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Filter exhaustiveness and F -α-convergence
of function sequences

Hüseyin Albayrak, Serpil Pehlivan

Süleyman Demirel University, Faculty of Arts and Sciences, Department of Mathematics 32260 Isparta, TURKEY

Abstract. In this work, we generalize the concepts of exhaustiveness, α-convergence, Cauchy sequence,
pointwise convergence and uniform convergence for sequences of functions on metric spaces in terms of
filters. We investigate some properties of these new concepts. We also examine the relations between the
new concepts and the classical concepts.

1. Introduction

For a sequence of functions, the notion of continuous convergence which is stronger than the pointwise
convergence was introduced in the first half of the twentieth century (see [8, 17, 25]) and called as α-
convergence later (see [10, 14]. These two concepts are equivalent for a sequence of functions, but are not
equivalent for a net of functions ([14]). Gregoriades and Papanastassiou [14] defined a new concept, that is,
the exhaustiveness for sequences and nets of functions. Later, Caserta and Kočinac ([9]) defined the notions
of statistical exhaustiveness and statistical α-convergence, and presented the relations between statistical
α-convergence, statistical pointwise convergence and statistical uniform convergence. Boccuto et al. [6]
studied ideal exhaustiveness and (Iα)-convergence for lattice group-valued functions. In [2], some results
were given with respect to ideal exhaustiveness and ideal α-convergence for sequences of functions defined
from metric spaces into R.

In this paper, we study sequences of functions defined from a metric space to a metric space. As a
generalization, we introduce the concepts of F -α-convergence and F -exhaustiveness where F is a filter onN.
We also generalize some concepts related to sequences of functions in terms of the filter.

First, we recall some basic concepts related to filters (see [12, 26]). A family F of subsets of N (i.e.,
F ⊆ P (N)) is called a filter onN if F satisfies the following conditions:

(1) ∅ < F ,
(2) If A,B ∈ F then A ∩ B ∈ F ,
(3) If A ∈ F and A ⊆ B then B ∈ F .
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By (3), we have N ∈ F . A filter is said to be free if the intersection of all its members is empty, and fixed
otherwise. If F is a filter onN, then the set I (F ) = {N \ A : A ∈ F } is an ideal onN; and conversely, if I is
an ideal onN, then the set F (I) = {N \ A : A ∈ I} is a filter onN. Filter and ideal are dual concepts. So,
the notions defined by an ideal are equivalent to the ones defined by a filter. For example, the concepts of
F -convergence and I-convergence are equivalent.
Let F be a filter. A subset A ofN is called F -stationary if it has nonempty intersection with each member
of the filter F . We denote the collection of all F -stationary sets by F ∗. In brief, for an A ⊆Nwe have

A ∈ F ∗ ⇐⇒ A < I (F ) ,

where I (F ) is the ideal corresponding to F .
A filter F is said to be a P-filter, if for every sequence (Kn)n∈N of the sets in F there is a K ∈ F such that

|K \ Kn| < ∞ for each n ∈N (see [4, 5]). P-filters are duals of P-ideals.

Definition 1.1. (see [3, 15, 16]) A sequence (xn)n∈N in a metric space
(
X, ρX

)
is said to be F -convergent to

x ∈ X if for every ε > 0 the set
{
n ∈N : ρX (xn, x) < ε

}
belongs to F . In this case, we write F − lim xn = x or

xn
F−→ x.

Now we present some examples of filters.

1. Fréchet Filter. The family Fr = {A ⊆N :N \ A is finite} is called the Fréchet filter. Fr is the minimum
free filter with respect to the inclusion relation. Therefore, we can characterize free filters as follows:
If F ⊇ F r then F is a free filter. Fr-convergence coincides with the ordinary convergence.

2. Statistical Convergence Filter. If limn→∞ (|A ∩ [1,n]|) /n exists, where |A| is the cardinality of the set
A ⊆ N, then the value of this limit is called the asymptotic density of the set A, and it is denoted by
d (A) (see [7, 22]). The family Fst = {A ⊆N : d (A) = 1} is a free P-filter, and it is called the statistical
convergence filter. Fst-convergence is called the statistical convergence (see [11, 13, 21]).

3. Let us consider the Euler function φ defined by

φ (n) = n
(
1 − 1

p1

) (
1 − 1

p2

)
...

(
1 − 1

pm

)
for 1 < n ∈ N, where n = pα1

1 pα2
2 ...p

αm
m is the prime number decomposition of n, and φ (1) = 1 ([23]).

Then

dφ (A) = lim
n→∞

1
n

∑
d|n
φ (d)χA (d)

is called the φ-density of the set A, provided that this limit exists ([19]; see also [1, 20]). The family
Fφ =

{
A ⊆N : dφ (A) = 1

}
is a free filter.

Lemma 1.2. Let
(
X, ρX

)
be a metric space, (xn)n∈N be a sequence in X, and x ∈ X. Let F be a P-filter on N. If

F − lim xn = x then there is a set K = {n1 < n2 < ... < nk < ...} ∈ F such that limk→∞ xnk = x.

2. Filter exhaustiveness and F -α-convergence

In this paper,
(
X, ρX

)
and

(
Y, ρY

)
denote two metric spaces. Let D ⊆ X. Then C (D,Y) denotes the family

of all continuous functions from D into Y. By S (x, δ) ,we denote the open ball with center x and radius δ.

Using the notion of ideal I of N; the generalizations of the concepts of exhaustiveness and α-
convergence, namely, the concepts of I-exhaustiveness and I-α-convergence were defined in [6]; the
concept of I-pointwise convergence was defined in [4] and [18], the concept of I-uniform convergence
was introduced in [4]. Since we will study on filters, we will introduce the generalizations of the pointwise
convergence, uniform convergence, α-convergence and exhaustiveness, via the notion of filter.
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Definition 2.1. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter on N. Let x ∈ D. The sequence(
fn
)

n∈N is said to be F -exhaustive at the point x provided that, for each ε > 0 there is a δ > 0 such that{
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε for all y ∈ S (x, δ)

} ∈ F .

If the sequence
(

fn
)

n∈N is F -exhaustive at every x ∈ D, then it is said to be F -exhaustive on D.

Example 2.2. LetP =
{
p1 < p2 < ... < pk < ...

}
be the set of all prime numbers, and K =

{
p1, p1.p2, ..., p1.p2...pk, ...

}
.

The set K has φ-density 0 (see [24],[20]). Let
(

fn
)

n∈N be a sequence of functions from R into R defined by

fn (x) =


1
x

if n ∈ K and x , 0
1
n

arctan
(1

x

)
if n < K and x , 0

0 if x = 0

.

This sequence is Fφ-exhaustive on R, but not exhaustive at the point x = 0.

Let x ∈ R. Indeed, for every ε > 0 there are a δ > 0 and an n (ε) =
⌊
π
ε

⌋
+ 1 ∈N such that for every y ∈ S (x, δ)

and for every n ∈N \ (K ∪ {1, 2, ..., n (ε)}) we have

∣∣∣ fn (
y
) − fn (x)

∣∣∣ = ∣∣∣∣∣∣1n arctan
(

1
y

)
− 1

n
arctan

(1
x

)∣∣∣∣∣∣ ≤ 1
n
π <

1
n (ε)

π < ε

(Here, ⌊.⌋ denotes the greatest integer function). Then we have{
n ∈N :

∣∣∣ fn (
y
) − fn (x)

∣∣∣ < ε for all y ∈ S (x, δ)
}
⊇N \ (K ∪ {1, 2, ..., n (ε)}) ,

and

dφ
({

n ∈N :
∣∣∣ fn (

y
) − fn (x)

∣∣∣ < ε for all y ∈ S (x, δ)
})

≥ dφ (N \ (K ∪ {1, 2, ..., n (ε)})) = 1.

Therefore,
(

fn
)

n∈N is Fφ-exhaustive at x ∈ R.
Now, let us show that

(
fn
)

n∈N is not exhaustive at x = 0. Let ε = 2. For every δ > 0 and every n ∈ K there
exists y ∈ S (0, δ) ,

∣∣∣y∣∣∣ < 1
2 such that∣∣∣ fn (

y
) − fn (0)

∣∣∣ = ∣∣∣∣∣1y − 0
∣∣∣∣∣ > ε.

Since the set K is infinite, we obtain the required result.

Definition 2.3. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter on N. Let x ∈ D. The sequence(
fn
)

n∈N is said to be F -α-convergent to f at the point x if for every sequence (xn)n∈N which is F -converging

to x, the sequence
(

fn (xn)
)

n∈N is F -convergent to f (x) (i.e., F − lim fn (xn) = f (x)), and we write fn
F−α−→ f (at

x). If the sequence
(

fn
)

n∈N is F -α-convergent to f at each x ∈ D, then it is said to be F -α-convergent to f on
D.

Definition 2.4. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter onN. The sequence
(

fn
)

n∈N is said
to be F -pointwise convergent to f on D if F − lim fn (x) = f (x) for each x ∈ D, i.e.,{

n ∈N : ρY
(

fn (x) , f (x)
)
< ε

} ∈ F
for every ε > 0. In this case, we write fn

F−pw−→ f (on D).
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Definition 2.5. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter onN. The sequence
(

fn
)

n∈N is said
to be F -uniformly convergent to f on D provided that{

n ∈N : ρY
(

fn (x) , f (x)
)
< ε for all x ∈ D

} ∈ F
for every ε > 0. In this case, we write fn

F−u−→ f (on D).

As in the classical analysis, F -uniform convergence implies F -pointwise convergence.

Definition 2.6. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter onN. The sequence
(

fn
)

n∈N is said
to be an F -uniform Cauchy sequence if for every ε > 0 there exists some k ∈N such that{

n ∈N : ρY
(

fn (x) , fk (x)
)
< ε for all x ∈ D

} ∈ F .

Theorem 2.7. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a free filter onN. Then the following hold:

(i) If
(

fn
)

n∈N is exhaustive, then it is F -exhaustive.
(ii) If

(
fn
)

n∈N is a uniform Cauchy sequence, then it is an F -uniform Cauchy sequence.

(iii) fn
pw−→ f implies fn

F−pw−→ f .

(iv) fn
u−→ f implies fn

F−u−→ f .

(v) fn
α−→ f implies fn

F−α−→ f ,where F is a P-filter.

Proof. Since F ⊇ F r, and the concepts defined via the Fréchet filter Fr and their analogues in the classical
analysis are equivalent, the items (i)-(iv) can be proved easily. We only need to prove the item (v).
(v) Let x ∈ D and (xn)n∈N be a sequence in D such that F − lim xn = x. From Lemma 1.2, since F is a P-filter,
there is a set K = {n1 < n2 < ... < nk < ...} ∈ F such that limk→∞ xnk = x. Let us define a sequence

(
yn

)
n∈N by

yn =

{
xnk ; n = nk
x ; n < K

for every n ∈N. Then limn→∞ yn = x. Since fn
α−→ f at x,we have limn→∞ fn

(
yn

)
= f (x).

Let ε > 0. There is an n (ε) ∈N such that ρY
(

fn
(
yn

)
, f (x)

)
< ε for all n ≥ n (ε). Then

K ⊆ {
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∪ {1, 2, ..., n (ε)} ,

and so
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∈ F . Consequently, we have fn
F−α−→ f at x ∈ D.

Since N ∈ F for any filter F , if the sequence
(

fn
)

n∈N is equicontinuous then it is F -exhaustive (or
exhaustive), where fn ∈ C (X,Y) for all n ∈ N. Moreover,

(
fn
)

n∈N is equicontinuous if and only if it is
F0-exhaustive, where F0 := {N} (F0 is a trivial filter). Similarly,

(
fn
)

n∈N is exhaustive if and only if it is
Fr-exhaustive.

Now we give an example of a sequence of functions which is statistically α-convergent but not α-
convergent.

Example 2.8. Let
(

fn
)

n∈N be a sequence of functions from [0, 1] into [0, 1] defined by

fn (x) =

 xn if n ∈
{
1, 4, 9, ..., k2, ...

}
x
n

if n <
{
1, 4, 9, ..., k2, ...

} .
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This sequence is not α-convergent to the function f = 0 (that is, f (x) = 0 for all x ∈ [0, 1]) at x = 1. Indeed,
the sequence (xn)n∈N = (1 − 1/n)n∈N is convergent to x = 1, but the sequence

fn (xn) =


(
1 − 1

n

)n

if n ∈
{
1, 4, 9, ..., k2, ...

}
n − 1

n2 if n <
{
1, 4, 9, ..., k2, ...

}
is not convergent to 0 = f (1), because 1/e is a limit point of

(
fn (xn)

)
n∈N.

Now we show that
(

fn
)

n∈N is statistically α-convergent to f on [0, 1]. Let y ∈ [0, 1] and
(
yn

)
n∈N be a

sequence such that Fst − lim yn = y. There is a K1 with d (K1) = 1 such that limn→∞,n∈K1 yn = y. The set
K2 =

{
n ∈N : n , k2 for each k ∈N

}
has asymptotic density 1. Let K = K1 ∩ K2. Then K ∈ Fst and

lim
n→∞
n∈K

fn
(
yn

)
= lim

n→∞
n∈K

yn

n
−→ 0 = f

(
y
)

.

Therefore we have Fst − lim fn
(
yn

)
= f

(
y
)
, and so fn

Fst−α−→ f at the point y ∈ [0, 1]. Consequently, the
sequence

(
fn
)

n∈N is statistically α-convergent to the function f on [0, 1].

On ideals, the analogue of the following theorem was given in [6] for sequences of functions defined
from metric spaces to lattice groups. We state it without proof.

Theorem 2.9. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a free filter onN. Then we have the following:

(i) If fn
F−α−→ f , then fn

F−pw−→ f .

(ii) If
(

fn
)

n∈N is F -exhaustive and fn
F−pw−→ f , then fn

F−α−→ f .

Now we give two examples of sequences of functions which are F -pointwise convergent but not F -α-
convergent.

Example 2.10. Let us consider the function f : R −→ R defined by

f (x) =
{

1 if x > 0
0 if x ≤ 0 ,

and let fn = f , where n ∈ N. Then for any free filter F we have fn
F−pw−→ f at x = 0, but fn

F−α
̸−→ f at x = 0.

To see that
(

fn
)

n∈N is not F -α-convergent, let us consider the sequence (xn)n∈N = (1/n)n∈N. Then we have
F − lim xn = 0, but fn (xn) = 1 for all n ∈ N and F − lim fn (xn) = 1 (, f (0)). According to Theorem 2.9(ii),(

fn
)

n∈N cannot be F -exhaustive at x = 0. To see that
(

fn
)

n∈N is not F -exhaustive, let us take ε = 1/2. For
every δ > 0 there exists a y ∈ S (0, δ) such that f

(
y
) − f (0) = 1, and thus we have{

n ∈N :
∣∣∣ fn (

y
) − fn (0)

∣∣∣ < 1/2
}
= ∅ < F .

Example 2.11. Let

fn (x) =
{

1, if n = k2

xn, if n , k2

for each n ∈N and

f (x) =
{

0, if x ∈ [0, 1)
1, if x = 1 .
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Then we have fn
Fst−pw−→ f (on [0, 1]), but

(
fn
)

n∈N is not Fst-exhaustive at x = 1. Also
(

fn
)

n∈N is not Fst-

α-convergent to f at x = 1. Indeed, for the sequence (xn)n∈N =
(
1 − 1

n

)
n∈N

we have Fst − lim xn = 1,

but

fn (xn) =

 1, if n = k2(
1 − 1

n

)n

, if n , k2

for each n ∈N and so Fst − lim fn (xn) = e−1 , 1 = f (1) .

The analogue of the following theorem was given in [6] for ideals.

Theorem 2.12. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a filter onN. If fn
F−pw−→ f on D and

(
fn
)

n∈N is
F -exhaustive on D, then f is continuous on D.

In Example 2.10, we have fn
F−pw−→ f at the point x = 0, but the function f is not continuous at x = 0. Therefore(

fn
)

n∈N is not F -exhaustive at x = 0.

From Theorems 2.9 and 2.12, we obtain the following corollary.

Corollary 2.13. If fn
F−α−→ f and

(
fn
)

n∈N is F -exhaustive, then f is continuous.

Theorem 2.14. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a free filter onN. Then we have the following:

(i) If fn
F−u−→ f and f is continuous on D, then fn

F−α−→ f on D.

(ii) If D is compact,
(

fn
)

n∈N is F -exhaustive on D and fn
F−α−→ f on D, then fn

F−u−→ f on D.

Proof. (i) Let ε > 0 and x ∈ D. Let (xn) be an arbitrary sequence on D such that F − lim xn = x. Since fn
F−u−→ f

on D, there is a set K1 ∈ F such that ρY
(

fn (xn) , f (xn)
)
< ε/2 for every n ∈ K1. Since f is continuous at x,

there is a δ > 0 such that ρY
(

f
(
y
)
, f (x)

)
< ε/2 for every y ∈ S (x, δ). Since F − lim xn = x, there is K2 ∈ F

such that xn ∈ S (x, δ) for every n ∈ K2. Let K := K1 ∩ K2. Then K ∈ F and we have

ρY
(

fn (xn) , f (x)
) ≤ ρY

(
fn (xn) , f (xn)

)
+ ρY

(
f (xn) , f (x)

)
< ε

for each n ∈ K.
(ii) Assume that

(
fn
)

n∈N is F -α-convergent to f on D. Let ε > 0. From Corollary 2.13, f is continuous on
D. Then for every x ∈ D there is a δx such that ρX

(
x, y

)
< δx implies ρY

(
f (x) , f

(
y
))
< ε/3. Since

(
fn
)

n∈N
is F -exhaustive on D, for every x ∈ D there exist λx ≤ δx and K (x) ∈ F such that ρY

(
fn

(
y
)
, fn (x)

)
< ε/3

for all y ∈ S (x, λx) and all n ∈ K (x). Then
∪

x∈D S (x, λx) ⊇ D. Since D is compact there are finitely many
x1, x2, ..., xm ∈ D such that D ⊆ ∪m

i=1 S
(
xi, λxi

)
. Let K :=

∩m
i=1 K

(
xi
)
∈ F . Therefore we have

ρY

(
f
(
y
)
, f

(
xi
))
< ε/3

and

ρY

(
fn

(
y
)
, fn

(
xi
))
< ε/3
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for all n ∈ K and all y ∈ S
(
xi, λxi

)
(where i = {1, 2, ...,m}).

From Theorem 2.9(i), we have fn
F−pw−→ f on D. Then for each i ∈ {1, 2, ...,m}we have

Li :=
{
n ∈N : ρY

(
fn

(
xi
)
, f

(
xi
))
< ε/3

}
∈ F .

Let L =
∩m

i=1 Li ∈ F and M = K ∩ L ∈ F .
Let z ∈ D. Then z ∈ S

(
xi, λxi

)
for some i ∈ {1, ...,m} and thus we have

ρY
(

fn (z) , f (z)
) ≤ ρY

(
fn (z) , fn

(
xi
))
+ ρY

(
fn

(
xi
)
, f

(
xi
))
+ ρY

(
f
(
xi
)
, f (z)

)
< ε

for every n ∈M. Therefore we have

M ⊆ {
n ∈N : ρY

(
fn (z) , f (z)

)
< ε for all z ∈ D

} ∈ F ,
and so fn

F−u−→ f on D.

Theorem 2.15. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a free filter. Then the following hold:

(i) If there is a set K = {n1 < n2 < ... < nk < ...} ∈ F such that
(

fnk

)
k∈N is exhaustive at a point x ∈ D, then

the sequence
(

fn
)

n∈N is F -exhaustive at x.
(ii) Let F be also a P-filter. If

(
fn
)

n∈N is F -exhaustive at a point x ∈ D, then there is a set K =
{n1 < n2 < ... < nk < ...} ∈ F such that

(
fnk

)
k∈N is exhaustive at x.

Proof. (i) Let a subsequence
(

fnk

)
k∈N be exhaustive at a point x ∈ D where K = {n1 < n2 < ... < nk < ...} ∈ F .

Let ε > 0. Hence there exist a δ > 0 and a k (ε) ∈N such that

ρY
(

fnk

(
y
)
, fnk (x)

)
< ε

for all y ∈ S (x, δ) and all k > k (ε). Then we have

K ⊆ {
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε

} ∪ {
n1,n2, ..., nk(ε)

}
for all y ∈ S (x, δ). Since F is free, we have

{
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε

} ∈ F . Consequently,
(

fn
)

n∈N is
F -exhaustive at the point x.
(ii) Let

(
fn
)

n∈N be F -exhaustive at a point x ∈ D. Then for every ε > 0 there exists a δ > 0 such that{
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε for all y ∈ S (x, δ)

} ∈ F .

There are positive real numbers δ1 > δ2 > ... > δt > ... such that

Kt :=
{
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
<

1
t

for all y ∈ S (x, δt)
}
∈ F

for each t ∈ N. Since F is a P-filter, there is a set K ∈ F such that |K \ Kt| < ∞ for each t ∈ N. Let
K := {n1 < n2 < ... < nk < ...}.
Let ε > 0. There is a t0 ∈N such that 1/t0 < ε, and we have

Kt ⊆
{
n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε for all y ∈ S (x, δt)

}
for every t ≥ t0. Let us choose a t∗ ∈N such that t∗ ≥ t0. Then we have∣∣∣K \ {n ∈N : ρY

(
fn

(
y
)
, fn (x)

)
< ε for all y ∈ S (x, δt∗ )

}∣∣∣ ≤ |K \ Kt∗ | < ∞.
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Since the difference of two sets on the left side is finite, there is an n (ε) ∈N such that

ρY
(

fnk

(
y
)
, fnk (x)

)
< ε

for all y ∈ S (x, δt∗ ) and all nk ∈ K with nk > n (ε).

Note 1. The item (i) of the theorem above can also be given on D instead of a single point. In the item (ii),
since the set K that we obtained depends on x, it is not easy to find a common set belonging to F on D.
Note 2. This theorem can be proved similarly for F -pointwise convergence, F -uniform convergence and
F -uniform Cauchy condition.

We need to prove the theorem above for F -α-convergence because of additional conditions.

Theorem 2.16. Given D ⊆ X, let f , fn : D −→ Y (n ∈N) and F be a free P-filter. Then the following hold:

(i) If there is a set K = {n1 < n2 < ... < nk < ...} ∈ F such that fnk

α−→ f at a point x ∈ D, then fn
F−α−→ f at x.

(ii) If fn
F−α−→ f at a point x ∈ D and

(
fn
)

n∈N isF -exhaustive at x, then there is a set K = {n1 < n2 < ... < nk < ...} ∈
F such that fnk

α−→ f at x.

Proof. (i) Let fnk

α−→ f at a point x ∈ D where K = {n1 < n2 < ... < nk < ...} ∈ F . Let (xn)n∈N be a sequence in
D such that F − lim xn = x. Since F is a P-filter, there is a L ∈ F such that limn→∞,n∈L xn = x. Let M = K ∩ L.
Let us define the sequence

(
ynk

)
k∈N by

ynk =

{
xnk ; nk ∈M
x ; nk ∈ K \ L .

Obviously, ynk −→ x and so fnk

(
ynk

) −→ f (x). Therefore, for every ε > 0 there is a k (ε) ∈ N such that
ρY

(
fnk

(
ynk

)
, f (x)

)
< ε for all k ≥ k (ε). Then

M ⊆ {
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∪ {
n1,n2, ..., nk(ε)

}
.

Therefore, for every ε > 0 we have
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∈ F since F is free. Consequently, we

have F − lim fn (xn) = f (x) where F − lim xn = x; i.e., fn
F−α−→ f (at x) .

(ii) Let fn
F−α−→ f and

(
fn
)

n∈N be F -exhaustive at a point x ∈ D. Let (xk)k∈N be a sequence in D such that

xk → x. Let ε > 0. From Theorem 2.9(i) we have fn
F−pw−→ f (at x), and from Note 2, since F is a P-filter

there is a K1 ∈ F such that the subsequence
(

fn
)

n∈K1
is pointwise convergent to f at x. Therefore, there is an

n′ (ε) ∈ K1 such that

ρY
(

fn (x) , f (x)
)
< ε/2 (1)

for all n ∈ K1 with n ≥ n′ (ε). Since
(

fn
)

n∈N is F -exhaustive at x, from Theorem 2.15(ii) there is a K2 ∈ F such
that the subsequence

(
fn
)

n∈K2
is F -exhaustive at x. Therefore, there exist a δ > 0 and an n∗ (ε) ∈ K2 such that

ρY
(

fn
(
y
)
, fn (x)

)
< ε/2 (2)

for all y ∈ S (x, δ) and all n ∈ K2 with n ≥ n∗ (ε). Since xk → x, there is a k0 ∈ N such that xk ∈ S (x, δ) for
every k ≥ k0. Let K = K1 ∩ K2 = {n1 < n2 < ... < nk < ...} and k1 = min {k ∈N : nk ≥ n′ (ε) ,n∗ (ε)}. From (1)
and (2), we have

ρY
(

fnk (xk) , f (x)
) ≤ ρY

(
fnk (xk) , fnk (x)

)
+ ρY

(
fnk (x) , f (x)

)
< ε

for all k ≥ max {k0, k1}. Then the sequence
(

fnk (xk)
)

k∈N is convergent to f (x). Consequently, fnk

α−→ f (at
x).
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We can also restate Note 1 for this theorem.

The next example shows that Theorem 2.16(ii) does not hold without the condition “F -exhaustiveness”.

Example 2.17. Let us consider the sets Jp =
{
2p−1 (

2q − 1
)

: q ∈N
}

for each p ∈ N. Here, Jp’s are pairwise

disjoint sets, d
(
Jp

)
= 1/2p for each p ∈N, and

∪∞
p=1 Jp =N. Let us consider the sequence

(
fn
)

n∈N defined by

fn (x) =

 1 ; n ∈ Jp and x =
1
p

0 ; otherwise

for each n ∈N in RR, and the function f defined by f (x) = 0 for x ∈ R.

First, we will show that fn
Fst−α−→ f at x = 0. Let (xn)n∈N be an arbitrary sequence such that Fst − lim xn = 0.

Let us define the sets

Sp =

{
n ∈N : xn =

1
p

}
for each p ∈N. Then d

(
Sp

)
must be equal to zero since Fst − lim xn = 0. Let

Mp := Jp ∩ Sp

for each p ∈N. Then we have

fn (xn) =
{

1 ; n ∈ ∪∞
p=1 Mp

0 ; n <
∪∞

p=1 Mp
.

We have
{
n ∈N :

∣∣∣ fn (xn) − 0
∣∣∣ ≥ ε} = ∅ for ε > 1. Let 0 < ε ≤ 1. Then we have

{
n ∈N :

∣∣∣ fn (xn) − 0
∣∣∣ ≥ ε} = ∞∪

p=1

Mp.

For j ∈Nwe have

d
(∪∞

p=1 Mp

)
= d (M1) + d (M2) + ... + +d

(
M j

)
+ d

(∪∞
p= j+1 Mp

)
= d

(∪∞
p= j+1 Mp

)
≤ 1

2 j

and so we get d
(∪∞

p=1 Mp

)
= 0 as j→∞. Therefore, we get

d
({

n ∈N :
∣∣∣ fn (xn) − 0

∣∣∣ ≥ ε}) = d

 ∞∪
p=1

Mp

 = 0,

and so we have Fst − lim fn (xn) = f (0) = 0. Consequently, fn
Fst−α−→ f at x = 0.

Now, we will show that fnk

α
̸−→ f at x = 0 for any set K = {n1 < ... < nk < ...} ∈ Fst. Let

Lp := Jp ∩ K

for each p ∈N. Let us construct the set
{
l1 < l2 < ... < lp < ...

}
by l1 = min (L1) and lp+1 = min

(
Lp+1 \

{
1, 2, ..., lp

})
for each p ∈N. Let us define the sequence (xk)k∈N by

xk =


1
p

; nk = lp, p ∈N
0 ; otherwise
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for every k ∈N. Obviously, xk → 0. But the sequence
(

fnk (xk)
)

k∈N is not convergent, since

fnk (xk) =
{

1 ; nk = lp, p ∈N
0 ; otherwise .

Therefore we have fnk

α
̸−→ f at x = 0.

In this example, the sequence
(

fn
)

n∈N is not Fst-exhaustive at x = 0. Let ε = 1/2. There is a pδ ∈N such that
1/pδ < δ for every δ > 0, and we have{

n ∈N :
∣∣∣ fn (

y
) − fn (0)

∣∣∣ ≥ 1
2

for ∃y ∈ S (0, δ)
}
⊇
∞∪

p=pδ

Jp.

Then we obtain

d
({

n ∈N :
∣∣∣ fn (

y
) − fn (0)

∣∣∣ ≥ 1
2 for ∃y ∈ S (0, δ)

})
≥ d

(∪∞
p=pδ Jp

)
= 1

2pδ−1 > 0.

Whereas, the density on the left should have been zero. Therefore,
(

fn
)

n∈N is not Fst-exhaustive at x = 0. �

Now we present a result with respect to the filter Fst. The following theorem is an analogue of [1, Theorem
2.3].

Theorem 2.18. Given D ⊆ X, let f , fn : D −→ Y (n ∈N). Then the sequence
(

fn
)

n∈N is statistically α-convergent
to the function f if, and only if, both

(
f2n

)
and

(
f2n−1

)
are statistically α-convergent to f .

Proof. First, suppose that fn
Fst−α−→ f at x ∈ D. Let

(
yn

)
and (zn) be arbitrary sequences in D such that

Fst − lim yn = x and Fst − lim zn = x. Let us define a sequence (xn) such that x2n = yn and x2n−1 = zn for every
n ∈N. It was shown in [1] that the sequence (xn) is statistically convergent to x.

Since fn
Fst−α−→ f at x ∈ D, we have Fst − lim fn (xn) = f (x), i.e., K (ε) :=

{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∈ Fst for
every ε > 0. Define the sets

L (ε) :=
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε and n = 2k, k ∈N}

= {2l1, 2l2, ...}

and

M (ε) :=
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε and n = 2k − 1, k ∈N}

= {2m1 − 1, 2m2 − 1, ...} .

Since d (K (ε)) = 1, we have d (L (ε)) = d (M (ε)) = 1/2.
For the subsequence

(
f2n

)
, we get L′ (ε) :=

{
n ∈N : ρY

(
f2n (x2n) , f (x)

)
< ε

}
= {l1, l2, ...}. Since d (L (ε)) = 1/2

and d (L′ (ε)) = 2d (L (ε)) , we have d (L′ (ε)) = 1. So we have Fst − lim f2n
(
yn

)
= f (x) and f2n

Fst−α−→ f at x.
Similarly, for the subsequence

(
f2n−1

)
, we get M′ (ε) :=

{
n ∈N : ρY

(
f2n−1 (x2n−1) , f (x)

)
< ε

}
= {m1,m2, ...}.

Since d (M (ε)) = 1/2 and d (M′ (ε)) = 2d (M (ε)) ,we have d (M′ (ε)) = 1. So we have Fst− lim f2n−1 (zn) = f (x)

and f2n−1
Fst−α−→ f at x.

Now suppose that f2n
Fst−α−→ f and f2n−1

Fst−α−→ f at x ∈ D. LetFst− lim xn = x. From [1], we haveFst− lim x2n = x
and Fst − lim x2n−1 = x. Then, for every ε > 0,we have L′ (ε) ,M′ (ε) ∈ Fst. Then d (L (ε)) = 1

2 d (L′ (ε)) = 1
2 and

d (M (ε)) = 1
2 d (M′ (ε)) = 1

2 . Thus we get

K (ε) =
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

}
= L (ε) ∪M (ε)
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and

d (K (ε)) = d (L (ε)) + d (M (ε)) = 1,

since L (ε) ∩M (ε) = ∅. Consequently, we have
{
n ∈N : ρY

(
fn (xn) , f (x)

)
< ε

} ∈ Fst for every ε > 0. This

means that fn
Fst−α−→ f at x ∈ D.

This theorem can also be proved forF -pointwise convergence,F -uniform convergence,F -exhaustiveness
and F -uniform Cauchy condition.

References

[1] H. Albayrak, S. Pehlivan, On the ideal convergence of subsequences and rearrangements of a real sequence, Appl. Math. Lett. 23
(2010) 1203–1207.

[2] E. Athanassiadou, A. Boccuto, X. Dimitriou, N. Papanastassiou, Ascoli-type theorems and ideal α-convergence, Filomat 26 (2012)
397–405.

[3] A. Aviles Lopez, B. Cascales Salinas, V. Kadets, A. Leonov, The Schur ℓ1 theorem for filters, J. Math. Phys. Anal. Geom. 3 (2007)
383–398.

[4] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal.
Appl. 328 (2007) 715–729.

[5] T. O. Banakh, O. V. Maslyuchenko, V. V. Mykhaylyuk, Discontinuous separately continuous functions and near coherence of
P-filters, Real Anal. Exchange 32 (2007) 335–347.
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