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Abstract. The paper is devoted to study of the inverse problem of the boundary spectral assignment of
the Sturm-Liouville with a delay.

-y’ (x) + g(x)y(a - x) = Ay(x), g€ AC[0,t], ¢ € (0,1] (1)

with separated boundary conditions:
y0)=y(m)=0 (2)

y0) =y (m)=0 (3

It is argued that if the sequence of eigenvalues is given )\5,1) and /\flz ) tasks (1-2) and (1-3) respectively,
then the delay factor @ € (0, 1) and the potential g € AC[0, 7] are unambiguous. The potential g is composed
by means of trigonometric Fourier coefficients. The method can be easily transferred to the case of @ = 1
i.e. to the classical Sturm-Liouville problem.

1. Introduction

Inverse problems in the spectral theory of operators, especially differential operators, have been studied
since the 1930s until now. The monographs [2, 5] deal with this topic. A separate chapter of this study
deals with the inverse tasks for the boundary problems of the generated equations with a delay. Papers [1,
3, 14, 15] are latest results in this field. Papers [4, 6, 7, 8,9, 10, 11, 12, 13] are devoted to this issue. Results in
these papers are obtained by solving the integral equation of Fredholm type. In order to make the solution
unique, strict conditions for the given parameters are imposed. In this paper, a different approach is used
and by means of the Fourier analysis method, a new solution to the inverse task has been found, which
improves previous solutions.
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2. Defining the task
We look at the boundary value problem
-y’ (x) +q()y(a-x) = Ay(x), g€ AC[0, 7], @ € (0,1) (1)

with separated boundary conditions:
y(0)=y(m) =0 (2)

When a = 1, theboundary value problem (1-2) is classical and as such it was studied in the mid-twentieth
century.

The coefficient & and the function g are called the parameters of the boundary task (1-2). The question
is: Which spectral characteristics of task (1-2) uniquely define the parameters o and 4? This paper gives an
answer to that question.

3. Solution to the direct spectral task

Equation (1) with the boundary condition y(0) = 0 is equivalent to the integral equation:

X
y(x,z) = sinzx + % f q(t) sinz(x — t)yy(at, z)dt; 2= (3)
0

X aty at_q l !
= , QM) = (t), dTy = | | dt;,
L=l g em=Tloe an=T]

1
Si(Ty) = | | sinz(at; — ti1)
1

i=

Let us introduce labels

Using the method of successive approximations to the equation (3) we obtain the solution in the form of

X

y(x,z) = sinzx + % fq(t) sinz(x — t) sin zatdt + Z ll fQ(TI) sinz(x — +1)S)(T}) sin zat,dT; 4)
z
0 =27y

Lemma 3.1. Function (4) is an entire function of variable z, Vx € [0, ].

Proof. Since ling y(x,z) =0, Yx € [0, ], point z = 0 is the apparent singularity. Members
z—

u(x,z) = lz ( )Q;(Tl)sin z(x — £1)S)(T;) sin zat;dT;
D[ X

1=2,3,...,of the series (4) are entire functions in C. [

Let us prove that the series (4) has uniform convergence on C, for each fixed x € [0, rt].

Since Qi(T7) = q(t1)q(t2) - - - q(t1), the equality is Qi(f1,t2, ..., 1) = Qi(tktx, - - - t,), where (kq,- - -, k;) is an
arbitrary permutation of the set {1,2, - - -, n}. From the theory of integral it is true that

X t f1-1 1 X X X ||q||l 0
J“f.“f Qmmq=hjﬁf.xfgmmﬂs SP?
0o Jo 0 PJo Jo 0 !

It is easy to check the inequality

|sinz(x — £1)S)(T;) sin zat;| < ™), x € [0, 7]
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Therefore, in each ring 6 < |z| < A, 0 < 6 < A < o it is true that

g\ 1 (lgll\ e
rlim@) . R LV
[ui(x, z)] < ™™ ( 5| s\ ) T

So, series (4) converges uniformly on each ring, and hence on C
For x = 7 from (4) we get the characteristic function

F(z,a) = sinmz+ 1fq(t) sin z(7t — t) sin zatdt

leffq(tl)q(tz)smz — 1) sinz(at; — tp) sin zat,dt,dt (5)
00
Z zl f Q(Ty) sinz(rt — +1)S;(T}) sin zatdT;
1=3 l
Function F is an entire function of the complex variable z according to Lemma 3.1
Theorem 3.2. If g € AC[O, ] and q’ € L,[0, 7t] zeros z, (), n € N of function (5) have an asymptotic shape
Ci(n, Ci(n,
Zn(a):i(n+ 1(nnzoz)+0( 1(:20())), n— oo (6)

where

Ci(n,a) = %(—1)“+1 sinnam + —— (_ )n (ns), s> !

Proof. We use the elementary relation

@)
Z, Q) fq(t) sin z(mt — t) sin zatdt = % fq(t) cosz(mt — (1 + a)t)dt — % fq(t) cosz(rt — (1 — a)t)dt
0 0
We perform a partial integration and we get
fq(t) sinz(n — f) sinzatdt = Z—z(él(a) sinzam — &y(a) sinzm)
0
, , 8)
1 Ag® _ _q® o
= of[l s sinz(mt — (1 + a)t) 1-a sinz(t — (1 — a)t) | dt
where ) 0)
T o
G0) = 1Ty, ) =1 )

We will use the label

L(z,q9,a) = f[lq,-l(-ti sinz(m — (1 + a)t) — 1q,_(tl sinz(nm — (1 - a)t)] dt
0

(10)
If we write (5) in the form of

1
F(z,a) = sinmz + le(z, a) + Az, a)
it is easy to check that

Az, a) = 0(214) Re(z) — oo (11)
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Using (8), (10) and (11) we obtain
. 1 . . 1 , 1
F(z,a) = sinniz + = (&1(a) sinzam — &y(a) sinmz) — —(z, 9, a) + O(—), Re(z) = oo (¥)
z2 272 z4

Since g’ € L,[0, rt] is, it is true that I,(z, ¢, a) = O(%), s> % The function F is odd, and from F(z,) = 0 it
follows that F(-z,) = 0. Suppose the zeros z, of function F have an asymptotic shape

Ci(n,a) N O(Cl(n,a)) 4 oo

zoy(@) =n + " p”

(12)
If we include sin iz, = (—1)" ﬂn_(il +o0 (%) and sin anz, = sinnamn + O (%) in () we will get

, N — 00

0=F(z,,a) = % [(—1)”71C1(n, a) + &1 (a) sinnam — %Iz(n, q’,a)] +0 (IZ(n'n—Z/'a))

Consequently,

&1

Cilm @) = %(—1)'“rl sinnam + =

21

IZ(”/ q’fa) (13)

This completes the proof. [J

Eigenvalues A, () of the task (1-2) are squares of zeros function F(z, a). It is therefore

An(@) = n? + % [—2511(0() (-=1)"* sin nam + (_71)” L(n,q, az)] +0 (—Iz(n,;]’,a)) (14)

Let us introduce the function 7 in the segment [, 7] as follows:
0, 0 € [-n, —amn)

1 ,(t—0
q0,0)=1{ (1 +a)2q (1+a)’ 0 € (—am, amn) (15)

(1 -rla)z’?’(qig)_ (1 _10()2’7'(711:2), 0 € (am, n)

Since g’ € L,[0, ] is, this equation (15) should be understood almost everywhere, i.e. at all points where
the derivative function g exists. Then there is a

Iz(n,q'a):f q(0)sinn0do6, q e Ly[-n, 7]

T

and (14) becomes

4y " 3(0)sinn6do
Mpla) = n® + % [@(-ﬂfrl sinnam + ) f q(0) sin nGdQ] + o[f_” 7O)sinn J (16)

Tt n

We ask: Does the given sequence of eigenvalues A,, n =0, 1,2,... uniquely determine the parameter of
delay a.

Theorem 3.3. If a sequence of eigenvalues of the task (1-2) with the asymptotic shape of the type (16), the coefficient
of delay a € (0, 1) is unambiguously determined.
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Proof. Let us consider sequences AyA, and A1 A, defined with

Moy = [z = (1 +2721(n +2) = [Ayz = (n = 2°](n - 2) (17)
and

Ay = g1 = 1+ 12](n + 1) = [Ayr = (1 = 17](n = 1) (18)
Based on (16) it applies that

MA, = 251( 1) sin(n + 2)an — sin(n — 2)an] + O( ! )

MA, = %( 1)*[sin(n + 1)am — sin(n — 1)an] + O(%)

i.e.

151

MA, = (=D cos namsin2am + O (nl )

1
AMA, = (- 1)" ! cosnamsinan + O (7’15)

Let us choose the subsequence 1 of the sequence 1, n € N where AjA,, # 0. Then the sequence

AA,, = Bodw _ —cosan+O(l) k=1,2
Nk A]/\nk_ ns 7 — Ly &yee-
is well defined. It also applies that
cosarm = —]}im AAy, =d
Since the d € (-1, 1) it follows that
1
a= - arccosd and «a € (0,1) (19)

This proves the determination of coefficient a.
Next, let us take the subsequence 2k;—1, (I € N) of the sequence of odd integers such that sin(2k; — 1)amn #
0 (VI € N). Then from (16) it easily follows that

Y n(2k - 1) (or 12
1= 1152 2sin(2k; — 1)an (21 = @k =17,
so that
g(n) = (1 - a?)&;.

Thus, the asymptotic sequence A, uniquely determines the numbers a and g(m).

Let us analyze the direct task (1-2) further in order to observe the determination of potential g based on
the given sequence of numbers A,, n € Ny which has the asymptotic shape of type (16).

The entire function (5) can be represented by its zeros +z,, n € Ny in the form of an infinite product.

2

F(z,a)=Azﬁ(1——)= ﬁ)\_ ﬁ[(l_%)Jr/\nn_znz]

n=1

where A is indefinite parameter. If we put B = %‘ I X—n, then we have

n=1 j=1 n#j 1=2 j1<jp<-<ji n#j,.

e [I0-5) EII0-5)5 -5 £ PRI
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© 4 9
= B[sinnz+(2 %]sinnzntgb(z,a)], zeC\Z

n=1
From (5) and (20) it follows that B =1, i.e.

We will continue to use these labels

&(z,a) = i

1=2 1<j1<jp<<jy @

™
—-
S|
K
N
m
(@)
—
N

I
—_

Y(z, @) = &(z, ) sin Tz

(]

Si@ =) (Au =1

n=1

Si(a) = i (/\n —n? - @)

n=1

bm@n):f q(6) sinm6do

aT

am(q, 1) = f 4(6) cos mOdo

Bu(q, k) = k f " b,(q, 6)shk6dO

aT

an(@ k) =k f a,1(7, 0)chkOdo

QAT

Using (21) the equation (20) becomes

0 22
- IAn —-nz ( n=1 n2 )zrgji( )\ )
Z = -1-&(z,a), zeC\Z
n2 —z2 sin 7tz

n=1

By analogy with the Levitan transformation in [9], we write

=) 2 0 /\ 2 Cl(n a) [}
Ap—n® n- Ci(n,a)
; n2—z2 ; —z2 +;n(n2—zz)
v G 1, 1 v , Ci(na)\ n?
B Z nm2-z2) 22 Za@ 2 Z (A" Ty n? — z2

n=1 n=1

Since g € Ly[-7, 7], it is true that

I ﬁ(e)smnede:o(%), s>%

aTt

1242

(20)

(21)

(22)

(23)
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so,

/\n —7’12 _ Cl(Z/a) — O(l)

n2

Therefore, it is

1 w Cin,a n? 1 1 1/1 T COSTIZ ctgmz
72(%—#—%) ~_Z—=Z_(_——, ):o(g ),Z—)oo (24)

n2—z2 z2 n2 — z2 2\2z2  2zsinmz z3

Furthermore, based on the known relations

Z (- 1)’“r1 cosnx _ mcoszx 1
- 72 T 2zsinmz 222

by means of integration we get

n+1 o3
Z( 1) sinnx _ T zx—i (25)

n(n? — z2) 22sinmz 272

Based on (24) and (25) we obtain

® A, —n? Si(@msinanz  anéi(a)
= - d
n§1 n? — z2 222 sinz | 222 2z 2_!; 0q(0)d0 26)
. tgriz
Z2sinnz b:q,m) - —Sl(a)+O( z3 )' (2= o)

The first forced regularized trace of the operator (1-2) is obtained analogously to the calculation of the
first trace (see (9)) and it is true that

Si(a) = anézl(a)

1 (™
v+ 1 [ omoo @)
On the basis of (20), (21), (26) and (27), we come to the relation
2

(o] /\n (o] Z
nHF-z (1—A—)—smnz
n= n=

n

COS Ttz

(=22%) = 2&, -sinmz = q(@ a) sinz0do + O( ) (z > o) (28).

Relation (28) has a central role in this paper. Namely, it connects the given sequence of eigenvalues A,
T
of the operator (1-2) with the function f 4(0, @) sin z0d0 which is the generator of Fourier coefficients of the
-n
auxiliary function g in the segment [, 7t].
Putting z; = 4k + § and letting k — oo, from (28) we get

cmepmo T - 22

As o is already determined, we have

Thus, the left side of (28) is a known entire function in the whole complex plane. Its asymptotic behavior
will have a key role on straight lines z = m + ik, k — +o0, m € Nj.
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Let us introduce the following real sequences

= > 21
e H(l 7, kz) DS el (1 S kz) 29)

n=1 1<ki<...<ky s=1 ks n#ky..ky
) 21-1
2mk m? — k?
_ -1
I E R -
=1 Ik <okt 5=1 76 sk o "

For z = m + ik, the left side of (28) becomes

Upg + Vs = {(—2n) 0l %{(nﬁ 3ty — Bk — kYo i] + 2(=1)" ik shkn} -
n=1

+i{(1m® = 3mk?)0y, . + (31K = k)it + 2(m? = k? = &)(~1)" shkr)
Using tags (22) the right side of (28) takes the form of

ik

Chkﬂf q(0, ) sinmOdo — ‘Bm(~k)+1(shknf q(0, @) cos mOdO — amrk))+O( kzchkn) (32)

From (31) and (32) it follows that

U um

f q(0, a) sinmBdo = hm chkk meN (33)
" mG

f 4(6, ) cos m6d6 = lim ==, m € Ny (34)

A more detailed analysis of the coefficients structurea,, = f q(0, @) cos mOd6 and by, = f q(0, @) sinm6do

=Tt

nm — o9,

W)

1 1 -
Let us put a,, = —a,,, b,, = —b;,. In the points of a continuous function g at (-, ) it is true that
i i

may prove that it is true thata,, = o (L) and b, = o (L
i

— _ ap - .
70 =7 + mz‘ﬂ 4y, COS MO + by sin mO (35)
According to (15) this means that
’ 20 2 m 2 m+1 1-a
g@) =0+ az) 0 Z(l +a) (-1)"cosm(l + a)x + (1 + a)*(-1)" b, sinm(l + a)x, x¢€ (mn, n) (36)

and

, T+ay  (l1+a _ >0
10 -(7=) 7 (7o) = e

) 2 m . 1-a (37)
+ mZ:1(1 + a)*(-1)"[ay cosm(1 + a)x — by, sinm(l + a)x], xé€ (o, mn)

1-a o (1—a\*' (1-ay
Since (O, —n) = U ( ) n,(—) nt), for I = 1, the function ¢’ is defined on the interval
1+a 1+a l1+a

T-ay  (1-
t Zx) is known. So, with (36) the function g'(x), x € (( oc) T (_oz) n) is

1-a _ 1
( o ),and1n(37)q(1 1+a) "\1+a

1+a
defined.
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1 _ 1+1 1 _ 1
Applying the procedure of expressing function values ¢’ on the interval (( " Z) T, (ﬁ) n) by its

1—a\ 1— g\
values on the interval (( o Z) I, (ﬁ) n), I € N and the relation (36), we conclude that the function g’

is uniquely determined in terms of metric in L,[0, r]. As the values of the function 4 in points x = 0 and
x = 7 are known from the asymptotic sequence A,, thus the values in the interval (0, 1) are obtained by the
integration series (36) and (37).

The previous discussion proves the main result. [

Inversion theorem 3.4. Given the sequence of eigenvalues A, of the operator (1-2), its identification components o
and q are uniquely determined.

Comment. The described method of solving the inverse task for the operator D(a), @« € (0,1) is also
applicable to the case D = D(0), i.e. the classical Sturm-Liouville spectral task.
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