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Abstract. In this paper we study Hurwitz spaces of coverings of Y with an arbitrary number of special
points and with monodromy group a Weyl group of type Dd, where Y is a smooth, complex projective
curve. We give conditions for which these spaces are irreducible.

1. Introduction

The study of the irreducibility of Hurwitz spaces is a classic topic in algebraic geometry. It is interesting
to study Hurwitz spaces of coverings whose monodromy group is all Sd but also whose monodromy group
is a Weyl group different from Sd. In fact, coverings with monodromy group a Weyl group appear in the
study of spectral curves, integrable systems and Prym - Tyurin varieties (see [6, 15, 16]). Specifically, it
is possible to define morphisms from Hurwitz spaces of coverings with monodromy group contained in
a Weyl group to Siegel modular varieties which parameterize Abelian varieties. For way of this, some
property of these varieties can be studied by using these Hurwitz spaces.

Let Y be a smooth, connected, complex projective curve of genus 1. We point out that the irreducibility
of Hurwitz spaces of coverings of Y with monodromy group Sd and with an arbitrary number of special
points has been studied both when 1 = 0 and when 1 > 0 (see [1, 9, 11, 13–15, 18, 23, 26, 27]). Moreover,
for example, Harris, Graber and Starr used the result of [9] in order to prove the existence of sections of
one-parameter family of complex rationally connected varieties (see [10]). The irreducibility of Hurwitz
spaces of coverings of Y whose monodromy group is a Weyl group different from Sd was studied, for
example, in [2, 19–22, 24, 25]. In this paper, we continue such study. Specifically, we consider coverings of
Y with an arbitrary number of special points and with monodromy group a Weyl group of type Dd. We
give conditions for which the corresponding Hurwitz spaces are irreducible, both when 1 = 0 and when
1 > 0 (see Theorem 4.1). In this way, we extend to coverings with monodromy group a Weyl group of type
Dd the results obtained in the case in which the monodromy group is all Sd by Kulikov in [14] and by the
author in [26].

Conventions and Notations

Two sequences of coverings, X1
π1−→ X′1

f1−→ Y and X2
π2−→ X′2

f2−→ Y, are equivalent if there exist two
biholomorphic maps p : X1 → X2 and p′ : X′1 → X′2 such that p′ ◦ π1 = π2 ◦ p and f2 ◦ p′ = f1. We denote
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by [ f ◦ π] the equivalence class containing f ◦ π. Moreover, we denote by th the permutation h−1 t h. Here,
Y(n) denote the n - fold symmetric product of Y and ∆ is the codimension 1 locus of Y(n) consisting of non
simple divisors.

2. Preliminaries

In this section we shortly recall some notions on the Weyl groups of type Bd and Dd. The references for
such discussion are [4, 5]. We also invite the reader to look Section 1 of [24]. Moreover, we recall some
notions on braid moves. We refer to [3, 7, 11, 12, 17] for the details. Furthemore, in this section, we explain
the strategy that we will use in order to prove the main result of this paper.

2.1. Weyl groups of type Bd and Dd

Let {ϵ1, . . . , ϵd} be the standard base of Rd and let R be the root system {±ϵi, ±ϵi ± ϵ j : 1 ≤ i, j ≤ d}. The
Weyl group of type Bd, that we denote by W(Bd), is generated by the reflections sϵi , with 1 ≤ i ≤ d, and by
the reflections sϵi−ϵ j , with 1 ≤ i < j ≤ d. The Weyl group of type Dd is the subgroup of W(Bd) generated by
the reflections with respect to the long roots ϵ1 − ϵi and ϵ1 + ϵi with 2 ≤ i ≤ d. We denote this group with
W(Dd).

We recall that W(Bd) is isomorphic to the subgroup of S2d generated by the transpositions (i − i) with
1 ≤ i ≤ d and by the permutations (i j)(−i − j) with 1 ≤ i < j ≤ d. Let (Z2)d be the set of the functions from
{1, . . . , d} into Z2 equipped with the sum operation. Let Ψ be the homomorphism from Sd in Aut((Z2)d)
which to t ∈ Sd assigns Ψ(t) where [Ψ(t) a]( j) := a( jt) for each a ∈ (Z2)d. W(Bd) is also isomorphic to the
semidirect product, (Z2)d ×s Sd, of (Z2)d and Sd throughΨ (see for example [24], Section 1).

Here, we identify W(Bd) with (Z2)d×s Sd and we identify W(Dd) with the subgroup of (Z2)d×s Sd generated
by the elements (0; (1, i)) and (1̄1i; (1, i)) with i = 2, . . . , d. We use zi j to denote the function of (Z2)d defined as

zi j(i) = zi j( j) = z and zi j(l) = 0̄ for each l , i, j and z ∈ Z2.

Definition 2.1. Let h be a positive integer. Let (c; ξ) be an element of W(Bd) satisfying the following: ξ is a h-cycle
of Sd and c is a function that sends to 0̄ all the indexes fixed by ξ. We call an such element positive h-cycle if c is
either zero or a function which sends to 1̄ an even number of indexes. We call it negative h-cycle if it is not positive.

We recall that two cycles (c; ξ) and (c′; ξ′) in W(Bd) are disjoint if ξ and ξ′ are disjoint. Furthermore, all
the elements in W(Bd) can be expressed as a product of disjoint positive and negative cycles. The lengths
of such disjoint cycles together with their signs determine the signed cycle type of the elements of W(Bd).
Two elements of W(Bd) are conjugate if and only if they have the same signed cycle type (see [5]).

2.2. Braid moves

The braid group π1(Y(n) − ∆,D) is generated by the elementary braids σi with i = 1, . . . , n − 1 and by the
braids ρ js, τ js with 1 ≤ j ≤ n and 1 ≤ s ≤ 1 (see [3], [7] and [17]).

Definition 2.2. Let G be an arbitrary group. An ordered sequence

(t1, . . . , tn;λ1, µ1, . . . , λ1, µ1) := (t, λ, µ)

of elements in G is a Hurwitz system if ti , id for each i ∈ {1, . . . ,n} and t1 · · · tn = [λ1, µ1] · · · [λ1, µ1]. The
subgroup of G generated by ti, λs, µs with i = 1, . . . , n and s = 1, . . . , 1 is called the monodromy group of the
Hurwitz system. Two Hurwitz systems (t, λ, µ) and (t′, λ′, µ′) with elements in G are equivalent if there exsists h ∈ G
such that t′i = h−1tih, λ′s = h−1λsh and µ′s = h−1µsh for each i = 1, . . . , n and s = 1, . . . , 1.

Remark 2.3. We notice that when 1 = 0, one has got t1 · · · tn = id.
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The generators of π1(Y(n) − ∆,D) acts on Hurwitz systems. One can associate a pair of braid moves to
each generator of π1(Y(n) − ∆,D). We denote by σ′i , σ

′′
i = (σ′i )

−1 the pair of moves associated to σi. We call
such moves elementary moves. The moves σ′i , σ

′′
i fix all the λs, all the µs and all the th with h , i, i+ 1. They

transform (ti, ti+1) into

(titi+1t−1
i , ti) and (ti+1, t−1

i+1titi+1),

respectively (see [11]). We denote by ρ′js, ρ
′′
js = (ρ′js)

−1 and by τ′js, τ
′′
js = (τ′js)

−1 the pair of moves associated
to ρ js and τ js, respectively. The moves ρ′js, ρ

′′
js fix any element different from t j and µs. Analogously, the

moves τ′js and τ′′js modify the element t j and the element λs, only. We notice that the moves ρ′js, ρ
′′
js, τ

′
js and

τ′′js transform t j into an element belonging to the same conjugacy class. Furthermore, we notice that when
λ1 = · · · = λs = µ1 = · · · = µs−1 = id, the braid move ρ′1s transforms

µs into t−1
1 µs.

Analogously when λ1 = · · · = λs−1 = µ1 = · · · = µs−1 = id, the braid move τ′′1s transforms

λs into t−1
1 λs

(see [12], Theorem 1.8 and Corollary 1.9).

Definition 2.4. Two Hurwitz systems are said braid equivalent if one is obtained from the other by using a finite
sequence of braid moves σ′i , ρ

′
js, τ

′
js, σ

′′
i , ρ

′′
js, τ

′′
js where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n and 1 ≤ s ≤ 1. Two ordered

sequences of permutations (t1, . . . , tl) and (t′1, . . . , t
′
l ) are said braid equivalent if (t′1, . . . , t

′
l ) is obtained from (t1, . . . , tl)

by using a finite sequence of braid moves of type σ′i , σ
′′
i . We denote the braid equivalence by ∼.

2.3. Hurwitz spaces HW(Dd)
C (Y) and strategy

Let X, X′ and Y be smooth, connected, projective complex curves and let 1 be the genus of Y. Let d,n, k be
integers such that d ≥ 3 and n > k > 0. In this paper we are interested in coverings with monodromy group
W(Dd) and with an arbitrary number of special points. Such coverings have 2d degree and decompose in a

sequence of coverings, X π−→ X′
f−→ Y, satisfying the followings:

π is a degree 2 étale covering and f is a degree d coverings, with monodromy group Sd and with n branch points,
k of which are simple points and n − k of which are special points.

Let e1, . . . , er be partitions of d such that ei = (ei
1, . . . , e

i
si

) and ei
1 ≥ · · · ≥ ei

si
. Let q1, . . . , qr be positive

integers such that q1+ · · ·+qr = n−k. Let us denote by HW(Dd)
C (Y) the Hurwitz space of equivalence classes of

coverings f ◦ π, defined as above, such that qi among the special points of f have local monodromy whose
cycle type is given by the partition ei, with i = 1, . . . , r. Here, C = (k, q1 e1, . . . , qr er).

Our purpose is to study the irreducibility of the space HW(Dd)
C (Y). We notice that such space is smooth.

So, if we prove that it is connected then we also prove that it is irreducible. We denote by D and by m,
respectively, the branch locus and the monodromy homomorphism of f ◦π. Let (γ1, . . . , γn, α1, β1, . . . , α1, β1)
be a standard generating system for π1(Y−D, b0). The images via m of γ1, . . . , γn, α1, β1, . . . , α1, β1 determine
an equivalence class of Hurwitz systems, [t1, . . . , tn;λ, µ], with monodromy group W(Dd), satisfying the
following conditions: k among the th are elements of type (zi j; (i, j)) and qi, with i = 1, . . . , r, are product of
si positive disjoint cycles whose lengths are given by the elements of the partition ei. From now on, we will
denote by AC,1 the set of all equivalence classes of Hurwitz systems as above. We notice that by Riemann’s
existence theorem, we can identify the set of all the equivalence classes [ f ◦ π] ∈ HW(Dd)

C (Y) such that f ◦ π
has branch locus D with the set AC,1. Let

δ : HW(Dd)
C (Y)→ Y(n) − ∆
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be the map which assigns to each equivalence class [ f ◦ π] the branch locus of f ◦ π. The topology defined
on HW(Dd)

C (Y) is such that δ is a topological covering map (see [8]). Therefore the braid group π1(Y(n) −∆,D)
acts on AC,1. The orbits of this action are in one-to-one correspondence with the connected components
of HW(Dd)

C (Y). So, in order to prove that HW(Dd)
C (Y) is connected, we will prove that π1(Y(n) − ∆,D) acts

transitively on AC,1. We notice that in order to prove this it is sufficient to check that any class in AC,1 is
braid equivalent to a given normal form.

3. Action of π1(Pn − ∆,D) on AC,0

In this section, we study the action of the braid group π1(Pn − ∆,D) on the set AC,0. We give conditions
for which this action is transitive.

Lemma 3.1. Let i ∈ {1, 2, . . . , d − 1}. The sequence

((1̄1i; (1, i)), (0; (1, i)), (⋆; (1, i)), (⋆; (1, i)), (⋆; (i, i + 1)), (⋆; (i, i + 1)))

is braid equivalent to

((⋆; (i, i + 1)), (⋆; (i, i + 1)), (1̄1i+1; (1, i + 1)), (0; (1, i + 1)), (⋆; (1, i + 1)), (⋆; (1, i + 1))).

Proof. Acting by the moves σ′′4 , σ
′′
3 , σ

′′
2 , σ

′′
1 , and if it is necessary with σ′2, we obtain the braid equivalent

sequence

((⋆; (i, i + 1)), (1̄1i+1; (1, i + 1)), (0; (1, i + 1)), (⋆; (1, i + 1)), (⋆; (1, i + 1)), (⋆; (i, i + 1))).

Now, we use the moves σ′5, σ
′
4, σ
′
3, σ
′
2 and so we have got the claim.

Lemma 3.2. The sequence ((⋆; (1, i)), (⋆; (1, i)), (⋆; (i, i+1)), (⋆; (i, i+1))), with i ∈ {1, 2, . . . , d−1}, is braid equivalent
to the sequences

((⋆; (i, i + 1)), (⋆; (i, i + 1)), (⋆; (1, i + 1)), (⋆; (1, i + 1)))

and

((⋆; (1, i + 1)), (⋆; (1, i + 1)), (⋆; (i, i + 1)), (⋆; (i, i + 1))).

Proof. We notice that acting by the braid moves σ′′2 , σ
′′
1 , σ

′′
3 , σ

′′
2 on the second sequence, we can replace it

with the third sequence. So, in order to prove the claim, we must only prove that the first sequence is braid
equivalent to the second. We realize this equivalence by using the moves σ′′2 , σ

′′
1 , σ

′
3, σ
′
2.

Proposition 3.3. The sequence

((1̄12; (1, 2)), (0; (1, 2)), (⋆; (1, 2)), (⋆; (1, 2)), (⋆; (2, 3)), (⋆; (2, 3)), . . . , (⋆; (d − 1, d)), (⋆; (d − 1, d)))

is braid equivalent to

((1̄i j; (i, j)), (0; (i, j)), (⋆; (1, 2)), (⋆; (1, 2)), (⋆; (2, 3)), (⋆; (2, 3)), . . . , (⋆; (d − 1, d)), (⋆; (d − 1, d)))

where i, j are arbitrary indexes of the set {1, 2, . . . , d} with i < j.

Proof. Let i and j be two indexes of the set {1, 2, . . . , d} such that i < j. Separately, we analyze the cases i , 1
and i = 1. At first we suppose i , 1. By using Lemma 3.1, after i − 2 steps, we obtain the braid equivalent
sequence

((⋆; (2, 3)), (⋆; (2, 3)), . . . , (⋆; (i − 1, i)), (⋆; (i − 1, i)), (1̄1i; (1, i)), (0; (1, i)),
(⋆; (1, i)), (⋆; (1, i)), (⋆; (i, i + 1)), (⋆; (i, i + 1)), . . . , (⋆; (d − 1, d)), (⋆; (d − 1, d))).
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We notice that using Lemma 3.2, after j − i steps, we have that the sequence

((⋆; (1, i)), (⋆; (1, i)), (⋆; (i, i + 1)), (⋆; (i, i + 1)), . . . , (⋆; ( j − 1, j)), (⋆; ( j − 1, j)))

is braid equivalent to

((⋆; (i, i + 1)), (⋆; (i, i + 1)), . . . , (⋆; (1, j)), (⋆; (1, j)), (⋆; ( j − 1, j)), (⋆; ( j − 1, j))).

Let h, h+1, v, v+1 be the places occupied by the elements (1̄1i; (1, i)), (0; (1, i)), (⋆; (1, j)), (⋆; (1, j)), respectively.
We act by the moves σ′v−1, σ

′
v, . . . , σ

′
h+2, σ

′
h+3 and we move the pair ((⋆; (1, j)), (⋆; (1, j))) at the places h+2, h+3.

Now, we can use the moves σ′′h+1, σ
′′
h , σ

′′
h , σ

′′
h+1 in order to obtain the following equivalence

((1̄1i; (1, i)), (0; (1, i)), (⋆; (1, j)), (⋆; (1, j))) ∼ ((1̄i j; (i, j)), (0; (i, j)), (⋆; (1, j)), (⋆; (1, j))).

We act with σ′′h−1, σ
′′
h , σ

′′
h−2, σ

′′
h−1, . . . , σ

′′
2 , σ

′′
1 and we move the elements (1̄i j; (i, j)), (0; (i, j)) at first and second

place. Since the sequence

((⋆; (1, j)), (⋆; (1, j)), (⋆; (i, i + 1)), (⋆; (i, i + 1)) . . . , (⋆; ( j − 1, j)), (⋆; ( j − 1, j)))

is braid equivalent to

((⋆; (i, i + 1)), (⋆; (i, i + 1)), . . . , (⋆; ( j − 1, j)), (⋆; ( j − 1, j)), (⋆; (1, j)), (⋆; (1, j))),

it is sufficient to use the Lemma 3.2 for j − 2 times in order to have the claim.
Now, let i = 1. We use the Lemma 3.1 for j − 2 times, then we move the pair ((1̄1 j; (1, j)), (0; (1, j))) at first

and second place and afterwards we use the Lemma 3.2 for j − 2 times. In this way, we have the claim.

In what follows, we associate to the partition ei the following element in Sd having cycle type given by ei

εi := (1, 2, . . . , ei
1)(ei

1 + 1, . . . , ei
1 + ei

2) · · · (
si−1∑
j=1

ei
j + 1 . . . d).

Let ε be the following permutation of Sd

(ε1 · · · ε1ε2 · · · ε2 · · · εr · · · εr)−1

where εi, with i = 1, . . . , r, appears qi times. Let ξ1, . . . , ξq be disjoint cycles of lengths h1, . . . , hq, with
h1 ≥ h2 ≥ · · · ≥ hq, such that ε = ξ1 · · · ξq. Let ξ j = (l j

1 . . . l
j
h j

) where l j
1 < l j

b for each b = 2, . . . , h j. In the

sequel, we denote by Z j the sequence of transpositions ((l j
1, l

j
2), (l j

1, l
j
3), . . . , (l j

1, l
j
h j

)) and by Z the concatenation

Z1,Z2, . . . ,Zq. Moreover, we denote by Z̃ j the sequence ((0; (l j
1, l

j
2)), (0; (l j

1, l
j
3)), . . . , (0; (l j

1, l
j
h j

))) and with Z̃ the

concatenation Z̃1, Z̃2, . . . , Z̃q.
For a convenience of the reader we recall the following results.

Lemma 3.4. ([12], Main Lemma 2.1) Let (t1, . . . , tn;λ1, µ1, . . . , λ1, µ1) be a Hurwitz system with values in an
arbitrary group G. Suppose that ti ti+1 = id. Let H be the subgroup of G generated by {t1, . . . , ti−1, ti+2, . . . , tn, λ1,
µ1, . . . , λ1, µ1}. Then for every h ∈ H the given Hurwitz system is braid equivalent to

(t1, . . . , ti−1, th
i , t

h
i+1, ti+2, . . . , tn;λ1, µ1, . . . , λ1, µ1).

Proposition 3.5. ([14], Theorem 2.3) Let [t1, . . . , tn] be an equivalence class of Hurwitz systems of permutations
in Sd, with monodromy group Sd, satisfying the followings: k among the t j are transpositions and qi among the t j

are permutations whose cycle type is given by the partition ei of d, for i = 1, . . . , r. If k ≥ 3d − 3, [t1, . . . , tn] is braid
equivalent to the class [t̃1, . . . , t̃n] where

t̃1 = . . . = t̃q1 = ε1, t̃q j+1 = . . . = t̃q j+1 = ε j+1



F. Vetro / Filomat 27:8 (2013), 1463–1471 1468

with j = 1, . . . , r − 1. Moreover the sequence (t̃n−k+1, . . . , t̃n) is equal to

(Z, (1, 2), . . . , (1, 2), (2, 3), (2, 3), . . . , (d − 1, d), (d − 1, d))

where (1, 2) appears an even number of times.

Now, by using the previous lemmas and the previous propositions, we can prove the following result.

Proposition 3.6. Let d ≥ 3 be an odd integer. If k ≥ 3d − 1 then each class in AC,0 is braid equivalent to the class

[(0; t̃1), . . . , (0; t̃n−k), Z̃, (0; (1, 2)), . . . , (0; (1, 2)), (1̄12; (1, 2)), (0; (1, 2)),
(1̄12; (1, 2)), (0; (1, 2)), (0; (2, 3)), (0; (2, 3)), . . . , (0; (d − 1, d)), (0; (d − 1, d))],

where t̃1, . . . , t̃n−k are the permutations defined in Proposition 3.5 and (0; (1, 2)) appears an even number of times.

Proof. Let [t] := [t1, . . . , tn] ∈ AC,0 and let ti = (⋆; t′i ). We notice that the equivalence class [t′1, . . . , t
′
n] satisfies

all the hypotheses in Proposition 3.5. So, by Proposition 3.5, [t] is braid equivalent to

[(⋆; t̃1), . . . , (⋆; t̃n−k), (⋆; Z), (⋆; (12)), . . . , (⋆; (d − 1, d))]

where, since k ≥ 3d− 1, the elements of type (⋆; (1, 2)) are at least four. So, it is no restrictive to suppose that
among these elements there are both (1̄12; (1, 2)) and (0; (1, 2)). In fact, if the elements (⋆; (1, 2)) are all equal
among of them, we can use Lemma 3.4, choosing h = (1̄13; id), in order to replace two of these elements with
(1̄12; (1, 2)) or (0; (1, 2)) depending if ⋆ is equal to 0 or 1̄12. Then, by Proposition 3.3, we have that [t] is braid
equivalent to the class

[(a; t̃1), . . . , (⋆; t̃n−k), (⋆; Z), . . . , (⋆; (1, 2)), (1̄i j; (i, j)), (0; (i, j)), (⋆; (1, 2)), (⋆; (1, 2)), . . . , (⋆; (d − 1, d))]

where i and j are arbitrary indexes of the set {1, 2, . . . , d}. Now, we show that this class is braid equivalent to

[(0; t̃1), . . . , (0; t̃q1 ), (⋆; t̃q1+1), . . . , (⋆; Z), . . . , (⋆; (1, 2)), (1̄12; (1, 2)), (0; (1, 2), (⋆; (1, 2)), (⋆; (1, 2)), . . . , (⋆; (d−1, d))].

Separately, we analyze the case in which ε1 fixes a index h ∈ {1, 2, . . . , d} and the case in which ε1 does not
fix any index of {1, 2, . . . , d}.

First case: ε1 fixes h ∈ {1, 2, . . . , d}.
Let i1, i2, . . . , il be the indexes which the function a sends to 1̄. We suppose that i1 < i2 < · · · < il−1 < il.

We choose {i, j} equal to {il, h} and so let v, v + 1 be the places occupied by the elements of the pair
((1̄ilh; (il, h)), (0; (il, h))). By using the moves σ′′v−1, σ

′′
v , . . . , σ

′′
1 , σ

′′
2 , we bring the elements of this pair to first and

second place. In this way, we replace (a; ε1) with (ã; ε1) where ã sends to 1̄ the indexes i1, i2, . . . , il−1, il − 1.
Here, il − 1 is the index that precedes il in ε1. Now, we act by σ′′2 , σ

′′
1 , σ

′
3, σ
′
2, . . . , σ

′
v, σ
′
v−1 and so we move the

pair ((1̄il+1h; (il + 1, h)), (0; (il + 1, h))) next the element of type (⋆; (1, 2)). By Proposition 3.3, we can replace
this pair with ((1̄il−1h; (il − 1, h)), (0; (il − 1, h))) or ((1̄il−2h; (il−2, h)), (0; (il−2, h))) depending if (il − 1) , il−1 or
(il − 1) = il−1. Then, we again reason as above. In this way, after a finite number of steps, we replace (ã; ε1)
with (0; ε1). We can follow this line for all elements of type (⋆; ε1) and so we obtain the claim.

Second case: ε1 does not fix any index of the set {1, 2, . . . , d}.
Let v1, . . . , vs1 be disjoint cycles such that ε1 = v1 · · · vs1 . Let i1, i2, . . . , il be the indexes moved by vi which

a sends to 1̄ and let i1 < i2 < · · · < il. We can proceed as in the previous case but, this time, we use the pair
((1̄ilil−1; (il, il − 1)), (0; (il − 1, il))) instead of ((1̄ilh; (il, h)), (0; (il, h))). In this way, we replace (a; ε1) with (ã; ε1)
where ã sends to 1̄ the indexes i1, i2, . . . , il−1, il − 2. We again proceed as done in the previous case but now
we use the pair ((1̄isis−1; (is, is−1)), (0; (is, is−1))) where is is the greater among of the indexes moved by vi that
ã sends to 1̄. Following this line for indexes of any cycle vi, after a finite number of steps, we replace (ã; ε1)
with (ā; ε1) where ā is a function which sends to 0̄ either all the indexes moved by vi or all but two consecutive
indexes moved of vi. Let h, h + 1 be the indexes of vi that ā sends to 1̄. At first, we suppose that vi moves an
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odd number of indexes. Then, in order to replace ā with a function which sends to 0̄ all the indexes of vi,
it is sufficient to reason as above by using, in the following order, the pairs ((1̄h h+2; (h, h + 2)), (0; (h, h + 2))),
((1̄h−1 h+3; (h− 1, h+ 3)), (0; (h− 1, h+ 3))), . . . , ((1̄h−q h+q+2; (h− q, h+ q+ 2)), (0; (h− q, h+ q+ 2))). Here, q is such
that (h + q + 2) is the index that precedes h − q in ε1.

If vi moves an even number of indexes, we choose one index l moved by a cycle ve with an odd number
of indexes. We notice that a such cycle there existes because d is odd and ε1 does not fix any index of the
set {1, 2, . . . , d}. Then, we use the pair ((1̄h+1l; (h + 1, l)), (0; (h + 1, l))) in order to replace ā with a function
which sends to 0̄ all the indexes moved by vi and sends to 1̄ the indexes l, l− 1. Now, we are in the previous
situation and then we can proceed as above. Reasoning in this way for all elements of type (⋆; ε1), we
obtain the claim.

We can follow the previous reasoning for any (⋆; ε j), with j = 2, . . . , r, and for any element in the
sequence (⋆; Z). In this way, we obtain the braid equivalent sequence

[(0; ε1), . . . , (0; εr), Z̃, (⋆; (1, 2)), . . . , (⋆; (1, 2)), (1̄12; (1, 2)), (0; (1, 2)), (⋆; (2, 3)), . . . , (⋆; (d − 1, d))].

We notice that

(0; ε1) · · · (0; εr) Z̃ (⋆; (1, 2)) · · · (⋆; (2, 3)) · · · (⋆; (d − 1, d)) = (0; id).

This implies that the elements of the pair ((⋆; (i, i + 1)), (⋆; (i, i + 1))) are equal among of them for each
i = 2, . . . , d − 1. Moreover, the elements of type (1̄12; (1, 2)) are an even number.

If (⋆; (d − 1, d)) = (1̄d−1d; (d − 1, d)), we use d − 3 times the Lemma 3.2, then we act by the moves
σ′n−2, σ

′
n−3, σ

′
n−1, σ

′
n−2, σ

′
n−2, σ

′
n−3, σ

′
n−1, σ

′
n−2 and, afterwards, we use the Lemma 3.2 other d − 3 times. In this

way, we replace the pair ((1̄d−1d; (d − 1, d)), (1̄d−1d; (d − 1, d))) with ((0; (d − 1, d)), (0; (d − 1, d))).
We reason as above for any pair ((⋆; (i − 1, i)), (⋆; (i − 1, i))), with i = 2, . . . , d − 1, such that ⋆ = 1̄. Now, if

in the sequence

((⋆; (1, 2)), . . . , (⋆; (1, 2)), (1̄12; (1, 2)), (0; (1, 2)), (0; (2, 3)), . . . , (0; (d − 1, d)))

there are more of two (1̄12; (1, 2)), we place them as follows

((0; (1, 2)), . . . , (0; (1, 2)), (1̄12; (1, 2)), . . . , (1̄12; (1, 2)), (0; (1, 2)), (0; (2, 3)), . . . , (0; (d − 1, d))).

Let j = n − (2d − 4) + 1 and let h be the place occupied, in the sequence above, by the first elements
(1̄12; (1, 2)) that we see proceeding from left toward right. We act by the braid moves

σ′′j−1, σ
′′
j−2, σ

′′
j−2, σ

′′
j−1, σ

′′
j−3, σ

′′
j−2, σ

′′
j−4, σ

′′
j−3, . . . , σ

′′
h+1, σ

′′
h+2

and so we have that the sequence above is braid equivalent to

((0; (1, 2)), . . . , (0; (1, 2)), (1̄12; (1, 2)), (1̄13; (1, 3)), (0; (1, 3)), (0; (1, 2)), . . . , (0; (1, 2)),
(1̄23; (2, 3)), (0; (2, 3)), . . . , (0; (d − 1, d)))

We obtain the claim by using the following moves

σ′′h+2, σ
′′
h+1, σ

′′
h+3, σ

′′
h+2, . . . , σ

′′
j−2, σ

′′
j−3, σ

′
j−1, σ

′
j−2, σ

′
j−2, σ

′
j−1, σ

′
h, σ
′
h+1, . . . , σ

′
j−5.

Remark 3.7. We notice that Proposition 3.6 is also true for d even, if for each i = 1, . . . , r one among of the following
conditions is satisfied:

• εi fixes at least one index of the set {1, 2, . . . , d};

• at least one among of the ei
j, with j = 1, . . . , si, is an odd integer.
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4. Main Result

In this short section, we state and prove the main result of this paper. Such result is a direct consequence
of Proposition 3.6 and Remark 3.7.

Theorem 4.1. Let k ≥ 3d − 1. If d is odd or if d is even and the conditions of Remark 3.7 are satisfied, the Hurwitz
space HW(Dd)

C (Y) is irreducible.

Proof. The irreducibility of HW(Dd)
C (P1), under the hypothesis k ≥ 3d − 1, follows by Proposition 3.6 and

Remark 3.7, immediately. Thus, we suppose 1 ≥ 1. We have got the claim if we prove that each equivalence
class in AC,1 is braid equivalente to a class of the form [ t̃; (0; id), (0; id), . . . , (0; id), (0; id)]. In fact, the class [ t̃ ]
belongs to AC,0 and so the theorem follows by Proposition 3.6 and Remark 3.7.

Let [t;λ, µ] ∈ AC,1 with ti = (∗; t′i ), λk = (∗;λ′k) and µk = (∗;µ′k). We notice that [t′1, . . . , t
′
n;λ′1, µ

′
1, . . . , λ

′
1, µ

′
1]

is the equivalence class of Hurwitz systems associated to a degree d ≥ 3 covering of Y, with monodromy
group Sd, with k simple points and with n − k special points, qi among of which have local monodromies
with cycle type given by the partition ei of d. Since, under the hypothesis k ≥ 3d − 1, the Hurwitz space
parameterizing coverings as above is irreducible (see [26], Theorem 2), the equivalence class [t;λ, µ] is braid
equivalent to a class of the form

[t̄1, . . . , t̄n; (⋆; id), (⋆; id), . . . , (⋆; id), (⋆; id)].

Furthermore, following the proof of Proposition 3.6, we have that the above class is braid equivalent to

[. . . , (1̄i j; (i, j)), (0; (i, j)), . . . ; (a1; id), (b1; id), . . . , (a1; id), (b1; id)]

where i, j are arbitrary indexes of {1, . . . , d}. Now, if as = 0 and bv = 0 for each 1 ≤ s, v ≤ 1, the claim follows
by Proposition 3.6 and Remark 3.7. So, we suppose as , 0 and al = bl = 0, for each l ≤ s − 1. We recall that
all the functions av and bv, with v = 1, . . . , 1, different from zero send to 1̄ an even number of indexes (see
Definition 2.1). So, let e, h be two among of the indexes that as sends to 1̄. We choose {i, j} equal to {e, h} and
we bring, acting by moves of type σ′′∗ , to first and second place the elements of the pair ((1̄eh; (e, h)), (0; (e, h))).
Now, we use the moves τ′′1s, σ

′′
1 , τ

′′
1s and we replace (a1; id) with (1̄eh; id) (a1; id) where 1̄eh + a1 is a function that

sends e, h to 0̄.
Again, following the proof of Proposition 3.6, we obtain that our class is braid equivalent to a class of

the form

[. . . , (1̄i j; (i, j)), (0; (i, j)), . . . ; (0; id), . . . , (0; id), (a′s; id), . . . , (a′1; id), (b′1; id)]

where a′s is a function that sends to 1̄ the same number of indexes sent to 1̄ by 1̄eh + a1. Now, we can proceed
as above. In this way, after a finite number of steps, we replace (as; id) with (0; id).

We notice that we reason in the same way, if bs , 0, al = bl = 0, for each l ≤ s − 1, and as = 0 but we
apply the braid move ρ′1s, σ

′′
1 , ρ

′
1s to transform (bs; id) into (0; id). Following this line, for all the functions av

and bv different from zero, we obtain the claim.
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[11] A. Hurwitz, Ueber Riemann’schen Flächen mit gegebenen Verzweigungspunkten, Mathematische Annalen 39 (1891) 1–61.
[12] V. Kanev, Irreducibility of Hurwitz spaces, preprint n. 241, Dipartimento di Matematica ed Applicazioni, Università di Palermo
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