
Filomat 27:7 (2013), 1183–1196
DOI 10.2298/FIL1307183F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Binary relations, in particular, equivalence relations play an important role in both mathematics
and information sciences. The concept of soft sets was initiated by Molodtsov as a general mathematical
framework for dealing with uncertainty. The present paper establishes a possible connection between binary
relations and soft sets. The concept of soft binary relations is introduced and some related properties are
investigated. It is shown that any fuzzy relation may be considered as a soft binary relation. Moreover, we
discuss the application of soft binary relations in semigroup theory. We consider soft congruence relations
over semigroups and show that all soft congruence relations over a semigroup with a fixed parameter set
form a lattice. Finally, the notion of soft homomorphisms is presented and isomorphism theorems for soft
semigroups are established based on soft congruence relations.

1. Introduction

In the real-world, there are many problems where uncertainty is a part of the data associated with them.
This type of problems are mostly related to economics, engineering, medicine, environment and social
sciences. It is very difficult to address these problems by using classical mathematical tools, because such
tools are designed for certain situations. There are three major theories dealing with uncertainty viz. theory
of probability, theory of fuzzy sets and interval mathematics. But these theories have their own difficulties.
There are other mathematical tools available which deal with uncertainty, such as intuitionistic fuzzy sets,
vague sets, and rough sets but these theories also have difficulties as mentioned by Maji et al. [24]. It
has been pointed out in [24, 26] that a reason for these difficulties is the inadequacy of parametrization
tools. In order to overcome these difficulties, Molodtsov [26] introduced the concept of soft set, which is
free from the difficulties affecting the above mentioned theories. Theory of soft sets has been successfully
applied to decision making under uncertainty [7, 11, 12, 25]. Soft set theory is also closely related to many
other soft computing models including rough sets and fuzzy sets. Ali et al. [2] discussed the fuzzy sets
and fuzzy soft sets induced by soft sets. Feng et al. [13, 14] combined soft sets with rough sets and fuzzy
sets, obtaining three types of hybrid models: rough soft sets, soft rough sets, and soft-rough fuzzy sets.
Application of soft set theory in algebraic structures such as groups was initiated by Aktaş and Çağman
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[5]. Jun and his colleagues applied it to BCK/BCI algebras [17, 18]. Feng et al. [10] applied soft set theory
to the study of semirings and initiated the notion of soft semirings. Following Maji et al. [24], Ali, Feng
and their colleagues defined some new operations in soft set theory [1]. A general formula for introducing
binary operations for soft sets is available in [13]. Qin and Hong [29] have studied lattices of soft sets with
respect to the new operations in [1]. Algebraic structures of soft sets associated with these new operations
were further explored in [1].

It is well known that binary relations, especially equivalence relations, play important role in math-
ematics, computer science, artificial intelligence, decision making and classification. In particular, basic
building blocks of Pawlak’s rough set model [28] are equivalence classes which originates from equivalence
relations [14]. The theory of rough sets is a powerful mathematical approach to deal with inexact, uncertain
or vague knowledge. It has been successfully applied to various fields of artificial intelligence such as
pattern recognition, machine learning, and automated knowledge acquisition. Using the primitive notion
of a pair of upper and lower approximation operators, knowledge hidden in information systems may be
discovered and expressed in the form of decision rules [13, 14, 28].

On the other hand, the concept of fuzzy equivalence relations, which is the fuzzy generalization of
crisp equivalence relations, was introduced by Zadeh [33, 34]. Due to the great importance of the concept,
many authors contributed in this direction. Murali explored the lattice of fuzzy equivalence relations in
[27]. Kuroki [22] and Tan [31] discussed fuzzy congruences in semigroups. Fuzzy congruences in groups
were studied by Kim and Bae [19]. Ajmal and Thomas [4] introduced the concept of t-fuzzy congruences.
Lattice of fuzzy congruences in inverse semigroups was studied by Das in [8]. K.C. Gupta and R. K.
Gupta introduced the concept of t-equivalence relations in [15]. Application of fuzzy congruences in the
study of rough algebraic structures can be found in [21, 32]. This list of authors on fuzzy relations is by
no means complete but give us a slight idea about the importance of fuzzy equivalence relations. In this
paper, we initiate an extension of fuzzy binary relations based on the theory of soft sets, which will be
called soft binary relations. Some interesting properties of soft equivalence and soft congruence relations
are discussed. Moreover, we apply soft binary relations to the study of semigroups, and obtain that soft
congruence relations over a semigroup with a fixed set of parameters form a lattice. Finally, we introduce
soft homomorphisms and prove the isomorphism theorems for soft semigroups.

2. Preliminaries

We assume that the reader is familiar with the rudiments of binary relations and semigroup theory.
For the terms not defined here we refer to [16]. Let us first introduce the notion of soft sets which is a
newly-emerging mathematical approach to vagueness.

Let U be an initial universe of objects and EU (simply denoted by E) the set of parameters in relation to
the objects in U. By parameters we usually mean attributes, characteristics, or properties of the objects in
U. Let P(U) denote the power set of U.

Definition 2.1. ([26]) A pair S = (F,A) is called a soft set over U, where A ⊆ E and F : A → P(U) is a
set-valued mapping.

Roughly speaking we can say that soft sets are crisp sets determined by parameters. In other words, a
soft set over U is a parameterized family of subsets of the universe U. The absence of any restrictions on
the approximate description in soft set theory makes this theory very convenient and easily applicable in
practice. We may use any suitable parametrization—with the help of words and sentences, real numbers,
functions, mappings, etc. The set of all soft sets over U is denoted by S(U).

Definition 2.2. ([13]) Let (F,A) and (G,B) be soft sets over U. Then (G,B) is called a soft subset of (F,A) if
B ⊆ A and G (b) ⊆ F (b) for all b ∈ B.

Two soft sets (F,A) and (G,B) over U are said to be soft equal if (F,A) is a soft subset of (G,B) and (G,B) is
a soft subset of (F,A) .
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Definition 2.3. Let S be a semigroup and let (F,A) be a soft set over S. Then (F,A) is called a soft semigroup
over S if F (α) is a subsemigroup of S for all α ∈ A with F (α) , ∅.

Definition 2.4. A soft set (F,A) over a semigroup S is called a soft ideal (resp. soft left ideal, soft right ideal)
over S, if F (α) is an ideal (resp. left ideal, right ideal) of S for all α ∈ A with F (α) , ∅.

Recall that the product of two soft sets over a universe U with a binary operation ∗ is defined by
Molodstov [26] as follows.

Definition 2.5. Let (F,A) and (G,B) be two soft sets over U, then the operation ∗ for soft sets is defined as
(F,A) ∗ (G,B) = (H,A × B), where H (a, b) = F (a) ∗G (b) , a ∈ A, b ∈ B, and A×B is the Cartesian product of the
sets A and B.

If there does not arise any ambiguity then we can simply write (F,A) (G,B) instead of (F,A) ∗ (G,B) and
F (a) G (b) for F (a) ∗ G (b). Note that Molodstov’s idea on soft products was further developed by Maji et al.
[24] as follows.

Definition 2.6. Let (F,A) and (G,B) be any two soft sets over U.

(1) The ∧-product (called AND-product) of (F,A) and (G,B) is defined as the soft set (H,C) = (F,A)∧ (G,B),
where C = A × B, and H (a, b) = F (a) ∩ G (b) for all (a, b) ∈ A × B.

(2) The ∨-product (called OR-product) of (F,A) and (G,B) is defined as the soft set (H,C) = (F,A) ∨ (G,B),
where C = A × B, and H (a, b) = F (a) ∪ G (b) for all (a, b) ∈ A × B.

Definition 2.7. ([1]) Let (F,A) and (G,B) be any two soft sets over U.

(1) The extended union of (F,A) and (G,B) is defined as the the soft set (H,C) = (F,A) ∪E (G,B) where
C = A ∪ B and for all c ∈ C,

H (c) =


F (c) , if c ∈ A\B,
G (c) , if c ∈ B\A,

F (c) ∪ G (c) , if c ∈ A ∩ B.

(2) The extended intersection of (F,A) and (G,B) is defined as the the soft set (H,C) = (F,A) ∩E (G,B) where
C = A ∪ B and for all c ∈ C,

H (c) =


F (c) , if c ∈ A\B,
G (c) , if c ∈ B\A,

F (c) ∩ G (c) , if c ∈ A ∩ B.

(3) The restricted intersection of (F,A) and (G,B) is defined as the soft set (H,C) = (F,A) ∩R (G,B), where
C = A ∩ B , ∅ and H (c) = F (c) ∩ G (c) for all c ∈ C.

(4) The restricted union of (F,A) and (G,B) is defined as the soft set (H,C) = (F,A) ∪R (G,B), where
C = A ∩ B , ∅ and H (c) = F (c) ∪ G (c) for all c ∈ C.

Aktaş and Çağman [5] defined the concept of Cartesian products for soft groups. Here we introduce a
similar notion as follows.

Definition 2.8. Let (F,A) and (G,B) be two soft sets over a semigroup S. Their Cartesian product is defined
as (F,A) × (G,B) = (H,A × B), where H

(
α, β
)
= F (α) × G

(
β
)

for all
(
α, β
) ∈ A × B.

Definition 2.9. Let (F,A) and (G,B) be two soft sets over a semigroup (S, ∗) with C = A ∩ B , ∅. Their
restricted product is defined as (F,A) ∗̂ (G,B) = (H,C), where H (c) = F (c) ∗ G (c) for all c ∈ C.
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3. Soft binary relations

In this section we define the notion of soft binary relations over a set X. Some basic concepts, operations,
characterizations and related properties with regard to soft binary relations are proposed here.

Definition 3.1. Let (σ,A) be a soft set over X× X, then (σ,A) is called a soft binary relation over X.

In fact (σ,A) is a parameterized collection of binary relations over X. That is, we have a binary relation
σ (α) on X for each parameter α ∈ A. In what follows, we shall denote the collection of all soft binary
relations over X by SBr(X).

Definition 3.2. Let (σ,A) and
(
ρ,B
)

be two soft binary relations over X. Then their composition is defined as
the soft set (δ,C) = (σ,A) ◦ (ρ,B), where C = A × B and δ

(
α, β
)
= σ (α) ⋄ ρ (β) for all

(
α, β
) ∈ C.

Note that σ (α) ⋄ ρ (β) denotes the ordinary composition of binary relations on X. Specifically, we have

σ (α) ⋄ ρ (β) = {(x, y) ∈ X × X : ∃z ∈ X, (x, z) ∈ σ (α) and
(
z, y
) ∈ ρ (β)} .

Definition 3.3. Let (σ,A) and
(
ρ,B
)

be two soft binary relations over X such that A ∩ B , ∅. Then their
restricted composition is defined as the soft set (δ,C) = (σ,A) ◦̂ (ρ,B), where C = A∩ B and δ

(
γ
)
= σ
(
γ
) ⋄ ρ (γ)

for all γ ∈ C.

It is well known that the composition of binary relations on a set is associative; hence we can show that
if A ∩ B ∩ C , ∅, then for soft binary relations (σ,A),

(
ρ,B
)

and (δ,C) we have

(σ,A) ◦̂ [
(
ρ,B
) ◦̂ (δ,C)] = [(σ,A) ◦̂ (ρ,B)] ◦̂ (δ,C) .

Definition 3.4. A soft binary relation (σ,A) over a set X is called a soft reflexive relation over X if σ (α) is a
reflexive relation on X for all α ∈ A with σ (α) , ∅.

If (σ,A) is a soft binary relation over a set X, then the converse soft binary relation of (σ,A) is also a
soft binary relations over X, denoted by (σ,A)−1. Concretely, (σ,A)−1 = (ρ,A) is a soft set over X, where
ρ(α) = σ−1(α) and σ−1(α) =

{(
x, y
) ∈ X × X :

(
y, x
) ∈ σ(α)

}
, i.e. the converse of σ(α) for all α ∈ A.

Definition 3.5. A soft binary relation (σ,A) over X is called a soft symmetric relation over X if (σ,A)−1 =(
σ−1,A

)
.

Lemma 3.6. Let (σ,A) be a soft binary relation over a set X. Then (σ,A) is soft symmetric if and only if σ (α) , ∅ is
a symmetric relation on X for all α ∈ A.

Proof. Straightforward.

Definition 3.7. Let (σ,A) be a soft binary relation over a set X. Then (σ,A) is called a soft transitive relation
over X if (σ,A) ◦̂ (σ,A) ⊆ (σ,A).

Lemma 3.8. Let (σ,A) be a soft binary relation over a set X. Then (σ,A) is a soft transitive relation over X if and
only if σ (α) , ∅ is a transitive relation on X for all α ∈ A.

Proof. Let (σ,A) be a soft transitive relation over X. For any α ∈ A such that σ (α) , ∅, if (a, b) ∈ σ (α) and
(b, c) ∈ σ (α) then (a, c) ∈ σ (α) ⋄ σ (α) ⊆ σ (α). This just shows that σ (α) is transitive for all α ∈ A.

Conversely, assume that σ (α) , ∅ is a transitive relation on X for all α ∈ A. Let (σ,A) ◦̂ (σ,A) = (ρ,A).
By definition, we have ρ(α) = σ(α) ⋄ σ(α) for all α ∈ A. If σ (α) , ∅, then we have ρ(α) ⊆ σ(α) since by
hypothesis σ (α) , ∅ is a transitive relation on X. On the other hand, if σ (α) = ∅, then clearly we deduce
that ρ(α) = σ(α) = ∅. Therefore, we conclude that (ρ,A) = (σ,A) ◦̂ (σ,A) ⊆ (σ,A).

A soft binary relation (σ,A) over a set X is called a soft equivalence relation over X if it is soft reflexive, soft
symmetric and soft transitive. In what follows, the collection of all soft equivalence relations over a set X
will be denoted by SEq(X).

As an immediate consequence of Definition 3.4, Lemma 3.6 and Lemma 3.8, we have the following:
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Corollary 3.9. A soft binary relation (σ,A) over a set X is a soft equivalence relation over X if and only if σ(α) , ∅
is an equivalence relation on X for all α ∈ A.

It is well known that each equivalence relation on a set divides the set into disjoint equivalence classes
and a partition of the set provides us an equivalence relation on the set. Therefore a soft equivalence relation
over X provides us a parameterized collection of partitions of X. Let [x]σ(α) denotes the equivalence class
containing x ∈ X determined by σ (α) for α ∈ A. Then it is clear that y ∈ [x]σ(α) if and only if

(
x, y
) ∈ σ (α).

For soft binary relations, we can introduce some concepts which are similar to what have been defined
for soft sets as mentioned above.

Definition 3.10. Let (σ,A) and
(
ρ,B
)

be two soft binary relations over a set X. Then

(1) (σ,A) ⊆ (ρ,B)⇔ A ⊆ B and σ (α) ⊆ ρ (α) for all α ∈ A.
(2) (σ,A) ∩R

(
ρ,B
)
= (δ,C) ,where C = A ∩ B , ∅ and δ

(
γ
)
= σ
(
γ
) ∩ ρ (γ) for all γ ∈ C.

(3) (σ,A) ∪R
(
ρ,B
)
= (δ,C) ,where C = A ∩ B , ∅ and δ

(
γ
)
= σ
(
γ
) ∪ ρ (γ) for all γ ∈ C.

(4) (σ,A) ∧ (ρ,B) = (δ,C) ,where C = A × B and δ
(
α, β
)
= σ (α) ∩ ρ (β) for all

(
α, β
) ∈ C.

(5) (σ,A) ∨ (ρ,B) = (δ,C) ,where C = A × B and δ
(
α, β
)
= σ (α) ∪ ρ (β) for all

(
α, β
) ∈ C.

(6) (σ,A) ∪E
(
ρ,B
)
= (δ,C), where C = A ∪ B and ∀α ∈ C, δ(α) =


σ (α) , if α ∈ A\B,
ρ (α) , if α ∈ B\A,

σ (α) ∪ ρ (α) , if α ∈ A ∩ B.

(7) (σ,A) ∩E
(
ρ,B
)
= (δ,C), where C = A ∪ B and ∀α ∈ C, δ(α) =


σ (α) , if α ∈ A\B,
ρ (α) , if α ∈ B\A,

σ (α) ∩ ρ (α) , if α ∈ A ∩ B.

The following lemma shows that every soft equivalence relation over a set is idempotent with respect
to the restricted composition of soft binary relations.

Lemma 3.11. If (σ,A) is a soft equivalence relation over X, then (σ,A) ◦̂ (σ,A) = (σ,A).

Proof. Let (σ,A) ◦̂ (σ,A) = (δ,A), where δ (α) = σ (α) ⋄ σ (α) for all α ∈ A. Assume that (σ,A) is a soft
equivalence relation over X. It is easy to see that (δ,A) = (σ,A) ◦̂ (σ,A) ⊆ (σ,A) since (σ,A) is a soft transitive
relation over X.

To show the reverse inclusion, note first that if σ (α) = ∅, then δ (α) = σ (α) ⋄ σ (α) = ∅. Next, we assume
that σ (α) , ∅. Then it follows that σ (α) is an equivalence relation on X. For any (b, c) ∈ σ (α), we have
(c, c) ∈ σ (α) since σ (α) , ∅ is reflexive. This implies (b, c) ∈ σ (α) ⋄ σ (α) = δ (α). Hence we deduce that
σ (α) ⊆ δ (α) for all α ∈ A. Therefore (σ,A) ⊆ (σ,A) ◦̂ (σ,A) = (δ,A).

Proposition 3.12. If {(σi,A) : i ∈ I} is a non-empty family of soft equivalence relations over a set X, then the following
soft binary relations are soft equivalence relations over X:

(a)
∩
R
{(σi,A) : i ∈ I};

(b)
∩
E
{(σi,A) : i ∈ I};

(c)
∧
i∈I

(σi,A).

Proof. (a) Let (η,A) =
∩
R{(σi,A) : i ∈ I}. By definition, we have η(α) =

∩
i∈I σi(α) for all α ∈ A. If η(α) , ∅,

then it is obvious that σi(α) , ∅ for all i ∈ I. Then by Corollary 3.9, σi(α) is an equivalence relation on X for
all i ∈ I. Hence it follows that η(α) =

∩
i∈I σi(α) is also an equivalence relation on X. Using Corollary 3.9

again, we conclude that (η,A) =
∩
R{(σi,A) : i ∈ I} is a soft equivalence relation over X as required.

(b) In this case, it is obvious that
∩
E{(σi,A) : i ∈ I} = ∩R{(σi,A) : i ∈ I}.

(c) The proof of (c) is similar to that of (a) and so omitted here.
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Definition 3.13. Let (σ,A) be a soft binary relation over a set X and let {(ρ,B) ∈ SEq(X) : (σ,A) ⊆ (ρ,B)}
be the family of all soft equivalence relations over X containing (σ,A). Then (σ,A)e =

∩
R{(ρ,B) ∈ SEq(X) :

(σ,A) ⊆ (ρ,B)} is called the soft equivalence relation generated by (σ,A).

It is easy to verify that (σ,A)e is the smallest soft equivalence relation over X containing (σ,A). We know
that the concept of transitive closure of binary relations plays an important role in the study of equivalence
relations. So we introduce the concept of soft transitive closure of a soft binary relation over a set X.

Definition 3.14. Let (σ,A) be a soft binary relation over X. Then the soft transitive closure of (σ,A) is defined
as (σ∞,A) =

∪∞
n=1 (σ,A)n where (σ,A)n = (σ,A) ◦̂ (σ,A) ◦̂ · · · ◦̂ (σ,A) = (σn,A) and σn (α) = σ (α)⋄σ (α)⋄· · ·⋄σ (α)

(both contain n factors) for all α ∈ A.

It is worth noting that the notation ∪ in the above definition could be interpreted as ∪R or ∪E since in
this particular case the two soft union operations will always lead to the same results.

Proposition 3.15. Let (σ,A) be a soft binary relation over X. Then (σ∞,A) is the smallest soft transitive relation
over X containing (σ,A).

Proof. It is clear that (σ,A) is contained in (σ∞,A) since (σ,A) = (σ,A)1 ⊆ (σ∞,A). Now let α ∈ A such
that σ∞ (α) , ∅ and let

(
x, y
)
,
(
y, z
) ∈ σ∞ (α) =

∪∞
n=1 σ

n (α). Then there exist some m,n ∈ N, such that(
x, y
) ∈ σn (α) ,

(
y, z
) ∈ σm (α). It follows that (x, z) ∈ σm+n (α) ⊆ σ∞ (α); hence σ∞ (α) , ∅ is transitive. By

Lemma 3.8, we deduce that (σ∞,A) is a soft transitive relation over X containing (σ,A).
Now assume that

(
ρ,A
)

is a soft transitive relation over X containing (σ,A). Then one can observe that

(σ,A)2 = (σ,A) ◦̂ (σ,A) ⊆ (ρ,A) ◦̂ (ρ,A) ⊆ (ρ,A) ,
and more generally we obtain (σ,A)n ⊆ (ρ,A) for all n ∈N. Therefore (σ∞,A) ⊆ (ρ,A).
Proposition 3.16. If (σ,A) is a soft symmetric relation over X, then so is its soft transitive closure (σ∞,A).

Proof. Suppose that (σ,A) is a soft symmetric relation over X. Let α ∈ A be such that σ∞ (α) , ∅. Then there
exist x, y ∈ X and some n ∈ N with

(
x, y
) ∈ σn (α) , ∅. Thus we can find a sequence

x = z1 → z2 → · · · → zn−1 → zn = y,

where (zi, zi+1) ∈ σ(α) for i = 1, 2, · · · ,n − 1. Since σ (α) , ∅, by Lemma 3.6 we have σ (α) is a symmetric
relation on X. It follows that (zi+1, zi) ∈ σ(α) for i = 1, 2, · · · ,n − 1. Hence we can deduce that

(
y, x
) ∈ σn (α).

This shows that σ∞ (α) , ∅ is a symmetric relation on X. Therefore, (σ∞,A) is a soft symmetric relation over
X by Lemma 3.6.

Let (σ,A) be a soft binary relation over X and let 1X denote the identity relation on X. We can define a soft
binary relation (σ1X ,A) over X such that for any α ∈ A,

σ1X (α) =
{

1X, if σ(α) , ∅,
∅, otherwise.

We refer to (σ1X ,A) as the pseudo-equality soft binary relation over X corresponding to (σ,A).
From the above definition, we can verify that (σ,A) is a soft reflexive relation over X if and only if

(σ1X ,A) ⊆ (σ,A).

Theorem 3.17. Let (σ,A) be a soft binary relation over X. Then we have (σ,A)e =
[
(σ,A) ∪E (σ,A)−1 ∪E

(
σ1X ,A

)]∞
.

Proof. Let (σ,A)∪E (σ,A)−1 ∪E
(
σ1X ,A

)
= (δ,A). Note first that by Proposition 3.15, (δ,A)∞ is a soft transitive

relation over X containing (δ,A). If δ(α) , ∅ then we have σ(α) , ∅. Otherwise, σ(α) = ∅ implies that
σ−1(α) = σ1X (α) = ∅, and so δ(α) = σ(α) ∪ σ−1(α) ∪ σ1X (α) = ∅, which is a contradiction. Since σ(α) , ∅, we
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deuce that σ1X (α) = 1X ⊆ δ(α), which shows that δ(α) , ∅ is a reflexive relation on X. Thus (δ,A) is a soft
reflexive relation over X. Next, let us assume that δ∞(α) =

∪∞
n=1 σ

n (α) , ∅. It follows that δn(α) , ∅ for some
n ∈ N. If δ(α) = ∅, then δn(α) = ∅ for all n ∈ N; this leads to a contradiction. Hence δ(α) , ∅ and thus as
shown above, we have that δ(α) is a reflexive relation on X. Therefore, 1X ⊆ δ(α) ⊆ δ∞(α). This shows that
δ∞(α) , ∅ is a reflexive relation on X. Hence (δ,A)∞ is a soft reflexive relation over X. In addition, one can
observe that (δ,A) = (σ,A) ∪E (σ,A)−1 ∪E

(
σ1X ,A

)
is a soft symmetric relation over X. By Proposition 3.16 it

follows that the soft transitive closure (δ,A)∞ is also a soft symmetric relation over X. Hence we conclude
that (δ,A)∞ is a soft equivalence relation over X.

Now, let
(
ρ,A
)

be a soft equivalence relation over X such that (σ,A) ⊆ (ρ,A). Then it is easy to see that
(σ,A)−1 ⊆ (ρ,A)−1 =

(
ρ,A
)
. For any α ∈ A, if ρ(α) = ∅ then σ(α) = ∅ since σ(α) ⊆ ρ(α). In this case, we have

σ1X (α) = ∅ = σ(α) ⊆ ρ(α). On the other hand, if ρ(α) , ∅ then ρ(α) is an equivalence relation over X by
Corollary 3.9. Thus we also have σ1X (α) ⊆ 1X ⊆ ρ(α). Therefore, (σ1X ,A) ⊆ (ρ,A), and so we deduce that
(δ,A) = (σ,A) ∪E (σ,A)−1 ∪E

(
σ1X ,A

)
⊆ (ρ,A). Moreover, by lemma 3.11 we can obtain

(δ,A)2 = (δ,A)̂◦(δ,A) ⊆ (ρ,A)2 = (ρ,A)̂◦(ρ,A) = (ρ,A).

In general, we have (δ,A)n ⊆ (ρ,A) for all n ∈ N. This implies (δ,A)∞ ⊆ (ρ,A) and so (δ,A)∞ is the smallest
soft equivalence relation over X containing (σ,A). Thus (σ,A)e = (δ,A)∞, completing the proof.

Note that the two soft union operations ∪R and ∪E will always lead to the same results when the soft
sets involved have the same set of parameters. Thus by Theorem 3.17, one can deduce the following:

Corollary 3.18. Let (σ,A) be a soft binary relation over X. Then we have (σ,A)e =
[
(σ,A) ∪R (σ,A)−1 ∪R

(
σ1X ,A

)]∞
.

4. Soft congruence relations over semigroups

In this section we shall study soft equivalence relations over semigroups, which are compatible to the
algebraic structure of their underlying semigroups. We begin with the following basic notion.

Definition 4.1. Let (σ,A) be a soft binary relation over a semigroup S. Then (σ,A) is said to be (right, left)
compatible if σ(α) is a (right, left) compatible relation on S for all α ∈ A.

Definition 4.2. A soft equivalence relation (σ,A) over a semigroup S is said to be a (right, left) soft congruence
over S if (σ,A) is a (right, left) compatible soft binary relation over S.

Proposition 4.3. A soft binary relation (σ,A) over a semigroup S is a soft congruence relation over S if and only if
σ(α) , ∅ is a congruence relation on X for all α ∈ A.

Proof. Straightforward.
Since the intersection of two congruence relations on a semigroup S is a congruence relation on S, one

can verify the following.

Proposition 4.4. Let (σ,A) and
(
ρ,B
)

be two soft congruences over a semigroup S. Then we have

(a) (σ,A) ∩R (ρ,B) is a soft congruence over S contained in both (σ,A) and
(
ρ,B
)

whenever A ∩ B , ∅.
(b) (σ,A) ∪E (ρ,B) is a soft congruence over S whenever A ∩ B = ∅.
(c) (σ,A) ∧ (ρ,B) is a soft congruence over S.
(d) (σ,A) ∩E (ρ,B) is a soft congruence over S.

Proposition 4.5. If {(σi,A) : i ∈ I} is a non-empty family of soft congruence relations over a semigroup S, then the
following soft binary relations are soft congruence relations over S:

(a)
∩
R{(σi,A) : i ∈ I};

(b)
∩
E{(σi,A) : i ∈ I};
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(c)
∧
i∈I

(σi,A).

Proof. The proof is similar to that of Proposition 3.12 and thus is omitted here.

Theorem 4.6. Let (σ,A) and
(
ρ,B
)

be two soft congruence relations over a semigroup S with A ∩ B , ∅. If
(σ,A) ◦̂ (ρ,B) = (ρ,B) ◦̂ (σ,A), then (σ,A) ◦̂ (ρ,B) is also a soft congruence over S.

Proof. Suppose that (σ,A) and
(
ρ,B
)

are two soft congruences over a semigroup S such that A ∩ B , ∅ and
(σ,A) ◦̂ (ρ,B) = (ρ,B) ◦̂ (σ,A). Let (σ,A) ◦̂ (ρ,B) = (δ,C), where C = A ∩ B and δ(c) = σ(c) ⋄ ρ(c) for all c ∈ C.
For any c ∈ C, if δ(c) = σ(c) ⋄ ρ(c) , ∅ then σ(c) , ∅ and ρ(c) , ∅. Hence we have σ(c) and ρ(c) are reflexive
relations on S since (σ,A) and

(
ρ,B
)

are soft reflexive relations over S. Thus 1S ⊆ σ(c) and 1S ⊆ ρ(c). It
follows that 1S = 1S ⋄ 1S ⊆ σ(c) ⋄ρ(c) = δ(c), which shows that δ(c) , ∅ is a reflexive relation on S. Therefore,
we obtain that (δ,C) is a soft reflexive relation over S.

Next, we show that (δ,C) is a soft symmetric relation over S. To see this, note first that for all c ∈ C
δ(c) = σ(c) ⋄ ρ(c) = ρ(c) ⋄ σ(c) since (σ,A) ◦̂ (ρ,B) = (ρ,B) ◦̂ (σ,A). For any c ∈ C, if δ(c) = σ(c) ⋄ ρ(c) , ∅ then
σ(c) , ∅ and ρ(c) , ∅, which are both symmetric relations on S. Thus we have

δ−1(c) = [σ(c) ⋄ ρ(c)]−1 = [ρ(c) ⋄ σ(c)]−1 = σ−1(c) ⋄ ρ−1(c) = σ(c) ⋄ ρ(c) = δ(c).

That is, δ(c) , ∅ is a symmetric relation on S. By Lemma 3.6, we thus deduce that (δ,C) is a soft symmetric
relation over S.

For soft transitivity, we consider

(δ,C)2 = [(σ,A) ◦̂ (ρ,B)] ◦̂ [(σ,A) ◦̂ (ρ,B)] = (σ,A) ◦̂ [
(
ρ,B
) ◦̂ (σ,A)] ◦̂ (ρ,B)

= (σ,A) ◦̂ [(σ,A) ◦̂ (ρ,B)] ◦̂ (ρ,B)
= [(σ,A) ◦̂ (σ,A)] ◦̂ [

(
ρ,B
) ◦̂ (ρ,B)]

= (σ,A) ◦̂ (ρ,B) = (δ,C).

This shows that (δ,C) is also a soft transitive relation over S. Therefore, (δ,C) is a soft equivalence relation
over S.

To complete our proof, by Proposition 4.3 we only need to show that for any c ∈ C such that δ(c) , ∅,
the equivalence relation δ(c) is indeed a congruence relation on S. In fact, if δ(c) = σ(c) ⋄ ρ(c) , ∅ then
σ(c) , ∅ and ρ(c) , ∅, which are both congruence relations on S by Proposition 4.3. Now assume that
(x, y) ∈ δ(c) = σ(c)⋄ρ(c). Then there exists z ∈ S such that (x, z) ∈ σ(c) and (z, y) ∈ ρ(c). Then for any t ∈ S, we
have (tx, tz) ∈ σ(c) and (tz, ty) ∈ ρ(c). This implies that (tx, ty) ∈ δ(c). Similarly we get (xt, yt) ∈ δ(c). Hence
we have shown that δ(c) , ∅ is indeed a congruence relation on S. Therefore, we conclude that (δ,C) is a
soft congruence relation over S.

Proposition 4.7. Let (σ,A) and
(
ρ,B
)

be two soft congruence relations over a semigroup S with A ∩ B , ∅. Then
the following are equivalent:

(a) (σ,A) ◦̂ (ρ,B) is a soft congruence relation over S.
(b) (σ,A) ◦̂ (ρ,B) is a soft equivalence relation over S.
(c) (σ,A) ◦̂ (ρ,B) is a soft symmetric relation over S.
(d) (σ,A) ◦̂ (ρ,B) = (ρ,B) ◦̂ (σ,A)

Proof. It is clear that (a)⇒ (b)⇒ (c).
We show that (c)⇒ (d). So let us suppose that (δ,C) = (σ,A) ◦̂ (ρ,B) is a soft symmetric relation over S,

where C = A∩B and δ(c) = σ(c)⋄ρ(c) for all c ∈ C. Note first that if either σ(c) = ∅ or ρ(c) = ∅, then clearly we
have σ(c) ⋄ ρ(c) = ρ(c) ⋄ σ(c) = ∅. Now, assume that σ(c) , ∅ and ρ(c) , ∅. Then both of them are congruence
relations on S by Proposition 4.3. In particular, σ−1(c) = σ(c) and ρ−1(c) = ρ(c). But by hypothesis, we also
have δ−1(c) = δ(c). Thus it follows that

σ(c) ⋄ ρ(c) = δ(c) = δ−1(c) = [σ(c) ⋄ ρ(c)]−1 = ρ−1(c) ⋄ σ−1(c) = ρ(c) ⋄ σ(c).

Therefore, we have shown that (σ,A) ◦̂ (ρ,B) = (ρ,B) ◦̂ (σ,A) as required.
(d)⇒ (a) is easily obtained by Theorem 4.6.
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Definition 4.8. Let (σ,A) and
(
ρ,B
)

be two soft congruence relations over a semigroup S. Then we define
(σ,A) ∨̂ (ρ,B) = (δ,C), where C = A ∩ B , ∅ and δ

(
γ
)
= σ
(
γ
) ∨ ρ (γ) for all γ ∈ C. Note that σ

(
γ
) ∨ ρ (γ)

denotes the smallest congruence containing both σ(γ) and ρ(γ).

By definition, one can verify that (σ,A) ∨̂ (ρ,B) is the smallest soft congruence relation over X, which
contains the soft congruence relations (σ,A) and

(
ρ,B
)
.

Proposition 4.9. Let (σ,A) and
(
ρ,A
)

be two soft congruence relations over a semigroup S. If (σ,A) ◦̂ (ρ,A) is a soft
congruence relation over S, then we have (σ,A) ∨̂ (ρ,A) = [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A).

Proof. Suppose that (σ,A) and
(
ρ,A
)

are two soft congruence relations over a semigroup S such that
(σ,A) ◦̂ (ρ,A) is again a congruence relation over S. Let [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A) = (δ,A). Then one
can verify that for any α ∈ A, the following equality is valid:

δ(α) =


σ(α) ⋄ ρ(α), if σ(α) , ∅ and ρ(α) , ∅,
σ(α), if ρ(α) = ∅,
ρ(α), if σ(α) = ∅.

By hypothesis, we know that (σ,A),
(
ρ,A
)

and (σ,A) ◦̂ (ρ,A) are soft congruence relations over S. It
follows that δ(α) is a congruence relation on S for all α ∈ A such that δ(α) , ∅. Then by Proposition 4.3, we
deduce that (δ,A) = [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A) is a soft congruence relation over S containing (σ,A)
and
(
ρ,A
)
.

Now, let
(
µ,A
)

be any soft congruence over S containing (σ,A) and
(
ρ,A
)
. Then for every α ∈ A, we

have σ(α) ⊆ µ(α) and ρ(α) ⊆ µ(α). It follows that σ(α) ⋄ ρ(α) ⊆ µ(α) ⋄ µ(α) = µ(α). Hence we deduce that
δ(α) ⊆ µ(α) for all α ∈ A. This shows that (δ,A) is the smallest soft congruence over S, containing both (σ,A)
and
(
ρ,A
)
. Therefore, (σ,A) ∨̂ (ρ,A) = [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A).

It is worth noting that under the condition of Proposition 4.9, (σ,A) ∨̂ (ρ,A) , (σ,A) ◦̂ (ρ,A) in the general
case. This can be illustrated by an example as follows:

Example 4.10. Suppose that S is a semigroup and A = {a, b, c} is a set of parameters. Let (σ,A) be a soft
binary relation on S such that σ(a) = 1S, σ(b) = ∅ and σ(c) = ∇S (the universal relation on S). Let (ρ,A)
be a soft binary relation on S such that ρ(a) = ∅, ρ(b) = 1S and ρ(c) = ∅. Let (σ,A) ∨̂ (ρ,A) = (δ,A). Then
it is clear that δ(a) = 1S and δ(b) = 1S and δ(c) = ∇S. One can observe that (σ,A) ◦̂ (ρ,A) = (Φ,A), where
Φ(α) = ∅ for all α ∈ A. Thus we have (σ,A) ∨̂ (ρ,A) , (σ,A) ◦̂ (ρ,A). On the other hand, it is easy to see that
(σ,A) ∪E (ρ,A) = (δ,A). Hence (σ,A) ∨̂ (ρ,A) = [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A).

Corollary 4.11. Let (σ,A) and
(
ρ,A
)

be two soft congruence relations over a semigroup S. If (σ,A) ◦̂ (ρ,A) is a soft
congruence relation over S, then we have (σ,A) ∨̂ (ρ,A) = [(σ,A) ◦̂ (ρ,A)] ∪R (σ,A) ∪R (ρ,A).

Proof. This follows directly from Proposition 4.9 since in this case the two soft union operations ∪R and ∪E
coincide for a fixed parameter set A.

Let S be a semigroup. We consider the collection of all soft congruence relations over S with a fixed
set of parameters A, which is denoted by SA

Cr(S). One can verify that SA
Cr(S) is partially ordered by the

inclusion of soft binary relations (see Definition 3.10). Moreover, we have the following result:

Theorem 4.12. (SA
Cr(S),⊆,∩R, ∨̂ ) is a lattice.

Proof. Let (σ,A) and
(
ρ,A
)

be two soft congruence relations over a semigroup S. Then it is obvious that
(σ,A) ∩R

(
ρ,A
)

is the greatest soft congruence relation over S contained in both (σ,A) and (ρ,A). That is,
(σ,A) ∩R

(
ρ,A
)

is the greatest lower bound of (σ,A) and (ρ,A) in (SA
Cr(S),⊆ ).

In addition, by Proposition 4.9 we know that (σ,A) ∨̂ (ρ,A) = [(σ,A) ◦̂ (ρ,A)] ∪E (σ,A) ∪E (ρ,A), which
is the smallest soft congruence relation over S containing both (σ,A) and (ρ,A). Hence (σ,A) ∨̂ (ρ,A) is the
least upper bound of (σ,A) and (ρ,A) in (SA

Cr(S),⊆ ). Therefore, we conclude that SA
Cr(S) is a lattice with

respect to the inclusion of soft binary relations.
As an immediate consequence of the above theorem, we obtain an assertion as follows:
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Corollary 4.13. (SA
Cr(S),⊆,∩E, ∨̂ ) is a lattice.

5. Relationship between fuzzy relations and soft binary relations

Fuzzy relations were introduced by Zadeh in his famous paper [33]. Fuzzy relations, especially fuzzy
equivalence/similarity relations, have received much attention since the advent of fuzzy sets [15, 19, 22, 34].
In this section we shall show that every fuzzy relation may be considered as a soft binary relation.

A fuzzy relation R between two sets X and Y is regarded as a fuzzy subset µR of X × Y, where µR
is a mapping from X × Y to [0, 1]. The mapping µR associates the grade of membership µR

(
x, y
)

to each(
x, y
) ∈ X × Y in R.

Definition 5.1. ([34]) For any α ∈ [0, 1], an α-level set of a fuzzy relation R is denoted by Rα and is defined
as Rα =

{(
x, y
)

: µR
(
x, y
) ≥ α} .

Note that {Rα : α ∈ [0, 1]} form a nested sequence of crisp binary relations such that α1 ≥ α2 ⇒ Rα1 ⊆ Rα2 .
The notion of α-level sets provides a connection between a fuzzy relation and a family of crisp binary
relations. Moreover, we have the following assertion:

Proposition 5.2. Every fuzzy relation may be considered as a soft binary relation.

Proof. Let R be a fuzzy relation and µR be the membership function of R. We consider the family
{Rα : α ∈ [0, 1]} consisting of α-level sets of the fuzzy relation R. Note also the fuzzy relation R can be
reconstructed from the family of α-level sets by means of the following formula µR(x, y) =

∨{α : (x, y) ∈ Rα},
for all (x, y) ∈ X×Y. Now, let us define a soft binary relation (σR, [0, 1]) over Z = X∪Y such that σR(α) = Rα
for all α ∈ [0, 1]. Then it is clear that the fuzzy relation R can be identified with the soft binary relation
(σR, [0, 1]) over Z. In this sense, we assert that every fuzzy relation may be considered as a soft binary
relation.

6. Soft homomorphisms and soft quotient semigroups

In this section we introduce soft homomorphisms of soft semigroups and soft quotient semigroups. We
then establish several soft homomorphism theorems for soft semigroups.

Definition 6.1. Let (F,A) and (G,B) be two soft semigroups over the semigroups S and T, respectively. Let
f : S → T and 1 : A → B be two functions. Then we say that

(
f , 1
)

: (F,A) → (G,B) is a soft homomorphism
and (F,A) is soft homomorphic to (G,B) if the following conditions hold:

(1) f is an epimorphism from S onto T.
(2) 1 is a surjective mapping from A onto B.
(3) f (F (α)) = G

(
1 (α)
)

for all α ∈ A.

If f is a monomorphism from S to T and 1 is an injective mapping from A onto B then
(

f , 1
)

is called a
soft isomorphism. Given

(
f , 1
)

: (F,A)→ (G,B) and
(
h, p
)

: (G,B)→ (H,C), then composition of
(

f , 1
)

and
(
h, p
)
,

denoted
(
h, p
) ◦ ( f , 1), is defined as

(
h, p
) ◦ ( f , 1) = (k, q)where q = p ◦ 1 and k = h ◦ f .Next, we introduce the

concept of soft quotient structures of a semigroup S with respect to soft congruence relations over S.

Proposition 6.2. Let (σ,A) be a soft congruence relation over a semigroup S and S/σ (α) =
{
[x]σ(α) : x ∈ S

}
where

α ∈ A. Then for any α ∈ A, S/σ (α) is a semigroup under the binary operation induced by S, which is given by
[x]σ(α)

[
y
]
σ(α) =

[
xy
]
σ(α) for all x, y ∈ S. Moreover, S is homomorphic to S/σ (α) for each α ∈ A.
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Proof. First of all we check the binary operation is well defined consider [a]
σ(α)
= [a′]

σ(α)
and [b]

σ(α)
= [b′]

σ(α)

for all a, a′, b, b′ ∈ S. This implies (a, a′) ∈ σ (α) and (b, b′) ∈ σ (α) for all α ∈ A. This implies (ab, a′b′) ∈ σ (α)
for all α ∈ A.

Since (σ,A) is a soft congruence relation on S, so for all a, b, c ∈ S consider(
[a]

σ(α)
[b]

σ(α)

)
[c]

σ(α)
=
(
[ab]

σ(α)

)
[c]

σ(α)

= [(ab) c]
σ(α)

= [a (bc)]
σ(α)

= [a]
σ(α)

(
[bc]

σ(α)

)
= [a]

σ(α)

(
[b]

σ(α)
[c]

σ(α)

)
.

Therefore S/σ (α) is a semigroup for all α ∈ A. Above discussion shows that for all α ∈ A, we have a
semigroup of classes of S and each semigroup of classes is homomorphic image of S, with homomorphism
fα : S→ S/σ (α) defined as fα (x) = [x]

σ(α)
.

If each σ (α) is distinct then each of S/σ (α) is distinct. We can denote S/ (σ,A) as the collection of
semigroups each of which is a homomorphic image of S. Furthermore, if S is regular then each S/σ (α) is
regular; hence S/ (σ,A) is a collection of regular semigroups.

Let σ be a congruence on a semigroup S. Let (F,A) be a soft semigroup over S. Denote the soft set (F,A) /σ
by (K,A) where K (α) =

{
[a]σ : a ∈ F (α)

}
for all α ∈ A. Since F (α) is a subsemigroup of S, it is clear that K (α)

is a subsemigroup of S/σ for all α ∈ A. Hence (F,A) /σ is a soft semigroup over S/σ. Now let iA : A→ A be
the identity mapping over A and σ⊤ be the natural homomorphism of semigroups given by σ⊤(a) = [a]σ for all
α ∈ A. Then one can verify that (σ⊤, iA) is a soft homomorphism from (F,A) to (F,A)/σ, which will be called
the natural soft homomorphism in what follows.

If (F,A) is a soft semigroup over a semigroup S and (σ,A) is a soft binary relation over S such that
σ (α) , ∅ is a congruence relation on F (α) , ∅ for all α ∈ A, then we say that (σ,A) is a soft congruence
relation on the soft semigroup (F,A).

Definition 6.3. Let (F,A) and (G,B) be two soft semigroups over S and T, respectively. Let
(

f , 1
)

be a soft
homomorphism from (F,A) to (G,B). We define ker

(
f , 1
)

as the soft binary relation (δ,A) over S, where

δ (α) =
{
(a, b) ∈ F (α) × F (α) : f (a) = f (b)

}
= (ker f ) |F(α),

for all α ∈ A.

Proposition 6.4. Let (F,A) and (G,B) be two soft semigroups over S and T, respectively. If
(

f , 1
)

is a soft homomor-
phism from (F,A) to (G,B), then ker

(
f , 1
)

is a soft congruence relation on (F,A).

Proof. Since
(

f , 1
)

is a soft homomorphism from (F,A) to (G,B), by definition f : S→ T is an epimorphism
of semigroups and 1 : A → B is a surjective map such that f (F(α)) = G(1(α)) for all α ∈ A. We shall write
the soft binary relation ker

(
f , 1
)

as (δ,A) where δ (α) = (ker f ) |F(α) for all α ∈ A. Since ker f is clearly an
equivalence relation over S, it is easy to see that δ (α) is an equivalence relation on the subsemigroup F (α)
for all α ∈ A.

Furthermore, assume that (a, a′) ∈ δ (α) and (b, b′) ∈ δ (α). Then f (a) = f (a′) and f (b) = f (b′), whence
we have

f (ab) = f (a) f (b) = f (a′) f (b′) = f (a′b′) .

This shows that (ab, a′b′) ∈ δ (α), and δ (α) is a congruence on F (α) for all α ∈ A. Consequently, ker
(

f , 1
)

is a
soft congruence relation on (F,A).

Theorem 6.5. Let (F,A) and (G,B) be two soft semigroups over S and T, respectively. If
(

f , 1
)

: (F,A) → (G,B)
is a soft homomorphism and 1 : A → B is an injective map, then there exists a unique soft isomorphism (h, 1) :
(F,A)/ ker f → (G,B) such that h

(
F (α) /ker f

)
= G
(
1 (α)
)

for all α ∈ A, and the diagram:
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-

?������������*(F,A)
( f , 1)

(G,B)

(F,A)/ ker f

((ker f )⊤, iA)
(h, 1)

commutes, where ((ker f )⊤, iA) : (F,A)→ (F,A)/ker f is a natural soft homomorphism.
Proof. Since

(
f , 1
)

: (F,A)→ (G,B) is a soft homomorphism, so f : S→ T is an epimorphism of semigroups,
and 1 : A → B is a surjective map such that f (F(α)) = G(1(α)) for all α ∈ A. Let h : S/ ker f → T be a map
defined by h

(
[a]ker f

)
= f (a), where a ∈ S. Since

[a]ker f = [b]ker f ⇔ (a, b) ∈ ker f
⇔ f (a) = f (b)

⇔ h
(
[a]ker f

)
= h
(
[b]ker f

)
,

we immediately deduce that h is both well-defined and injective. Moreover, one can verify that h : S/ker f →
T is an epimorphism of semigroups.

Denote the soft set (F,A)/ ker f by (K,A) where K(α) = F(α)/ ker f for all α ∈ A. Then we have

h (K (α)) = h
(
F (α) / ker f

)
=
{
h
(
[a]ker f

)
: a ∈ F(α)

}
=
{
f (a) : a ∈ F(α)

}
= f (F (α))
= G

(
1 (α)
)
,

for all α ∈ A. Also, we deduce from the hypothesis that 1 is indeed a bijection and so (h, 1) is a soft
isomorphism from (F,A)/ker f to (G,B).

To show that the diagram is commutative, note first that the soft composition of the natural soft
homomorphism ((ker f )⊤, iA) and the soft homomorphism (h, 1) defined as above is evidently a soft homo-
morphism from (F,A) to (G,B). Now, let (h, 1) · ((ker f )⊤, iA) = (p, q). It is clear that q = 1 since iA : A→ A is
the identity map on A. Thus it suffices to prove that p = h · (ker f )⊤ = f . In fact, let a ∈ S. Then

p (a) = h
((

ker f
)⊤ (a)

)
= h
(
[a]ker f

)
= f (a) ,

whence p = h·(ker f
)⊤ = f and (p, q) = ( f , 1) as required. Finally, one easily sees that the soft homomorphism

(h, 1) is unique since h : S/ ker f → T is completely determined by f .
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Theorem 6.6. Let (F,A) and (G,B) be two soft semigroups over S and T, respectively. Let
(

f , 1
)

: (F,A) →
(G,B) be a soft homomorphism and ρ be a congruence on S such that ρ ⊆ ker f . Then there exists a unique
soft homomorphism

(
h, 1
)

: (F,A) /ρ → (G,B) such that h
(
F (α) /ρ

)
= G
(
1 (α)
)

for all α ∈ A, and the diagram:

-

?�����������*(F,A)
( f , 1)

(G,B)

(F,A)/ρ

(ρ⊤, iA)
(h, 1)

commutes, where (ρ⊤, iA) : (F,A)→ (F,A)/ρ is a natural soft homomorphism.

Proof. Since
(

f , 1
)

is a soft homomorphism from (F,A) to (G,B), it follows that f : S→ T is an epimorphism
of semigroups, and 1 : A→ B is a surjective map such that f (F(α)) = G(1(α)) for all α ∈ A. Let h : S/ρ→ T
be a map defined by h

(
[a]ρ
)
= f (a), where a ∈ S. Note that

[a]ρ = [b]ρ ⇒ (a, b) ∈ ρ ⊆ ker f ⇒ f (a) = f (b) ,

we immediately deduce that h is a well-defined map. Moreover, we can show that h : S/ρ → T is an
epimorphism of semigroups. In fact, let a, b ∈ S. Clearly,

h
(
[a]ρ [b]ρ

)
= h
(
[ab]ρ

)
= f (ab) = f (a) f (b) = h

(
[a]ρ
)

h
(
[b]ρ
)
,

whence h is a homomorphism from S/ρ to T. Also, it is easy to see that h is surjective since by hypothesis
f : S→ T is an epimorphism.

We shall write the soft set (F,A)/ρ as (K,A) where K(α) = F(α)/ρ for all α ∈ A. Then we have

h (K (α)) = h
(
F (α) /ρ

)
=
{
h
(
[a]ρ
)

: a ∈ F(α)
}

=
{
f (a) : a ∈ F(α)

}
= f (F (α))
= G

(
1 (α)
)
,

for all α ∈ A. Therefore, we conclude that (h, 1) is a soft isomorphism from (F,A)/ρ to (G,B).
Now we show that the diagram is commutative. Let (h, 1) · (ρ⊤, iA) = (p, q). Note that (p, q) is a soft

homomorphism from (F,A) to (G,B) since it is the soft composition of the natural soft homomorphism
(ρ⊤, iA) and the soft homomorphism (h, 1) defined as above. Also, it is clear that q = 1 since iA is the identity
map on A. Thus it remains to show that p = h · ρ⊤ = f . In fact, let a ∈ S. Then

p (a) = h
(
ρ⊤(a)

)
= h
(
[a]ρ
)
= f (a) ,
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whence p = h ◦ ρ⊤ = f and (p, q) = ( f , 1) as required. Finally, one easily sees that the soft homomorphism
(h, 1) is unique since h : S/ρ→ T is completely determined by f .

7. Conclusions

This study was devoted to the discussion of the relations among binary relations, soft sets, and semi-
groups. We generalized the concepts of both crisp binary relations and fuzzy binary relations to soft binary
relations. Some basic concepts, operations, characterizations and related properties with regard to soft bi-
nary relations were proposed. We also considered soft congruence relations over semigroups and obtained
certain lattice structures related to them. Finally, we introduced soft homomorphisms and established
several isomorphism theorems for soft semigroups using soft congruence relations.
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