the previous examples and discussion, it is clear that our definition of a market being strongly
resolving with respect to the positive basis of the minimal lattice-subspace Y differs from the definition
of strongly resolving from [1] and the definition of strongly resolving with respect to the positive basis of
F1(X) from [11]. We note also that, in our definition of strongly resolving markets we do not presuppose
that the riskless-bond is marketed, while in the definition of strongly resolving markets presented in [11],
the authors made the additional assumption that 1 ∈ X so that the positive basis {bi} is a partition of the
unit.

We are now in a position to state and prove our main result:
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Theorem 4.4. If the market X is strongly resolving with respect to the basis {βi} of Y, 1 ∈ X and n ≤ d + 1
2

then any
non trivial option written on elements of X is non replicated.

Proof. For x ∈ X, let y = c(x, a) = (x − α1)+ be a non trivial call option, i.e., y > 0 and z = p(x, a) = (α1 − x)+

be a non trivial put option. Suppose that y is replicated. Then since 1 ∈ X we have that z is replicated too.

Now, let y =
d∑

i=1
kiβi and z =

d∑
i=1

k′iβi. Then, we define the natural numbers

p = card({i | ki , 0}), q = card({i | ki = 0}), p′ = card({i | k′i , 0}), q′ = card({i | k′i = 0}).

It is clear that p ≤ q′ and p′ ≤ q and that p + q = p′ + q′ = d. Suppose that p ≤ q then p + q ≤ 2q⇒ d
2
≤ q. On

the other hand, if q ≤ p then q + p ≤ 2p⇒ d
2
≤ p⇒ d

2
≤ q′. By our previous analysis it is clear that at least

one of the put option or the call option has a number of zero coordinates in the basis βi greater or equal to
d
2

. Suppose that
d
2
≤ q. We expand y in terms of the non-redundant securities x1, x2, ..., xn so let y =

n∑
i=1
ρixi

and each one of the xi can be expressed in terms of the positive basis of Y, therefore we have

y = ρ1

d∑
i=1

xβ1(i)βi + ... + ρn

d∑
i=1

xβn(i)βi. (1)

Since y =
∑d

i=1 kiβi we have the following matrix equality


k1
k2
...

kd

 =


xβ1(1) xβ2(1) · · · xβn(1)
xβ1(2) xβ2(2) · · · xβn(2)
...

...
...

xβ1(d) xβ2(d) . . . xβn(d)

 ·

ρ1
ρ2
...
ρn

 (2)

By our hypothesis we have that n ≤ d + 1
2
⇒ n ≤ q+

1
2
⇒ n ≤ q. Therefore, at least n coordinates ki1 , ..., kin

of y in the basis βi are equal to zero. Then, from equation (2), we have the following homogeneous linear
system, with ρ1, ρ2, ..., ρn specified as unknowns:

xβ1(i1) xβ2(i1) · · · xβn(i1)
xβ1(i2) xβ2(i2) · · · xβn(i2)
...

...
...

xβ1(in) xβ2(in) . . . xβn(in)

 ·

ρ1
ρ2
...
ρn

 =


0
0
...
0

 .
By our hypothesis, X is strongly resolving with respect to the basis {βi} of Y, so the matrix of the system is
non-singular and the system has only the trivial solution. In view of equation (1), this is a contradiction

since we assumed that y > 0. The case
d
2
≤ q′ is similar.

5. The computational approach

In this section we shall present a computational method that enables us to verify if a market X has the
SR-property, the SR1-property and the SR2-property. In order to reach our goal, we shall combine different
methods presented in [5, 7] together with some new code for testing if a market is strongly resolving.
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Algorithm 1 Strongly resolving properties test
Require: The matrix X, i.e., the payoffmatrix with the non-redundant security vectors x1, x2, ..., xn specified

as columns.
1: Check if the market has the SR-property.
2: Determine a basic set of marketed securities.
3: Compute the range of the basic curve.
4: Calculate the vector sublattice F1(X).
5: Calculate a positive basis for F1(X) which is a partition of the unit.
6: Expand the primitive securities in terms of the positive basis of F1(X).
7: Check if the market has the SR-1 property.
8: Calculate a positive basis for Y.
9: Expand the primitive securities in terms of the positive basis of Y.

10: Check if the market has the SR-2 property.
11: Compute the output

5.1. Algorithm for verifying if a market has the strongly resolving properties.
We state the algorithm for the Matlab function srtest presented in the Appendix. The srtest function

is our basic tool for verifying each one of the three strongly resolving properties (SR, SR1, and SR2) described
in the previous sections.

5.2. Use of the srtest function and numerical examples
In this section, we present carefully selected examples in order to make clear the interconnection between

the three presented notions of strongly resolving markets and the theorem 4.4. Moreover, the following
numerical examples are presented in such a way as to illustrate how the srtest function operates and how
to type the initial information. The user should simply retype in the same spaces the input information of
his/her own working problem. Note that for the correct performance of the srtest function the presence of
the MINlat function from [8], is needed. Also, recall that, since in the theory of security markets it is usual
practice to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1), we consider X such
that 1 ∈ X.

Example 5.1. Consider the following three vectors x1, x2, x3 in R8, x1
x2
x3

 =
 1 1 2 2 0 0 0 0

0 0 0 0 3 3 4 4
1 1 1 1 1 1 1 1


and X = [x1, x2, x3] is the marketed space.

In order to check the strongly resolving properties we apply the srtest function to the given collection
by using the code:

>> X = [1 1 2 2 0 0 0 0;0 0 0 0 3 3 4 4;1 1 1 1 1 1 1 1];

>> [Pb_Completion,Pb_Minimal_ls] = srtest(X)

the results, then, are as follows:

Not strongly resolving market.

Strongly resolving with respect to the pb of F1(X).

Strongly resolving with respect to the pb of Y.

Pb_Completion =

1 0 0 0
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1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

Pb_Minimal_ls =

0 0 0 2

0 0 0 2

0 0 6 0

0 0 6 0

4 0 0 0

4 0 0 0

0 5 0 0

0 5 0 0

Therefore, X has the SR1-property and the SR2-property.

Example 5.2. Consider the following four vectors x1, x2, x3, x4 in R6,
x1
x2
x3
x4

 =


1 1 1 1 2 1
2 3 1 1 1 1
2 2 2 1 3 1
1 1 1 2 0 2


and X = [x1, x2, x3, x4] is the marketed space.

Note that 1 =
x3 + x4

3
. We apply the srtest function to the given collection by using the code:

>> X = [1 2 2 1;1 3 2 1;1 1 2 1;1 1 1 2;2 1 3 0;1 1 1 2];

>> [Pb_Completion,Pb_Minimal_ls] = srtest(X)

the results, then, are as follows:

Not strongly resolving market.

Not strongly resolving with respect to the pb of F1(X).

Strongly resolving with respect to the pb of Y.

Pb_Completion =

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

Pb_Minimal_ls =

7/2 0 5/2 0

7 0 0 0
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0 0 5 0

0 5 0 0

0 0 0 6

0 5 0 0

Therefore, X has only the SR2-property. Note that in this example it holds n >
d + 1

2
hence it is possible to

have non trivial replicated options written on elements of X.
Our next example presents a market X, without the SR and the SR1 properties. On the other hand X

has the SR2-property and it holds n <
d + 1

2
, 1 ∈ X, hence any non trivial option written on elements of X

is non replicated.

Example 5.3. Consider the following four vectors x1, x2, x3, x4 in R12,


x1
x2
x3
x4

 =


0.1112 0.7803 0.3897 0.5752 0.0598 0.2348 0.6864 0.8400 0.6245 0.1055 0.7797 0.3874
0.2417 0.4039 0.0965 0.3532 0.8212 0.0154 0.5948 1.2251 0.1119 0.2382 0.3957 0.0963
0.1320 0.9421 0.9561 0.0430 0.1690 0.6491 0.1750 1.1110 1.6053 0.1315 0.9404 0.9496
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


and X = [x1, x2, x3, x4] is the marketed space.

The values of the first three vectors were randomly generated and x4 = 1. By following the same
procedure, as before, one gets

Not strongly resolving market.

Not strongly resolving with respect to the pb of F1(X).

Strongly resolving with respect to the pb of Y.

The dimension of the Pb_Minimal_ls matrix is 12 × 8 hence 4 = n <
d + 1

2
=

9
2

. Moreover, since the
riskless bond belongs to X, by theorem 4.4, we have that any non trivial option written on elements of X
is non replicated. The Pb_Minimal_ls matrix has been removed from the previous results due to its large
size.
We conclude this section with three open questions regarding the properties SR, SR1 and SR2:

1. If Y is a proper subspace of F1(X), then does X has the SR1-property ?
2. If X has the SR property, then does X has the SR2-property?
3. If X has the SR-1 property, then does X has the SR2-property?

6. Conclusions

In this paper, a characterization of markets that don’t replicate any option is presented. Specifically, the
notion of strongly resolving markets with respect to the positive basis of a minimal lattice-subspace Y ofRm

is defined. It is proved that if the number of securities is less than half the dimension of Y, then not a single
(non-trivial) option can be replicated. This result provides a new characterization of strongly resolving
markets. Both theoretical and computational methods are provided and we are hopeful that the results of
this work provide an important tool in order to study the interesting problem of option replication of a
two-period security market, in which the space of marketed securities is a subspace of Rm.

7. Appendix

The Matlab implementation of Algorithm 5.1 is given below.
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function [Pb_Completion,Pb_Minimal_ls] = srtest(X)

%***************************%

% General Information. %

%***************************%

% Synopsis:

% SR = srtest(X)

% [SR,Pb_Completion,Pb_Minimal_ls] = srtest(X)

%

% Input:

% X = the payoff matrix with the non-redundant

% security vectors x_1, x_2,...,x_n specified

% as columns.

%

% Output:

% SR = returns strongly resolving or strongly resolving with respect to

% the positive basis of F1(X) or stronlgy resolving

% with respect to the positive basis of a minimal lattice-subspace

% containing X.

%

% Pb_Completion = positive basis of F_1(X) which is a partition

% of the unit. The i column of the Pb_Completion

% matrix is the vector bi of the positive basis.

%

% Pb_Minimal_ls = positive basis of a minimal lattice-subspace

% containing X. The i column of the Pb_Minimal_ls

% matrix is the vector bi of the positive basis.

%

% Note that for the correct performance of the srtest function

% the presence of the MINlat function from [1], is needed.

%

% References:

% [1] V.N. Katsikis, I. Polyrakis, Computation of vector

% sublattices and minimal lattice-subspaces. Applications in finance.

% Applied Mathematics and Computation, 218 (2012), 6860-6873.

srtest0;

srtest1;

srtest2;

function srtest0 = srtest0

%***********************************%

% Strongly resolving market test. %

%***********************************%

[m,n] = size(X);

combos = combntns(1:m,n);

t = length(combos(:,1));

ranks = zeros(t,1);

for i = 1:t

Testmatrix = X(combos(i,:),:);
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ranks(i) = rank(Testmatrix);

end

if any(ranks < n)

disp(’Not strongly resolving market.’)

return

else

disp(’Strongly resolving.’)

end

end

%*****************************************************%

% Strongly resolving market test with respect to the %

% positive basis of F1(X). %

%*****************************************************%

function srtest1 = srtest1

%******************************************************%

% Determination of a basic set of marketed securities. %

%******************************************************%

if any(any(X < 0)) ˜= 0

a = max(max(abs(X)));

B= a*ones(size(X)) - X;

if any(any(B < 0)) ˜= 0

B = 2*a*ones(size(X)) - X;

end

else

B = X;

end

Matrix = zeros(size(B));

%**********************************%

% Range of the basic curve. %

%**********************************%

% Determination of the basic curve.

N = length(B(:,1));

for i = 1:N,

if norm(B(i,:),1) ˜= 0,

Matrix(i,:) = 1/norm(B(i,:),1)*B(i,:);

end

end

% Find the unique elements of the range of the basic curve.

[˜,m] = unique(Matrix,’rows’,’first’);

Sort_m = sort(m);

Matrixnew = Matrix(Sort_m,:);

r = length(m);

%**********************************************%

% Calculation of the vector sublattice F_1(X). %

%**********************************************%

% Choose which vectors are linearly independent.
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S = rref(Matrixnew’);

[I,J] = find(S);

Linearindep = accumarray(I,J,[rank(Matrixnew),1],@min)’;

M = length(B(1,:));

% A) If X=F_1(X).

if r == M

disp(’X is a vector sublattice hence any option is replicated’)

end

% B) If X˜=F_1(X).

Index1 = 1:r;

Index2 = setdiff(Index1,Linearindep);

Index = 1:N;

YY = sum(B,2)’;

TTT = setdiff(Index,Linearindep);

Id = eye(N);

KK = Id(TTT,:);

TT = YY(1,TTT)’;

T = diag(TT)*KK;

K = zeros(N);

K(TTT,:) = T;

Vec = zeros(r-M,N);

DDD = cell(r-M,1);

for i = 1:length(Index2)

DD = strmatch(Matrixnew(Index2(i),:),Matrix,’exact’);

R = length(DD);

if R >= 2,

Vector = sum(K(DD,:));

else

Vector = K(DD,:);

end

DDD{i,:} = DD;

Vec(i,:) = Vector;

end

Sublattice = [B Vec’];

%****************************************************%

% Determination of a positive basis for F_1(X) which %

% is a partition of the unit. %

%****************************************************%

% Calculate the new basic curve for F_1(X).

Matrixnew2 = zeros(size(Sublattice));

for i = 1:N,

if norm(Sublattice(i,:),1) ˜= 0,

Matrixnew2(i,:) = 1/norm(Sublattice(i,:),1)*Sublattice(i,:);

end

end

u = Matrixnew2([Sort_m(Linearindep)’ cell2mat(DDD)’],:);

Test_Pb = u’\Sublattice’;

[f,˜] = find(Test_Pb);

Pb = Test_Pb(unique(f),:);

% Normalization of the positive basis (Npb).
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Npb1 = diag(1./max(Pb,[ ],2))*Pb;

Npb = Npb1’;

Npb(Npb < 10*eps) = 0;

Npb(Npb < 1+10*eps & Npb > 1-10*eps) = 1;

Pb_Completion = Npb;

%********************************************************%

% Expansion of the primitive securities in terms of the %

% positive basis (Npb) of F_1(X). %

%********************************************************%

X1 = Npb\B;

[mm,nn] = size(X1);

combos = combntns(1:mm,nn);

tt1 = length(combos(:,1));

ranks1 = zeros(tt1,1);

for i = 1:tt1

Testmatrix1 = X1(combos(i,:),:);

ranks1(i) = rank(Testmatrix1);

end

if any(ranks1 < nn)

disp(’Not strongly resolving with respect to the pb of F1(X).’)

return

else

disp(’Strongly resolving with respect to the pb of F1(X).’)

end

end

%*****************************************************%

% Strongly resolving market test with respect to the %

% positive basis of a minimal lattice-subspace %

% containing X. %

%*****************************************************%

function srtest2 = srtest2

if any(any(X < 0)) ˜= 0

a = max(max(abs(X)));

B= a*ones(size(X)) - X;

if any(any(B < 0)) ˜= 0

B = 2*a*ones(size(X)) - X;

end

else

B = X;

end

[˜,Positivebasis] = MINlat(B);

Pb_Minimal_ls = Positivebasis’;

X2 = Positivebasis’\B;

[mmm,nnn] = size(X2);

combos = combntns(1:mmm,nnn);

tt2 = length(combos(:,1));

ranks2 = zeros(tt2,1);

for i = 1:tt2
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Testmatrix2 = X2(combos(i,:),:);

ranks2(i) = rank(Testmatrix2);

end

if any(ranks2 < nnn)

disp(’Not strongly resolving with respect to the pb of Y.’)

return

else

disp(’Strongly resolving with respect to the pb of Y.’)

end

end

end
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