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Abstract. The operation of taking random products of random variables and the notions of infinite
divisibility (ID) and stability of distributions under this operation are discussed here. Based on this
stationary product auto-regressive time series models are introduced. We investigate some properties of
the models, like autocorrelation function, spectral density function, multi-step ahead conditional mean and
parameter estimation.

1. Introduction

Klebanov et al. [4] considered the problem of distribution of the product of a random number of random
variables (r.vs) and an application of geometric-products in mathematical economics. The discussion therein
was based on considering the log-transform of the r.vs so that a product can be treated as a sum (if the range
of the r.vs permits this transformation), invoke the result for the sum and then get back to the product.

McKenzie [6] introduced (perhaps for the first time) a product auto-regressive (PAR(1)) model

Xn = Xαn−1Vn, (1)

where α ∈ (0, 1) This is the product analogue of the AR(1) model

Yn = αYn−1 + εn, (2)

where Yn = log Xn and εn = log Vn.
McKenzie [6] noticed that the correlation structures of the PAR(1) and AR(1) models with gamma

marginals are the same and given by

Corr(Xn,Xn−k) = αk, k = 0, 1, . . .

Then, he characterized the gamma distribution, among self-decomposable distributions, as the only one
having this correlation structure in the PAR (1) model.
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Motivations of this paper are represented in the following items. Describing the operation of random
products of random variables and the notions of infinite divisibility and stability of distributions under
this operation. This description enables us to discuss first-order product autoregressive models with
random coefficients based on this operation. These models represent nonlinear models with autoregressive
correlation structure.

In the next section we discuss certain aspects of random products and then in Section 3 two PAR(1)
models related to them. Section 4 investigates some properties of the models, like autocorrelation function,
spectral density function, multi-step ahead conditional mean and parameter estimation.

2. Random products and infinite divisibility

Let us note that the divisibility properties of r.vs under the operation of sums or random-sums reflect the
corresponding divisibility properties of their log-transforms under the operation of products or random-
products. In the ensuing discussion we assume that the range of the r.vs permits this transformation. Hence
we may formally have the following.

Definition 2.1. A r.v X is product infinitely divisible (PID) if for each positive integer n, there exists i.i.d

r.vs {Xi,n, i = 1, . . . ,n} such that X =
n∏

i=1
Xi,n.

Definition 2.2. A r.v X is product stable (PS) if for each positive integer n, there exists a c > 0 such that

X =
n∏

i=1
Xc

i,n, where Xi,n, i = 1, . . . ,n are independent copies of X.

More generally we have the following. Since

Zn =

n∏
i=1

Xc
i ⇔ log Zn = c

n∑
i=1

log Xi

if Zn
d→ Z as n→∞, then log Zn

d→ log Z as n→∞. Similarly if

Sn = b
n∑

i=1

Yi ⇔ eSn =

n∏
i=1

ebYi ,

then conclusions on the weak limit of Sn hold well for log Sn as above. We may also invoke the transfer the-
orem for random-sums and obtain results corresponding to random-products. The following conclusions
are now clear.

Result 2.3. Y is ID if and only if X = eY is PID.

Result 2.4. Y is sum-stable if and only if X = eY is product-stable.

Result 2.5. Y is random-sum-stable if and only if X = eY is random-product-stable.

The notion of random infinite divisible (N-ID) laws is systematically discussed in Gnedenko and Korolev
[2]. To overcome certain limitations in this notion Satheesh [7] introduced φ-ID laws and from its easier
definition (Definition 2.3 in Satheesh et al. [9]) it follows that φ-ID laws generalize N-ID laws. Further,
notice that the class of geometric-ID (GID) laws forms a subclass of the class of Harris-ID (HID) laws which
in turn is a subclass of the class of N-ID laws, see e.g. Satheesh et al. [9]. We are thus in a position to
formulate the following results.

Result 2.6. Y is φ-ID if and only if X = eY is product-φ-ID.
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Corollary 2.7. Y is N-ID if and only if X = eY is product-N-ID.

Corollary 2.8. Y is HID if and only if X = eY is product-HID.

Corollary 2.9. Y is GID if and only if X = eY is product-GID.

The following results, which are known in the literature, show the interplay between sums and products
of r.vs.

Theorem 2.10. ([1]) Let Y1, Y2, . . . are i.i.d positive r.vs with non-zero finite mean and Np a positive geometric(p)

r.v independent of Y1 for every p ∈ (0, 1). Then Y1
d
= p

Np∑
i=1

Yi if and only if Y1 is exponential.

Theorem 2.11. ([4]) Let X1, X2, . . . are i.i.d positive r.vs with E(log X1) finite, non-zero and Np a positive

geometric(p) r.v independent of X1 for every p ∈ (0, 1). Then X1
d
=
∏Np

i=1 Xp
i if and only if X1 is Pareto (log-

exponential).

Theorem 2.12. ([8]) Let Y1, Y2, . . . are i.i.d positive r.vs with non-zero finite mean and Np a positive Harris(1/p,m)

r.v independent of Y1 for every p ∈ (0, 1). Then Y1
d
= p

Np∑
i=1

Yi if and only if Y1 is gamma(1/m).

Result 2.13. Let X1, X2, . . . are i.i.d positive r.vs E(log X1) finite, non-zero and Np a positive Harris(1/p,m) r.v

independent of X1 for every p ∈ (0, 1). Then X1
d
=
∏Np

i=1 Xp
i if and only if X1 is log-gamma(1/m).

3. PAR(1) models

We will consider two PAR(1) models here which are generalizations of (1). We have the following AR(1)
model of Lawrance and Lewis [5]

Yn =

{
Vn, with probability p,
Yn−1 + Vn, with probability 1 − p. (3)

The product analogue of this is

Xn =

{
εn, with probability p,
Xn−1εn, with probability 1 − p. (4)

It is known from [3] that (3) is stationary for each p ∈ (0, 1) if and only if Yn is GID. Hence we have

Result 3.1. The PAR(1) model (4) is stationary for each p ∈ (0, 1) if and only if Xn is product-GID.

The product-stability results, Theorem 2.11 and Result 2.13 above, can be used to model the generalized
PAR(1) models which are the multiplicative analogue of those discussed in Satheesh et al. [11] and
characterize various distributions that are the log-versions of the distributions therein. For a fixed and
known m > 0, a generalization of (3) is

m∑
i=1

Yi,n =


m∑

i=1
Vn, with probability p,

m∑
i=1

Yn−1 +
m∑

i=1
Vn, with probability 1 − p.

(5)
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The product analogue of this (a generalization of (3)) is given by

m∏
i=1

Xi,n =


m∏

i=1
εn, with probability p,

m∏
i=1

Xi,n−1

m∏
i=1
εi,n, with probability 1 − p.

(6)

By Theorem 2.3 in Satheesh et al. [10] the sequence {Yi,n} defines the model (5) that is stationary for each
p ∈ (0, 1) if and only if {Yi,n} is Harris(a,m)-ID, a = 1/p. Hence we have

Theorem 3.2. If for each i fixed, {Xi,n} describes the PAR(1) model (4) that is stationary for each p ∈ (0, 1) and if for
each n, the processes {Xi,n, i = 1, 2, . . . ,m} (m > 0 is known) are independent, then the distribution of {Xi,n} in (6) is
product-H(a,m)-ID, a = 1/p and conversely.

We now briefly consider log-gamma distributions in this context. If a r.v Y is gamma, then eY is
log-gamma or if X is log-gamma then log X is gamma. Thus if Y is gamma(θ, β) r.v with p.d.f

f (y) =
θβyβ−1e−θy

Γ(β)
, y > 0, β > 0, θ > 0, (7)

then X = eY is log-gamma(θ, β) with p.d.f

h(x) =
θβ(log x)β−1

Γ(β)xθ+1
, x > 1, β > 0, θ > 0. (8)

Since the gamma(θ, β) distribution is GID for β ≤ 1, log-gamma(θ, β) distribution at (8) is product-GID and
thus gamma(θ, β) distribution can be used to model the PAR(1) structure (4). Again, since the gamma(θ, β)
distribution is H(a,m)-ID for β = 1/m, m > 1 integer, log-gamma(θ, 1/m) distribution at (8) is multiplicative-
H(a,m)-ID and thus gamma(θ, 1/m) distribution can be used to model the PAR(1) structure (6).

4. Some properties of the PAR(1) models

We now discuss certain distributional and estimation aspects of the PAR(1) model (4). Here we assume
µε = E(εn) < ∞. The stationary PAR(1) model (4) can be rewritten as

Xn = XAn
n−1εn, (9)

where {An} is a sequence of i.i.d rvs with P(An = 0) = 1 − P(An = 1) = p independent of Xn−l for l > 0 and
{An} and {εn} are two mutually independent sequences.

For the process {Xn} given by (9), the autocovariance function γk = Cov(Xn,Xn−k) is obtained as follows.
Using (9) and properties of {Xn}, we get

E
(
XAn

n−1

)
= E
(
E
(
XAn

n−1|Xn−1

))
= p + (1 − p)µX

and

E
(
XAn

n−1Xn−k

)
= E
(
E
(
XAn

n−1Xn−k|Xn−1,Xn−k

))
= pµX + (1 − p)γk−1 + (1 − p)µ2

X,

where µX = E(Xn) and k > 0. Using the definition of γk and results above, we find that

γk = µε
(
E
(
XAn

n−1Xn−k

)
− µXE

(
XAn

n−1

))
= (1 − p)kµk

εγ0.

Now, we will show that |(1 − p)µε| < 1. From the stationarity of the process {Xn}, we obtain that
µX =

pµε
1−(1−p)µε

. This implies that µX exists for 1 − (1 − p)µε , 0. Also, from the definition of the model and
stationarity, we have that

µ2
X + σ

2
X = p(µ2

ε + σ
2
ε) + (1 − p)(µ2

ε + σ
2
ε)(µ

2
X + σ

2
X).
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Under the condition 1 − (1 − p)(µ2
ε + σ

2
ε) , 0, the variance of {Xn} is given by

σ2
X =

p(1 − p)(1 − µε)2(µ2
ε + σ

2
ε) + p2σ2

ε(
1 − (1 − p)(µ2

ε + σ
2
ε)
)

(1 − (1 − p)µε)2
. (10)

The variance of {Xn} is positive for 1 − (1 − p)(µ2
ε + σ

2
ε) > 0. We have that

1
(1 − p)2 >

1
1 − p

> µ2
ε + σ

2
ε > µ

2
ε,

which implies that |(1 − p)µε| < 1. Hence we have the following theorem.

Theorem 4.1. The autocorrelation function at lag k of the r.vs Xn and Xn−k is given by Corr(Xn,Xn−k) = (1− p)kµk
ε,

k > 0. Further, |(1 − p)µε| < 1 and hence the autocorrelation function converges to zero as k→∞.

Based on the autocovariance γk value, the spectral density function

fXX(λ) =
1

2π

∞∑
k=−∞

γke−iλk, i =
√
−1

of the PAR(1) process is given by

fXX(λ) =
σ2

X

2π
·

1 − µ2
ε(1 − p)2

1 + µ2
ε(1 − p)2 − 2µε(1 − p) cosλ

,

where σ2
X is given in (10).

Further, for this PAR(1) process the one-step ahead conditional mean is

E(Xn+1|Xn = x) = pµε + (1 − p)µεx,

which is linear in x. Also, we can see that

E(Xn+2|Xn = x) = pµε + p(1 − p)µ2
ε + (1 − p)2µ2

εx.

Hence using induction the k-step ahead conditional mean is given by the following theorem.

Theorem 4.2. The k-step ahead conditional mean is

E(Xn+k|Xn) = pµε
k−1∑
j=0

(1 − p) jµ j
ε + (1 − p)kµk

εx.

Remark 4.3. It is interesting to note that by virtue of Theorem 4.1

lim
k→∞

E(Xn+k|Xn) =
pµε

1 − (1 − p)µε
= µX

which is the unconditional mean of {Xn}.

We now find the conditional least squares (CLS) estimators of PAR(1) parameters. Let X1, X2, . . . , XN be
a realization of PAR(1) process and consider the function

QN(p, µε) =
N∑

n=2

(Xn − E(Xn|Xn−1))2 =

N∑
n=2

(Xn − pµε − (1 − p)µεXn−1)2.

Then, the CLS estimators of the parameters p and µε are obtained by solving the system of equations
∂QN(p,µε)
∂p = 0 and ∂QN(p,µε)

∂µε
= 0. The estimators are given in the following theorem.
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Theorem 4.4. The conditional least squares estimators of the PAR(1) parameters are

µ̂ε =
(N − 1)

∑N
n=2 XnXn−1 −

∑N
n=2 Xn

∑N
n=2 Xn−1 +

∑N
n=2 Xn

∑N
n=2 X2

n−1 −
∑N

n=2 Xn−1
∑N

n=2 XnXn−1

(N − 1)
∑N

n=2 X2
n−1 −

(∑N
n=2 Xn−1

)2
and

p̂ =
∑N

n=2 Xn − µ̂ε
∑N

n=2 Xn−1

µ̂ε
(
N − 1 −∑N

n=2 Xn−1

) .
Remark 4.5. Let Zn =

m∏
i=1

Xi,n, m > 0 be fixed and known, we can develop CLS estimators for the model (6) as done

above for (4).

Now we will discuss the asymptotic properties of the obtained CLS estimators. To derive these properties
we will need the following lemma.

Lemma 4.6. The PAR(1) process {Xn} given by (4) is a strict stationary and ergodic process.

Proof. The strict stationarity of the PAR(1) process {Xn} follows from the fact that it is a Markov process of the
first order and that the random variables {Xn} are identically distributed random variables. The ergodicity
of the PAR(1) process follows from the Lemma 2 ([12], pp. 408), the fact that the σ-algebra generated by
{Xn,Xn−1,Xn−2, . . . } is a subset of the σ-algebra generated by i.i.d. random variables {εn, εn−1, εn−2, . . . } and
the fact that

∩−∞
n=0 F {εn, εn−1, εn−2, . . . } is a tail σ-algebra.

Now, the asymptotical properties of the CLS estimators follow from the following theorem.

Theorem 4.7. If the PAR(1) process given by (4) has finite moments E(X4
n), then the CLS estimator θ̂ = (p̂, µ̂ε)T of

the parameter θ = (p, µε)T is a strongly consistent estimator and has asymptotical normal distribution, i.e. we have
that

√
N − 1(θ̂ − θ) converges in distribution toN(0,U−1RU−1), as N→∞, where

U =
[

µ2
εE (1 − Xn−1)2 µεE

(
(1 − Xn−1)(p + (1 − p)Xn−1)

)
µεE
(
(1 − Xn−1)(p + (1 − p)Xn−1)

)
E
(
p + (1 − p)Xn−1

)2 ]

R =
[

µ2
εE
(
νn(1 − Xn−1)2

)
µεE(νn(1 − Xn−1)(p + (1 − p)Xn−1))

µεE(νn(1 − Xn−1)(p + (1 − p)Xn−1)) E(νn(p + (1 − p)Xn−1)2)

]
and νn is a conditional prediction error of {Xn} given by

νn = p(σ2
ε + (1 − p)µ2

ε) − 2p(1 − p)µ2
εXn−1 + (1 − p)(pµ2

ε + σ
2
ε)X

2
n−1.

Proof. First, we will show that all the conditions of Theorem 3.1 [13] are satisfied. Let 1n = E(Xn|Xn−1).
Then 1n = µε(p + (1 − p)Xn−1) and the first derivatives of the function 1n with respect to p and µε are
∂1n/∂p = µε(1−Xn−1) and ∂1n/∂µε = p+ (1− p)Xn−1, respectively. Then all the conditions from Theorem 3.1
[13] except the condition C2 can be trivially proved. Let us show that the condition C2 is satisfied. Let us
suppose that

E
∣∣∣∣∣a1
∂1n

∂p
+ a2
∂1n

∂µε

∣∣∣∣∣2 = 0.

Then it follows that E
∣∣∣a1µε + a2p + (a2 − a2p − a1µε)Xn−1

∣∣∣2 = 0. From this condition we obtain that

a1µε + a2p + (a2 − a2p − a1µε)µX = 0
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and a2 − a2p− a1µε = 0, which implies that a1 = a2 = 0. Thus the condition C2 is satisfied and from Theorem
3.1 [13] follows that the CLS estimator θ̂ = (p̂, µ̂ε)T of the parameter θ = (p, µε)T is a strongly consistent
estimator. Finally, let us prove that the CLS estimator has asymptotical normal distribution. We have that
the conditional prediction error of {Xn} is given by

νn ≡ E
(
(Xn − 1n)2|Xn−1

)
= E(X2

n|Xn−1) − µ2
ε(p + (1 − p)Xn−1)2

= p(σ2
ε + (1 − p)µ2

ε) − 2p(1 − p)µ2
εXn−1 + (1 − p)(pµ2

ε + σ
2
ε)X

2
n−1.

Since the PAR(1) process given by (4) has finite moments E(X4
n), it follows that all the elements of matrix R

from the condition D1 ([13], Theorem 3.2) are finite. Thus all the conditions of Theorem 3.2 [13] are satisfied.
Then the asymptotical normality of the CLS estimator follows from Theorem 3.2 [13].
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