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Abstract. We extend the notion of anti-invariant and Langrangian Riemannian submersion to the case
when the total manifold is nearly Kaehler. We obtain the integrability conditions for the horizontal distri-
bution while it is noted that the vertical distribution is always integrable. We also investigate the geometry
of the foliations of the two distributions and obtain the necessary and sufficient condition for a Langrangian
submersion to be totally geodesic. The decomposition theorems for the total manifold of the submersion
are obtained.

1. Introduction

The study of Riemannian submersion π of a Riemannian manifold M onto a Riemannian manifold B
was initiated by B. O’Neill (cf. [7], [8]) and then A. Gray [5]. A submersion naturally gives rise to two
distributions, called the vertical distribution and the horizontal distribution, of which the vertical distri-
bution is always integrable giving rise to the fibres which are closed submanifolds of the ambient space.
Later many researchers considered such submersions between manifolds with differentiable structures.
Namely, B. Watson [11] defined almost Hermitian submersions between almost Hermitian manifolds and
proved that in most cases the base manifold and fibers have the same structures as that of the ambient
space. Almost Hermitian submersions were further extended to almost contact manifolds [3] and locally
conformal Kaehler manifolds [6].

Let M be a complex m-dimensional almost Hermitian manifold with Hermitian metric 1 and almost
complex structure J and B be a complex n-dimensional almost Hermitian manifold with Hermitian metric
1B and almost complex structures J′. A Riemannian submersion π : M → B is called an almost Hermitian
submersion if π is an almost complex mapping , i.e., π∗ ◦ J = J′ ◦ π∗. The main outcome of this concept
is that the both vertical and horizontal distributions are invariant under J. Escobales [4] studied that the
Riemannian submersion from complex projective space onto a Riemannian manifolds by considering the
fibers to be connected, complex, totally geodesic submanifold. Which, in fact, also implies that the vertical
distribution is invariant under the almost complex structure.
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Recently, B. Sahin [10] has introduced the notion of Riemannian submersion from an almost Hermitian
manifold to Riemannian manifold under the assumption that fibers are anti-invariant with respect to the
complex structure of the almost Hermitian manifold. Therefore, this assumption implies that the horizontal
distribution is not completely invariant under the action of the complex structure of the total space of such
a submersion. He called this submersion as the anti-invariant Riemannian submersion. In fact, he studied
anti-invariant Riemannian submersions from Kaehler manifolds to Riemannian manifolds. In general, the
almost Hermitian submersions are used to describe the geometry of the base manifolds, while the anti-
invariant Riemannian submersions, serve to describe the geometry of total space. It is also noted that the
geometry of anti-invariant Riemannian submersions completely differs from that of the geometry of almost
Hermitian submersions.

It is well known that every Kaehler manifold is a nearly Kaehler manifold but converse is not in
general true. For example, the 6-dimensional sphere S6 with canonical almost complex structure is nearly
Kaehler but it is not Kaehler manifold. In fact, for the converse to hold it is necessary that the almost
complex structure J should be integrable. A. Gray [5] pointed that like Kaehler manifolds, nearly Kaehler
manifolds also have rich geometrical as well as topological properties. It is, therefore, interesting to study
the anti-invariant Riemannian submersions from nearly Kaehler manifolds.

In section 2, we recall the basic definitions, notations and some results of submersion which we use
in the later sections and define the second fundamental form. In section 3, we study the submersion π and
obtain several results. Section 4 is devoted to the study of geodesicness of the foliations of two distributions
and obtain several equivalent conditions. In particular, we prove one of our main results:

Theorem 4.3. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J)
to a Riemannian manifold (B, 1B). Then, the following assertions are equivalent to each other

(a) (kerπ∗) defines a totally geodesic foliation on M.
(b) 1B((∇π∗)(V, JX), π∗ JW) = −1(PWV,CX) − 1(QWV,BX).
(c) 1(TVBX +ACXV, JW) = 1(PWV,CX) + 1(QWV,BX),

for any X ∈ Γ(kerπ∗)⊥ and V,W ∈ Γ(kerπ∗).

Also in this section we define totally geodesic map and prove:

Theorem 4.4. Let π be a Langrangian Riemannian submersion from an almost Hermitian manifold (M, 1, J)
to a Riemannian manifold (B, 1B). Then π is totally Geodesic map if and only if

TV JW = QVW

and
AX JW = QXW,

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

In section 5, we define different type of product manifolds and obtain decomposition theorems on the
total space of the submersion. We, in particular, prove one of the main results:

Theorem 5.2. Let π be Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then M is a twisted product manifold of the form M(kerπ∗)⊥ × f M(kerπ∗) if and
only if

TV JX = −1(X,TVV)∥V∥−2JV − PXV,

and
AX JY = PXY
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for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗), where M(kerπ∗)⊥ and M(kerπ∗) are integral manifolds of the
distributions (kerπ∗)⊥ and (kerπ∗) respectively.

2. Preliminaries

In this section, we recall the notions of almost complex structure, the notion of Riemannian submer-
sions between Riemannian manifolds and give a brief review of basic facts of Riemannian submersions.
For the notion of submersion we follow B. O’ Neill [7] while for anti-invariant Riemannian submersions we
have taken extracts from B. Sahin [10].

An almost complex structure on a smooth manifold M is a smooth tensor field J of type(1,1) with the
property that J2 = −I. A smooth manifold equipped with such an almost complex structure is called an
almost complex manifold. An almost complex manifold is necessarily orientable and is of even dimension.
An almost complex manifold (M, J) endowed with a chosen Riemannian metric 1 and satisfying

1(JX, JY) = 1(X,Y), (2.1)

for all X,Y ∈ Γ(TM), is called an almost Hermitian manifold. The Levi-Civita connection ∇ of the almost
Hermitian manifold M can be extended to the whole tensor algebra on M, and in this way we obtain tensor
fields like (∇X J) and that

(∇X J)Y = ∇X JY − J∇XY, (2.2)

for all X, Y ∈ Γ(TM).
An almost Hermitian manifold M is called Kaehler manifold if

(∇X J)Y = 0, (2.3)

and is called nearly Kaehler manifold if

(∇X J)Y + (∇Y J)X = 0, (2.4)

for all X,Y ∈ Γ(TM).

Let (M, 1) and (B, 1B) be two Riemannian manifolds with dim(M) = m, dim(B) = n and m > n. A
Riemannian submersion π : M→ B is a map of M onto B satisfying the following axioms:

(S1) π has maximal rank,

that is, each derivative map π∗ of π is onto and hence, for each b ∈ B, π−1(b) is a submanifold of M of
dimension= dimM− dimB. The submanifolds π−1(b) are called fibers. A vector field on M is called vertical
vector field if it is always tangent to fibers and it is called horizontal if it is always orthogonal to fibers.

The second axiom may now be stated in the following form:

(S2) The differential π∗ preserves the length of the horizontal vectors.

If the submersions are considered as the generalization to an isometry M→ B to the case dimM ≥dimB,
then the notion bears a comparison with the generalization to dimM ≤dimB, that is, with an isometric im-
mersion. The behavior of immersion is described by a single tensor, the second fundamental form while
for a submersion two such tensors are defined, one of which is the second fundamental form of all the fibers.

A vector field X on M is called basic if X is horizontal and is π related to a vector field X∗ on B, that
is, π∗Xp = X∗π(p) for all p ∈ M.We denote by (kerπ∗) and (kerπ∗)⊥ the vertical and horizontal distribution on
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M. Also note that we denote the projection morphisms on the distributions (kerπ∗) and (kerπ∗)⊥ byV and
H respectively. The letters U, V, W will always denote vertical vector fields and X, Y, Z horizontal vector
fields.

We recall the following lemma from O’Neill [7]:

Lemma 2.1. Let π : M→ B be a Riemannian submersion between Riemannian manifolds and X,Y be basic
vector fields on M, then

(a) 1(X,Y) = 1B(X∗,Y∗)oπ.
(b) H[X,Y] of [X,Y] is a basic vector field and corresponds to [X∗,Y∗], i.e., ([X,Y]H ) = [X∗,Y∗].
(c) [V,X] is vertical, for any vector V ∈ Γ(kerπ∗).

(d) (∇XY)H is the basic vector field corresponding to ∇∗X∗Y∗,where ∇∗ is a Levi-Civita connection on B.

The geometry of Riemannian submersions is characterized by O’Neill’s tensor T and A defined for
any arbitrary vector fields E and F on M by

AEF = H∇HEVF +V∇HEHF (2.5)

TEF = H∇VEVF +V∇VEHF, (2.6)

where ∇ is the Levi-Civita connection on M. The tensors T serves as the second fundamental form of the
fibers and hence, it is easy to see that a Riemannian submersion π : M→ B has totally geodesic fibers if and
only if T vanishes identically. For any E ∈ Γ(TM), TE andAE are skew symmetric operators on (Γ(TM), 1)
reversing the horizontal and the vertical distributions. It is also easy to see that T is vertical, i.e., TE = TVE
andA is horizontal, i.e.,AE = AHE.We note that the tensor fields T andA satisfy

TUW = TWU, ∀ U,W ∈ Γ(kerπ∗) (2.7)

AXY = −AYX =
1
2
V[X,Y], ∀ X,Y ∈ Γ(kerπ∗)⊥. (2.8)

(2.8) shows thatA is necessarily the integrability tensor of the horizontal distribution (kerπ∗)⊥on M.

On the other hand, from (2.5) and (2.6) we have the following lemma:

Lemma 2.2 [7]. Let X, Y be horizontal vector fields and V, W vertical vector fields. Then

1. ∇VW = TVW + ∇̂VW,

2. ∇VX = H∇VX + TVX,

3. ∇XV = AXV +V∇XV,

4. ∇XY = H∇XY +AXY,

where ∇̂VW =V(∇VW). Furthermore, if X is basic,H(∇VX) = AXV.

Finally, we recall the second fundamental form of a map between Riemannian manifolds [1]. Let (M, 1)
and (B, 1B) be Riemannian manifolds and suppose that ϕ : M → B be a smooth map between them. Then
the differential ϕ∗ of ϕ can be viewed as a section of the bundle Hom(TM, ϕ−1(TB)) → M, where ϕ−1(TB)
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is the pullback bundle which has fibers (ϕ−1(TB))p = Tϕ(p)B, p ∈ M. Hom(TM, ϕ−1(TB)) has a connection ∇
induced from Levi-Civita connection ∇M and the pullback connection. The second fundamental form ϕ is
then given by

(∇ϕ∗)(X,Y) = ∇ϕXϕ∗(Y) − ϕ∗(∇M
X Y) (2.9)

for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second fundamental form is
symmetric.

3. Integrability Conditions

In this section, we define anti-invariant Riemannian submersions and Langrangian Riemannian sub-
mersions and study the geometry of distributions (kerπ∗) and (kerπ∗)⊥ and obtain the integrability conditions
for the distribution (kerπ∗)⊥ for such submersions.

Definition 3.1. [10] A Riemannian submersion π from an almost Hermitian manifold (M, 1, J) to a Riemannian
manifold (B, 1B) such that (kerπ∗) is anti-invariant with respect to J i.e., J(kerπ∗) ⊆ (kerπ∗)⊥, is called an anti-invariant
Riemannian submersion .

Let π : (M, 1, J)→ (B, 1B) be an anti-invariant Riemannian submersion from an almost Hermitian manifold
M to a Riemannian manifold B. From the above definition, we see that J(kerπ∗)⊥ ∩ (kerπ∗) , {0} and hence
we have,

(kerπ∗)⊥ = J(kerπ∗) ⊕ µ, (3.1)

where µ denote the orthogonal complementary distribution to J(kerπ∗) in (kerπ∗)⊥ and it is invariant under
J. Thus, for X ∈ Γ(kerπ∗)⊥ we have

JX = BX + CX, (3.2)

where BX ∈ Γ(kerπ∗) and CX ∈ Γ(µ).

On the other hand, since π∗((kerπ∗)⊥) = TB and π is a Riemannian submersion, using (3.2) it can be
shown that 1B(π∗ JV, π∗CX) = 0, for any X ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗) which implies that

TB = π∗(J(kerπ∗)) ⊕ π∗(µ). (3.3)

Now, we prove

Lemma 3.1. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a Rie-
mannian manifold (B, 1B). Then

(i) 1(CY, JV) = 0, (3.4)

(ii) 1(∇XCY, JV) = −21(CY, JAXV) + 1(CY,TVBX) + 1(CY,ACXV), (3.5)

for any X,Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Proof. (i) For Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗), using (3.2) we have

1(CY, JV) = 1(JY, JV) − 1(BY, JV)

= 1(JY, JV),
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since, BY ∈ Γ(kerπ∗) and JV ∈ Γ(kerπ∗)⊥.

But from (2.1), 1(JY, JV) = 1(Y,V) = 0 and hence we get (3.4).

(ii) On using (2.2), (2.4), (3.4) and Lemma 2.2 for X,Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗),we have

1(∇XCY, JV) = −1(CY,∇X JV)

= −1(CY, J∇XV) + 1(CY, (∇V J)X)

= −1(CY, JAXV) + 1(CY,∇V(BX + CX)) − 1(CY, JAXV)

= −21(CY, JAXV) + 1(CY,∇VBX) − 1(CY, [V,CX] + ∇CXV)

Since [V,CX] ∈ Γ(kerπ∗), hence we get

1(∇XCY, JV) = −21(CY, JAXV) + 1(CY,TVBX) + 1(CY,ACXV),

which completes the proof.

Note: Whenever it is need we have supposed the horizontal vector field to be basic.

For any arbitrary tangent vector fields E and F on M, we set

(∇E J)F = PEF +QEF, (3.6)

where PEF (respectively QEF) denote the horizontal (respectively vertical) part of (∇E J)F.

For a Kaehler manifold M, we have

P = Q = 0, ∀ E, F ∈ Γ(TM). (3.7)

If M is a nearly Kaehler manifold, then it can be easily checked that both P and Q are anti-symmetric in E
and F, i.e.

PEF = −PFE and QEF = −QFE. (3.8)

Using (3.6), we prove the following:

Lemma 3.2. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then we have

1(∇XCY, JV) = −1(CY, JAXV) − 1(CY,PXV) (3.9)

for any X,Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Proof. For X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗), using (2.2) we have

1(∇XCY, JV) = −1(CY,∇X JV)

= −1(CY, (∇X J)V) − 1(CY, J∇XV).
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The result then follows from (3.6) and Lemma 2.2.

From Lemma 3.1 and Lemma 3.2, it follows:

Proposition 3.1. Let π be an anti-invariant Riemannian submersion from nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then

1(CY,PXV) = 1(CY, JAXV) − 1(CY,ACXV) − 1(CY,TVBX), (3.10)

for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Now, for the integrability of the distribution (kerπ∗)⊥ we have

Theorem 3.1. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then the following assertions are equivalent to each other

(a) (kerπ∗)⊥ is integrable.
(b) 1B((∇π∗)(Y,BX) − (∇π∗)(X,BY), π∗ JV) = 1(CY, JAXV) + 1(CY,PXV)

− 1(CX, JAYV) − 1(CX,PYV) + 21(PXY, JV).
(c) 1(AXBY −AYBX, JV) = 1(CY, JAXV) + 1(CY,PXV)

− 1(CX, JAYV) − 1(CX,PYV) + 21(PXY, JV),

for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Proof. For Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗), we see from definition 3.1, JV ∈ (kerπ∗)⊥ and JY ∈ kerπ∗ ⊕ µ. For
X ∈ Γ(kerπ∗)⊥, using (2.1) and (2.2) we get

1([X,Y],V) = 1(J[X,Y], JV)

= 1(∇X JY, JV) − 1((∇X J)Y, JV) − 1(∇Y JX, JV) + 1((∇Y J)X, JV)

Further, by using (2.9), (3.2), (3.8) and Lemma 3.2, we obtain

1([X,Y],V) = 1(∇XBY, JV) − 1(∇YBX, JV)

+ 1(∇XCY, JV) − 1(∇YCX, JV) − 1(PXY, JV) + 1(PYX, JV)

= 1B(π∗∇XBY, π∗ JV) − 1B(π∗∇YBX, π∗ JV)

+ 1(∇XCY, JV) − 1(∇YCX, JV) − 21(PXY, JV)

= 1B((∇π∗)(Y,BX) − (∇π∗)(X,BY), π∗JV) − 1(CY, JAXV)

− 1(CY,PXV) + 1(CX, JAYV) + 1(CX,PYV) − 21(PXY, JV).

Hence, (kerπ∗)⊥ is integrable if and only if

1B((∇π∗)(Y,BX) − (∇π∗)(X,BY), π∗ JV) = 1(CY, JAXV) + 1(CY,PXV)

− 1(CX, JAYV) − 1(CX,PYV) + 21(PXY, JV),
(3.11)
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which shows that (a)⇔ (b).

On the other hand, by using (2.9) and Lemma 2.2, we obtain

(∇π∗)(Y,BX) − (∇π∗)(X,BY) = −π∗(∇YBX − ∇XBY)

= π∗(AXBY −AYBX). (3.12)

Hence, (3.11) and (3.12) shows that (b)⇔ (c).

Definition 3.2. [10] An anti-invariant Riemannian submersionπ is said to be Langrangian Riemannian submersion
if J(kerπ∗) = (kerπ∗)⊥. If µ , {0} in (3.1), then π is said to be a proper anti-invariant Riemannian submersion.

For a Langrangian Riemannian submersion, we have the following corollary:

Corollary 3.1. Let π : (M, 1, J)→ (B, 1B) be a Langrangian Riemannian submersion from a nearly Kaehler manifold
(M, 1, J) onto a Riemannian manifold (B, 1B). Then the following assertions are equivalent to each other

(a) (kerπ∗)⊥ is integrable,
(b) 1B((∇π∗)(Y, JX) − (∇π∗)(X, JY), π∗ JV) = 21(PXY, JV),
(c) AX JY −AY JX = 2PXY,

for any X,Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Since P = 0 if M is a Kaehler manifold, then Theorem 3.1 and Corollary 3.1 reduces to Theorem 3.1
and Corollary 3.1 of B Sahin [10].

Since, the vertical vector fields are π-related to zero vectors. It is noted that the vertical distribution is
integrable.

We now have

Theorem 3.2. Let π be an anti-invariant Riemannian submersion from nearly Kaehler manifold (M, 1, J) to a Rie-
mannian manifold (B, 1B), then we have the following

(a) 1B((∇π∗)(W, JV) − (∇π∗)(V, JW), π∗CX) = 21(PVW,CX) + 21(QVW,BX),

(b) 1(AJWV −AJVW,CX) = 21(PVW,CX) + 21(QVW,BX),

for any X ∈ Γ(kerπ∗)⊥ and V,W ∈ Γ(kerπ∗).

Proof. For any X ∈ Γ(kerπ∗)⊥ and V,W ∈ Γ(kerπ∗), using (2.1), (2.4) and (3.2) we have

1([V,W],X) = 1(J[V,W], JX)

= 1(∇V JW, JX) − 1(∇W JV, JX) − 21((∇V J)W, JX)

Now using (2.9), we get

1([V,W],X) = −1B((∇π∗)(V, JW), π∗CX) + 1B((∇π∗)(W, JV), π∗CX)

− 21(PVW, JX) − 21(QVW, JX)



S. Ali, T. Fatima / Filomat 27:7 (2013), 1219–1235 1227

Since (kerπ∗) is integrable, we get

1B((∇π∗)(W, JV) − (∇π∗)(V, JW), π∗CX) = 21(PVW, JX) + 21(QVW, JX). (3.13)

On the other hand, using (2.9) we have

(∇π∗)(W, JV) − (∇π∗)(V, JW) = π∗(∇V JW) − π∗(∇W JV)

= π∗(AJWV −AJVW). (3.14)

From (3.13) and (3.14), we get (b).

Next, we have

Theorem 3.3. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then we have

(a) 1B((∇π∗)(V, JX), π∗ JW) − 1B((∇π∗)(W, JX), π∗ JV) = 21(PVW,CX) + 21(QVW,BX).

(b) 1(JV,TWBX) − 1(JW,TVBX) + 1(JV,ACXW) − 1(JW,ACXV) = 21(PVW,CX) + 21(QVW,BX),

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

Proof. Since (kerπ∗) is integrable then for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗) using (2.1), (3.2), (3.8) and
(2.9), we have

0 = −1(∇VBX, JW) − 1(∇VCX, JW) + 1(∇WBX, JV) + 1(∇WCX, JV) − 21(PVW,CX) − 21(QVW,BX)

= 1B((∇π∗)(V,BX), π∗ JW) + 1B((∇π∗)(V,CX), π∗ JW) − 1B((∇π∗)(W,BX), π∗ JV)
−1B((∇π∗)(W,CX), π∗ JV) − 21(PVW,CX) − 21(QVW,BX),

(3.15)
Since, ∇πVπ∗X = 0, we get (b).

On the other hand by using Lemma 2.2 and (3.2) in the above calculation, we have

0 = 1(∇V JW, JX) − 1(∇W JV, JX) − 1((∇V J)W, JX) − 1((∇W J)V, JX)

= −1(∇V JX, JW) + 1(∇W JX, JV) − 21(PVW,CX) − 21(QVW,BX)

= −1(∇VBX, JW) − 1(∇VCX, JW) + 1(∇WBX, JV) + 1(∇WCX, JV) − 21(PVW,CX) − 21(QVW,BX)

= −1(TVBX, JW) − 1(ACXV, JW) + 1(TWBX, JV) + 1(ACXW, JV) − 21(PVW,CX) − 21(QVW,BX)

which gives (b).

For a Langrangian Riemannian submersion, from Theorem 3.3 we have following corollary:
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Corollary 3.2. Let π be Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a Rieman-
nian manifold (B, 1B). Then we have

(a) 1B((∇π∗)(V, JX), π∗ JW) − 1B((∇π∗)(W, JX), π∗ JV) = 21(QVW, JX).

(b) 1(TW JX, JV) − 1(TV JX, JW) = 21(QVW, JX).

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

For the case of Kaehler manifold, we have the following results:

Theorem 3.4. Let π be an anti-invariant Riemannian submersion from a Kaehler manifold (M, 1, J) to a Riemannian
manifold (B, 1B), then we have

(a) 1B((∇π∗)(W, JV), π∗CX) = 1B((∇π∗)(V, JW), π∗CX),

(b)AJWV −AJVW ∈ J(kerπ∗),

for any X ∈ Γ(kerπ∗)⊥ and V,W ∈ Γ(kerπ∗).

Proof. For any X ∈ Γ(kerπ∗)⊥ and V,W ∈ Γ(kerπ∗), using (2.1), (2.4) and (2.9) we have

1([V,W],X) = 1(∇V JW, JX) − 1(∇W JV, JX)

= −1B((∇π∗)(V, JW), π∗CX) + 1B((∇π∗)(W, JV), π∗CX)

Since (kerπ∗) is integrable, we get

1B((∇π∗)(W, JV), π∗CX) = 1B((∇π∗)(V, JW), π∗CX) (3.18)

On the other hand using (2.9), we have

(∇π∗)(W, JV) − (∇π∗)(V, JW) = −π∗(∇W JV) + π∗(∇V JW)

= π∗(AJWV −AJVW). (3.19)

From (3.18) and (3.19), we get (b).

Next, we have

Theorem 3.5. Let π be an anti-invariant Riemannian submersion from a Kaehler manifold (M, 1, J) to a Riemannian
manifold (B, 1B). Then we have

(a) 1B((∇π∗)(V, JX), π∗ JW) = 1B((∇π∗)(W, JX), π∗ JV).

(b) 1(TVBX, JW) − 1(TWBX, JV) = 1(ACXW, JV) − 1(ACXV, JW)

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).
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Proof. For any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗), we have

0 = 1([V,W],X)

= −1(∇V JX, JW) + 1(∇W JX, JV)

= 1B((∇π∗)(V, JX), π∗JW) − 1B((∇π∗)(W, JX), π∗ JV),

which gives (a).

On the other hand, using (2.3) and Lemma 2.2, we have

0 = 1([V,W],X)

= −1(∇V JX, JW) + 1(∇W JX, JV)

= −1(TVBX, JW) − 1(ACXV, JW) + 1(TWBX, JV) + 1(ACXW, JV),

which gives (b).

For Langrangian Riemannian submersion, we have following corollary;

Corollary 3.3. Let π be Langrangian Riemannian submersion from a Kaehler manifold (M, 1, J) to a Riemannian
manifold (B, 1B). Then we have

(a) 1B((∇π∗)(V, JX), π∗ JW) = 1B((∇π∗)(W, JX), π∗ JV).

(b) TV JW = TW JV,

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

4. Totally Geodesic Foliations

In this section, we study the foliations of the two distributions and obtain the equivalent conditions
for totally geodesicness. We have the following characterizations:

Theorem 4.1. Let π be an anti-invariant Riemannian submersion from nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then the following assertions are equivalent to each other

(a) (kerπ∗)⊥ defines a totally geodesic foliation on M.
(b) 1(AXBY, JV) = 1(CY, JAXV) + 1(CY,PXV) + 1(PXY, JV).
(c) 1B((∇π∗)(X, JY), π∗ JV) = −1(CY, JAXV) − 1(CY,PXV) − 1(PXY, JV),

for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Proof. For any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗) using (2.1), (3.2), Lemma 2.2 and Lemma 3.2, we have

1(∇XY,V) = 1(∇XBY, JV) + 1(∇XCY, JV) − 1((∇X J)Y, JV)

= 1(AXBY, JV) − 1(CY, JAXV) − 1(CY,PXV) − 1(PXY, JV),

it follows (a)⇔ (b).
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Now, by using (2.9) we have

1(AXBY, JV) = 1(∇X JY, JV) − 1(∇XCY, JV)

= −1B((∇π∗)(X, JY), π∗ JV) + 1B(∇πXπ∗(JY), π∗ JV) − 1(∇XCY, JV)

= −1B((∇π∗)(X, JY), π∗ JV) + 1(∇XCY, JV) − 1(∇XCY, JV)

= −1((∇π∗)(X, JY), π∗ JV),

which shows (b)⇔ (c).

For Langrangian Riemannian submersion, we have

Corollary 4.1. Let π be a Langrangian Riemannian submersion from nearly Kaehler manifold (M, 1, J) to a Rieman-
nian manifold (B, 1B). Then the following conditions are equivalent to each other

(a) (kerπ∗)⊥ defines a totally geodesic foliation.
(b) AX JY = PXY.
(c) 1B((∇π∗)(X, JY), π∗ JV) = 1(PYX, JV),

for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

For the totally geodesicness of the foliations of (kerπ∗), we have

Theorem 4.2. Let π be an anti-invariant Riemannian submersion from an almost Hermitian manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then, the following assertions are equivalent to each other

(a) (kerπ∗) defines a totally geodesic foliation on M.
(b) 1B((∇π∗)(V, JX), π∗ JW) = 1(PVW,CX) + 1(QVW,BX).
(c) 1(TVBX +ACXV, JW) = −1(PVW,CX) − 1(QVW,BX),

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

Proof. For any V,W ∈ Γ(kerπ∗) and X ∈ Γ(kerπ∗)⊥, using (2.1) we have

1(∇VW,X) = −1(JW,∇V JX) − 1((∇V J)W, JX).

The Riemannian submersion π and (2.9) imply that

1(∇VW,X) = 1B((∇π∗)(V, JX), π∗ JW) − 1(∇πVπ∗(CX), π∗CX) − 1(PVW,CX) − 1(QVW,BX). (4.1)

Hence, (kerπ∗) defines a totally geodesic foliation on M if and only if

1B((∇π∗)(V, JX), π∗ JW) = 1(PVW,CX) + 1(QVW,BX), (4.2)

which shows that (a)⇔ (b).
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Using (2.9) we derive
1B(π∗ JW, (∇π∗)(V, JX)) = −1B(π∗ JW, π∗∇V JX).

Since, π is a Riemannian submersion by using (3.2) we have

= −1(JW,∇V JX)

= −1(JW,∇VBX + [V,CX] + ∇CXV)

Since [V,CX] ∈ Γ(kerπ∗), by using Lemma 2.2 we get

1B(π∗ JW, (∇π∗)(V, JX) = −1(JW,TVBX +ACXV). (4.3)

The result then follows from (4.2) and (4.3).

For Langrangian Riemannian submersion we have following corollary:

Corollary 4.2. Let π be a Langrangian Riemannian submersion from an almost Hermitian manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then the following conditions are equivalent

(a) (kerπ∗) defines a totally geodesic foliation on M.
(b) 1B((∇π∗)(V, JX), π∗ JW) = 1(QVW, JX).
(c) TV JW = QVW,

for X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

For a nearly Kaehler manifold M, the above two results can be stated as:

Theorem 4.3. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then, the following assertions are equivalent to each other

(a) (kerπ∗) defines a totally geodesic foliation on M.
(b) 1B((∇π∗)(V, JX), π∗ JW) = −1(PWV,CX) − 1(QWV,BX).
(c) 1(TVBX +ACXV, JW) = 1(PWV,CX) + 1(QWV,BX),

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

For Langrangian Riemannian submersion we have

Corollary 4.3. Let π be a Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then the following conditions are equivalent

(a) (kerπ∗) defines a totally geodesic foliation on M.
(b) 1B((∇π∗)(V, JX), π∗ JW) = −1(QWV, JX).
(c) TV JW = −QWV,

for X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

As we know that for the case of Kaehler manifold P = Q = 0, then from the above results we have the
result of B. Sahin [10].
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Definition 4.1. [1] A differential map π between two Riemannian manifolds is called totally geodesic if ∇π∗ = 0.

For a Langrangian Riemannian submersion, we have the following characterization.

Theorem 4.4. Let π be a Langrangian Riemannian submersion from an almost Hermitian manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then π is totally Geodesic map if and only if

TV JW = QVW and AX JW = QXW,

for any X ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

Proof. We know that the second fundamental form of a Riemannian submersion satisfies

(∇π∗)(X,Y) = 0, ∀ X,Y ∈ Γ(kerπ∗)⊥. (4.4)

For V, W ∈ Γ(kerπ∗) using (2.9), we have

(∇π∗)(V,W) = −π∗(∇VW)

= π∗(J(J∇VW))

= π∗(JTV JW − JQVW) (4.5)

On the other hand side, for W ∈ Γ(kerπ∗) and X ∈ Γ(kerπ∗)⊥ using (2.9) we obtain

(∇π∗)(X,W) = −π∗(∇XW)

= π∗(J(J∇XW))

= π∗(J(∇X JW − (∇X J)W))

= π∗(JAX JW − JQXW) (4.6)

Since J is non-singular, then the result follows from (4.4), (4.5) and (4.6).

5. Total Manifold as Product Manifold

In this section, we obtain some decomposition theorems for an anti-invariant Riemannian submersion
and Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a Riemannian mani-
fold (B, 1B).

Definition 5.1. [10] Let 1N be metric be a Riemannian metric tensor on the manifold N = M × B and assume that
the canonical foliationsDM andDB intersect perpendicularly everywhere. Then 1 is a metric tensor of

(i) a usual product of Riemannian manifolds if and only ifDM andDB are totally geodesic foliations.

(ii) a twisted product if and only ifDM is a totally geodesic foliation andDB is a totally umbilical foliation.

We have the following decomposition theorem for an anti-invariant Riemannian submersion which
follows from Theorem 4.1 and Theorem 4.3 in terms of second fundamental form of such submersions.
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Theorem 5.1. Let π be an anti-invariant Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then M is a locally product manifold if and only if

1B((∇π∗)(X, JY), π∗JV) = −1(CY, JAXV) − 1(CY,PXV) − 1(PXY, JV),

and
1B((∇π∗)(V, JX), π∗ JW) = −1(PWV,CX) − 1(QWV,BX),

for any X, Y ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

From Corollary 4.1 and Corollary 4.3 , we have the following decomposition theorem for Langrangian
Riemannian submersion.

Corollary 5.1. Let π be a Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a
Riemannian manifold (B, 1B). Then M is a locally product if and only if

1B((∇π∗)(X, JY), π∗ JV) = 1(PYX, JV),

and
1B((∇π∗)(V, JX), π∗ JW) = −1(QWV, JX),

for any X, Y ∈ Γ(kerπ∗)⊥ and V, W ∈ Γ(kerπ∗).

Next, we obtain the decomposition theorem which is related to the notion of twisted product manifold.

Theorem 5.2. Let π be Langrangian Riemannian submersion from a nearly Kaehler manifold (M, 1, J) to a Rieman-
nian manifold (B, 1B). Then M is a twisted product manifold of the form M(kerπ∗)⊥ × f M(kerπ∗) if and only if

TV JX = −1(X,TVV)∥V∥−2JV − PXV,

and
AX JY = PXY

for any X, Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗), where M(kerπ∗)⊥ and M(kerπ∗) are integral manifolds of the distributions
(kerπ∗)⊥ and (kerπ∗) respectively.

Proof. For any X ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗) using (2.1), (2.2) and Lemma 2.2, we get

1(∇VW,X) = −1(∇VX,W)

= −1(J∇VX, JW)

= −1(∇V JX − (∇V J)X, JW)

= −1(TV JX − PVX, JW).

This implies that (kerπ∗) is totally umbilical if and only if

TV JX − PVX = −X(λ)JV, (5.1)

where λ is some function on M.
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Now, from (5.1) we have
1(−X(λ)JV, JV) = 1(TV JX − PVX, JV).

−X(λ)∥V∥2 = 1(TV JX, JV) − 1(PVX, JV)

= −1(JX,∇V JV) − 1(PVX, JV)

= 1(∇V JX, JV) − 1(PVX, JV)

= 1((∇V J)X + J∇VX, JV) − 1(PVX, JV)

= 1(PVX, JV) + 1(J∇VX, JV) − 1(PVX, JV)

= 1(TVX,V)

= −1(X,TVV),

which implies that
X(λ) = 1(X,TVV)∥V∥−2 (5.2)

and hence (5.1) and (5.2) gives

TV JX = −1(X,TVV)∥V∥−2JV − PXV.

The result follows from Corollary 4.1.

Now, we prove the non-existence of a twisted product manifold of the form M(kerπ∗) × f M(kerπ∗)⊥ for
Langrangian Riemannian submersion. We have

Theorem 5.3. There do not exist Langragian Riemannian submersion from an Almost Hermitian manifold (M, 1, J) to
a Riemannian manifold (B, 1B) such that M is a locally proper twisted product manifold of the form M(kerπ∗)× f M(kerπ∗)⊥ .

Proof. Let us suppose that π be a Langragian Riemannian submersion from an almost Hermitian manifold
(M, 1, J) to a Riemannian manifold (B, 1B) and M is a locally proper twisted product manifold of the form
M(kerπ∗) × f M(kerπ∗)⊥ . Then by the Definition 5.1, M(kerπ∗) is a totally geodesic foliation and M(kerπ∗)⊥ is a totally
umbilical foliation.

If h is the second fundamental form of M(kerπ∗)⊥ , then we get

1(∇XY,V) = 1(H∇XY +V∇XY,V)

= 1(V∇XY,V)

= 1(h(X,Y),V)

for X,Y ∈ Γ(kerπ∗)⊥ and V ∈ Γ(kerπ∗).

Since, M(kerπ∗)⊥ is totally umbilical foliation then we have

1(∇XY,V) = 1(H,V)1(X,Y), (5.3)

where H is the mean curvature vector field of V ∈ Γ(kerπ∗).
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On the other hand, from (2.1), (3.6) and Lemma 2.2 we have

1(∇XY,V) = −1(JY,AX JV − QXV). (5.4)

Thus from (5.3) and (5.4), we have

AX JV − QXV = −1(H,V)JX

−1(H,V)∥X∥2 = 1(AX JV − QXV, JX)

= 1(∇X JV − (∇X J)V, JX)

= −1(V,∇XX)

= −1(V,AXX).

From (2.8) we know thatAXX = 0,which implies that

1(H,V)∥X∥2 = 0.

Since 1 is a Riemannian metric and H ∈ Γ(kerπ∗), we conclude that H = 0. It means that (kerπ∗)⊥ is totally
geodesic, so M is usual product of Riemannian manifolds. Thus, it completes the proof.
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