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Abstract. A new relaxation strategy is presented in this paper to approximately solve the quadratically
and linearly constrained quadratic programming. To improve the conservation of traditional semidefinite
relaxation (SDR) strategy, we introduce a new linear constraint, which can be derived from the constraints
of original problem, to the SDR problem. Furthermore, a randomization method is provided to extract good
feasible solution of original problem from optimal solution of relaxed problem. Some numerical examples
show that the proposed method can efficiently improve the performance of the traditional SDR strategy.

1. Introduction

Consider the quadratically constrained quadratic programming (QCQP):

min
x

xTP0x + 2bT
0 x + d0 (1)

s.t. xTPix + 2bT
i x + di ≤ 0, i = 1, . . . , l,

where x, bi ∈ Rn and di ∈ R. Note that Pi can be indefinite, so the above problem includes all optimization
problems with polynomial objective function and polynomial constraints [1, 2]. If all the matrices Pi are
positive semidefinite, then the QCQP problem (1) is convex and can be efficiently solved to the global
optimum. However, if one of the Pi is indefinite, then the QCQP is non-convex in general and is com-
putationally difficult to solve. Therefore, it is of practical importance to develop tractable lower bounds
on the optimal value and derive good (but not necessarily optimal) feasible solutions to problem (1). An
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important lower bound was given by Shor’s relaxation in [3]:

max
γi,t

t (2)

s.t.
[
P0 b0
bT

0 d0 − t

]
+ γ1

[
P1 b1
bT

1 d1 − t

]
+ · · · + γl

[
Pl bl
bT

l dl − t

]
≤ 0,

γi ≥ 0, i = 1, . . . , l,

which is a positive semidefinite programming (SDP) with variables t and γi. It is shown in [4] that problem
(2) is the dual of the following optimization problem:

min
(x,∆)∈A

Tr(P0∆) + 2bT
0 x + d0, (3)

where

A = {(x,∆)|Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l, ∆ ≥ xxT}

=

{
(x,∆)

∣∣∣∣Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l,

[
∆ x
xT 1

]
≥ 0
}
.

The problem (3) is traditionally called as the semidefinite relaxation (SDR) of problem (1), and it is easy to
verify that both of the two problems yield the same lower bound for (1).

In recent years, the SDP relaxations for combinatorial optimization problems and non-convex QCQPs
have attracted much attention due to the remarkable development of interior-point methods for SDP
problems [4–7]. In fact, it has been applied to deal with a lot of important engineering problems, which can
be cast in the form of a non-convex QCQP or fractional QCQP, in signal processing and communications
[8]. Roughly speaking, the SDR is a powerful, computationally efficient approximation technique for a host
of very difficult optimization problems [9].

Note that problem (1) is the same as

min
(x,∆)∈O

Tr(P0∆) + 2bT
0 x + d0,

where O = {(x,∆)|Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l, ∆ = xxT}, we can regard problem (3) as the relaxation

of problem (1) by directly replacing non-convex constraint ∆ = xxT with convex constraint ∆ ≽ xxT.
If we are further given linear constraints on the variable x, such as 0 ≼ x ≼ e, where e is the vector

with all components being 1, then problem (1) can also be relaxed to a convex problem by utilizing the
well-known “αBB” underestimator [10] and the reformulation-linearization technique (RLT) [11]. The αBB
underestimator gives a convex relaxation of the original non-convex problem by replacing all non-convex
terms of special structure with customized tight convex lower bounding functions. A generalization of
αBB procedure is proposed in [12] to approximately solve a class of non-convex quadratic programs with
a non-convex quadratic objective function and convex quadratic constraints. The RLT utilizes the bound
constraints on x to derive new convex constraints. However, the RLT doesn’t utilize the available knowledge
of matrix∆ from the condition∆ = xxT, therefore, some methods have been proposed to strengthen the RLT
technique. The SDR is combined with the RLT in [13] to derive convex relaxation for the QCQP, and the
test problems provided in [13] show that the use of SDP and RLT constraints together can produce bounds
that are substantially better than either technique used alone. Kim and Kojima [14] proposed a second-
order cone programming relaxation to strengthen the lift-and-project linear programming relaxation by
adding convex quadratic valid inequalities derived from the semidefinite condition ∆ ≽ xxT. The tighter
bounds were presented in [15] by adding linear inequalities implied by ∆ ≽ xxT to the RLT relaxation. The
comparison results of convex relaxations for the problem of minimizing a quadratic objective subject to
linear and quadratic constraints are proposed in [16].
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In this paper, we consider the following quadratic programming with quadratic and linear constraints:

min
x

xTP0x + 2bT
0 x + d0 (4)

s.t. xTPix + 2bT
i x + di ≤ 0, i = 1, . . . , l,

x ≽ 0.

Note that the QCQP problem is invariable when we employ an affine transformation to x, the linear
constraint x ≽ 0 is very general, including any case in which the lower bound on x is given. Obviously,
problem (4) is intractable in general. However, we can use SDR method to derive the approximate value of
problem (4). In order to improve the lower bound, we introduce a convex linear constraint, which is derived
from the constraints of original problem, to the SDR of problem (4), then a novel semidefinite relaxation
with linear constraint (SDRLC) is provided to approximately solve the original NP-hard problem (4). Of
course, the optimal solution of the relaxed problem is not necessary feasible to original problem, so it is a
fundamental issue how to convert the globally optimal solution of relaxed problem into a feasible solution
of original problem. Recently, the algorithm based on randomization method is being widely employed
in science research. The algorithm employs a degree of randomness as part of its logic, and typically
uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good
performance in the ”average case” over all possible choices of random bits. The randomization method has
been proved to be a very efficient way to derive feasible solution of non-convex QCQP problem from its
SDR relaxation [9, 17], therefore, it provides us a good strategy to extract an approximate QCQP solution
from SDRLC relaxation.

The remainder of this paper is organized as follows. In Section 2, the SDRLC method is presented. The
randomized method is adopted to derive a good feasible solution of the QCQP using SDRLC strategy in
Section 3. Section 4 provides some numerical examples to compare the presented relaxation strategy with
traditional relaxation strategy. A conclusion is given in Section 5.

2. Semidefinite relaxation with linear constraint complement

Note that problem (4) is equivalent to

min
x,∆

Tr(P0∆) + 2bT
0 x + d0 (5)

s.t. Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l,

∆ = xxT, x ≽ 0.

Let

C = {(x,∆)|Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l, ∆ = xxT, x ≽ 0},

C̃ = {(x,∆)|Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l, ∆ ≽ xxT, x ≽ 0}.

For any (x,∆) ∈ C, we have

Tr(∆) = xTx ≤
(
max
x∈C
∥x∥∞

) n∑
j=1

x j =
(
max
x∈C
∥x∥∞

)
eTx.

Denote

α
△
= max

x∈C̃
∥x∥∞ = max

x∈C̃
{eT

1 x, . . . , eT
nx}, (6)
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where e j ( j = 1, . . . ,n) be column vectors with all elements being zero except the j-th being 1, then the
optimization problem (6) is convex. Thus, from C ⊆ C̃, problem (5) can be rewritten as

min
x,∆

Tr(P0∆) + 2bT
0 x + d0 (7)

s.t. Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l,

∆ = xxT, x ≽ 0, Tr(∆) ≤ αeTx.

Since the unique non-convex constraint in (7) is ∆ = xxT, one can directly relax it to the convex constraint
∆ ≽ xxT, then the following convex relaxation of problem (7) is derived:

min
x,∆

Tr(P0∆) + 2bT
0 x + d0 (8)

s.t. Tr(Pi∆) + 2bT
i x + di ≤ 0, i = 1, . . . , l,

∆ ≽ xxT, x ≽ 0, Tr(∆) ≤ αeTx.

In rest of the paper, we call (8) as the SDRLC problem of (7). Obviously, problem (8) is an SDP, which can
be solved by many available SDP solvers.

Remark 1. The linear constraint in problem (4) can be generalized to the case a ≼ x ≼ b, x ≽ a or x ≼ b, which
correspond to the constraint 0 ≼ x ≼ c, x ≽ 0 or x ≼ 0 respectively since the QCQP problem is affine invariable. For
the case x ≼ 0, a similar procedure gives SDRLC of problem (4).

Theorem 1. The optimal value of problem (8) gives a lower bound on the objective value of problem (4), and the lower
bound is larger or equal to the one provided by the SDR method.

Proof. Note that the feasible set of problem (7) is a subset of that of problem (8), therefore, the optimal value
of problem (4) is not less than that of problem (8). The rest proof follows from the fact that an additional
linear constraint is used in the SDRLC strategy compared with the SDR strategy.

Remark 2. With an additional linear constrain, the presented method performs better than the SDR methods.
However, the parameter α involved in the linear constrain need to be given by solving the optimization problem
(6), thus, the computational load of the presented method is higher than that of the SDR method. Fortunately, the
computational complexity of problem (6) is not high, therefore, the SDRLC can be a good alternative strategy of the
SDR.

Example 1. Consider the following QCQP problem:

min f (x) (9)
s.t. fi(x) ≤ 0, i = 1, 2, 3,

x ≥ 0,

where,

f (x) = −x2
1 + 5x2

2 − 20x1x2 + 4x1 + 20x2,

f1(x) = 2x2
1 + 5x2

2 − 2x1x2 + 5x1 + 4x2 − 15,

f2(x) = 2x2
1 + x2

2 + 2x1x2 − 6x1 − 4x2 − 10.

The optimization problem (9) is non-convex owing to the non-convex objective function. Employing different relaxed
strategies, the optimal values of problem (9) and corresponding relaxation problems are given as follows:

original SDR SDRLC SDR + RTL SDRLC + RTL
objective −1.1758 −40.4623 −9.1096 −40.4623 −3.2334
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As we have expected, the SDRLC approach can provide more accurate approximation of the QCQP problem, and
improve the lower bound given by SDR remarkably. At the same time, combined with RLT technique, the proposed
method can also provide a tenser approximation of the QCQP problem.

3. Extraction of approximate solution

In Section 2, we propose a relaxation method to approximately solve quadratic programming (4). If the
optimal solution (x̂, ∆̂) of problem (8) satisfies ∆̂ = x̂x̂T, i.e., ∆̂ is rank-one, then x̂ must be a feasible (in fact
optimal) solution of problem (4). Otherwise, the optimal solution of the relaxed problem is not necessary
feasible to the original problem, then some efficient methods must be taken to extract feasible solution of
original problem from (x̂, ∆̂). However, it must be emphasized that even the extracted solution is feasible
to original problem, it is in general not an optimal solution.

Obviously, if Pi (i = 1, . . . , l) are positive semidefinite, then the optimal solution to the SDRLC problem
is also feasible to problem (4). However, when there is at least one Pi in the constraints of problem (4)
is indefinite, the above fact is not true. So it is necessary to seek for the general method to extract an
approximate QCQP solution from the optimal solution of relaxed problem. In [9] and [18], some methods,
including rank-one approximation and randomization, have been proposed to derive the feasible solutions
of the QCQP problem from SDR solution. As pointed out in [9], randomization is a more efficient but
equivalently simple method. In the sequel, we use the randomized method to extract feasible solution of
problem (4) from the optimal solution of the relaxed problem (8).

Note that xTx ≤ αeTx holds for any feasible solution x of problem (4), therefore, problem (4) can be recast
as

min
x

xTP0x + 2bT
0 x + d0 (10)

s.t. xTPix + 2bT
i x + di ≤ 0, i = 1, . . . , l,

xTx ≤ αeTx, x ≽ 0.

Let ζ ∈ Rn be a Gaussian random vector with mean x and covariance matrix∆−xxT, i.e., ζ ∼ N(x,∆−xxT).
Consider the following stochastic optimization problem:

min
x,∆

E(ζTP0ζ + 2bT
0ζ + d0) (11)

s.t. E(ζTPiζ + 2bT
i ζ + di) ≤ 0, i = 1, . . . , l,

E(ζTζ − αeTζ) ≤ 0,
E(ζ) ≽ 0.

For the above optimization problem, we choose the parameters x and ∆ to minimize the expected value of
the quadratic objective while the quadratic and linear constraints are satisfied in expectation. Problem (11)
implies that ζ solves problem (10) (i.e., problem (4)) “in expectation”. It is easy to derive that Problem (11)
is equivalent to

min
x,∆

E[Tr(P0ζζ
T) + 2bT

0ζ + d0] (12)

s.t. E[Tr(Piζζ
T) + 2bT

i ζ + di] ≤ 0, i = 1, . . . , l,

E[Tr(ζζT) − αeTζ] ≤ 0,
E(ζ) ≽ 0.

Direct computation shows that E(ζζT) = ∆ and E(ζ) = x, together with the fact that ∆ − xxT = Var(ζ) ≽ 0,
therefore, the stochastic optimization problem (12) can be rewritten as the SDRLC problem (8). It provides
us a way to derive approximate solutions to problem (4). In fact, after obtaining the optimal solution (x0,∆0)
of problem (8), we can pick a random vector ζ from the Gaussian distribution N(x0,∆0 − x0xT

0 ), and then
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project it to the feasible region of problem (4). The procedure can be performed multiple times and one can
pick only the best approximate solution. Because ζ solves problem (4) in expectation, so it suggests that
a good approximate solution ζ̂ can be obtained by sampling enough times from the Gaussian distribution
N(x0,∆0 − x0xT

0 ). Of course, for some special classes of the QCQP problems, the randomization procedure
may be simpler, and the projection method can be also different from problem to problem.

4. Some examples

In Section 2, we have proved that the SDRLC method can provide better approximation of the QCQP
problem than SDR method. A natural problem is whether or not, by combining a randomization procedure,
the SDRLC method can give a better feasible solution of original problem than the SDR method. It is difficult
to give an extensive theoretical analysis, however, a lot of numerical examples illustrate that the answer is
yes (at leat in average). In this section, using randomized method, we provide some examples to compare
approximate performance of the relaxation strategies.

Example 2. Consider the following class of QCQP problems:

max
x
∥x∥22 (13)

s.t. xTP̄ix ≤ 1, i = 1, . . . , l,

where x ∈ Rn and P̄i ≽ 0 for all i = 1, . . . , l. To guarantee that problem (13) makes sense, we require
∑l

i=1 P̄i ≻ 0.
The maximization QCQP problem (13), opposed to the downlink transmit beamforming problem in communica-

tions, is motivated by the (uplink) receiver intercept beamforming problem in which the base station, equipped with
an antenna array, is capable of suppressing signals impinging from irrelevant or hostile emitters, and meanwhile
achieving as high a gain as possible for desired signals [8].

The constraints of problem (13) imply that the feasible region of the problem must be bounded. Thus, we can find
an appropriate vector a satisfying x ≽ a for all x, which is feasible to problem (13). Let x̄ = x − a, then we can rewrite
problem (13) as follows:

max
x̄

[x̄T 1]
[
In a
aT ∥a∥2

] [
x̄
1

]
s.t. [x̄T 1]

[
P̄i P̄ia

(P̄ia)T aTP̄ia

] [
x̄
1

]
≤ 1, i = 1, . . . , l,

[x̄T 1] ≽ 0.

Therefore, without loss of generality, we can recast problem (13) as:

max
x

xTCx (14)

s.t. xTPix ≤ 1, i = 1, . . . , l,
x ≽ 0,

where C and Pi are real symmetric matrices. Using the proposed relaxation method, problem (14) can be relaxed to

max
x,∆

Tr(C∆) (15)

s.t. Tr(Pi∆) ≤ 1, i = 1, . . . , l,

Tr(∆) ≤ α1eTx,

∆ ≽ xxT, x ≽ 0,



D. Wu, A. Hu, J. Zhou, S. Wu / Filomat 27:8 (2013), 1511–1521 1517

where α1 is the optimal value of problem (6) by taking

C̃ = {(x,∆)|Tr(Pi∆) ≤ 1, i = 1, . . . , l, ∆ ≽ xxT, x ≽ 0}.

Since the relaxation problem (15) is not tight in general, one can use the randomization approach to extract feasible
solution of original problem (14). Let (x0,∆0) be the optimal solution of problem (15), then the extraction procedure
can be finished through the following steps:

(1) Pick random vectors ζk (k = 1, . . . ,L) from Gaussian distribution N(x0,∆0−x0xT
0 ), then introduce new variable

ζ̄k as follows: for j-th component of ζ̄k, let

ζ̄k( j) =
{
ζk( j), if ζk( j) ≥ 0;
0, otherwise, j = 1, . . . ,n, k = 1, . . . ,L.

(2) Denote x(ζ̄k) = ζ̄k

/
max1≤i≤l

√
|ζ̄T

k Piζ̄k|.
(3) Let

x̂ = arg max
1≤k≤L

x(ζ̄k)TCx(ζ̄k)

be the approximate solution to problem (14).

Denote the optimal value of the considered maximization QCQP problem by vqp, and the optimal values of
corresponding SDR and SDRLC problems by vsdr and vslc respectively, then we have

vsdp ≥ vslc ≥ vqp.

Furthermore, denote the objective function of the QCQP problem by v(x), and the extracted approximate solutions to
the QCQP problem with SDR and SDRLC method by x̂sdr and x̂slc respectively, then

v(x̂sdr) ≤ vqp and v(x̂slc) ≤ vqp,

therefore,
vsdr ≥ vqp ≥ v(x̂sdr) and vslc ≥ vqp ≥ v(x̂slc).

The above inequalities give two interval estimates of vqp corresponding to the SDR and SDRLC relaxation strategies.
Since vqp is not available in practice, to compare the two relaxation methods, we consider the lengths vsdr−v(x̂sdr) and
vslc − v(x̂slc) of the relevant interval estimates, named empirical approximate gaps (EAGs). A smaller EAG implies a
better relaxation method for the corresponding QCQP problem.

Simulation 1. Consider problem (14) with n = 4 and l = 8. Let C = I and Pi = pipT
i , where each component

of pi (i = 1, . . . , l) is independent and identically distributed Gaussian random variable with zero mean and unit
variance. Using the randomization procedure with L = 1000, the simulation results of SDR and SDRLC methods for
problem (14) running 200 independent trials are presented in Table 1.

mean min max
frequency

[0, 0.3) [0.3, 0.6) [0.6, 1) [1, 2) [2, 5) [5, 17)

SDR 1.8957 0.0068 16.0526 15% 10% 16.5% 23.5% 30% 5%

SDRLC 0.4079 0.0030 1.8167 40.5% 41.5% 13.5% 4.5% 0 0

Table 1: The comparison of the EAGs in the case of positive semidefinite Pi.

As shown in Table 1, for the 200 instances, the average and maximum EAGs of SDR method are 4.6 and 8.8
times larger than those of SDRLC method respectively. Moreover, the percentage of the EAGs less than 0.6 attains
82% using SDRLC method in contrast to 25% using SDR method. Thus, the SDRLC approach provides better
approximate solution and interval estimate for problem (14).
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Simulation 2. In this simulation, we compare the approximation performance of SDP and SDPLC methods when
problem (14) involves some indefinite matrices Pi. We take l = 8 and n = 4, and the matrices Pi are randomly
generated, with 25% indefinite symmetric matrices and 75% rank-one positive semidefinite matrices. With the same
procedure as in Simulation 1, the results are given in Table 2.

mean min max
frequency

[0, 0.3) [0.3, 0.6) [0.6, 1.5) [1.5, 5) [5, 20) [20, 100)

SDR 5.8271 0.0053 99.6494 3% 7% 25.5% 36% 23% 5.5%

SDRLC 1.7565 0.0034 19.8329 15% 30% 30% 17% 8% 0

Table 2: The comparison of the EAGs in the case of 25% indefinite Pi.

From Table 2, the SDRLC method leads to markedly smaller maximum and average EAGs, and 75% of the AEGs
are less than 1.5. In contrast, using the SDR method, only 25.5% of the AEGs are less than 1.5, and 28.5% of the
AEGs are larger than 5. Thus, the SDRLC method still has better approximate performance when some of matrices
Pi are indefinite. At the same time, one can observe that the average AEGs of both relaxation methods are larger
than those given in Simulation 1, which implies that the approximate performances of SDR and SDRLC methods will
degrade when the problem (14) involves some indefinite matrices Pi.

Example 3. Consider the following non-convex fractional quadratic optimization problem

max
x

xTRx
xTQx + 1

(16)

s.t. xTPix ≤ 1, i = 1, . . . , l,
x ≽ 0,

where x ∈ Rn, and R, Q and Pi are positive semidefinite matrices. The problem (16) is NP-hard, and includes problem
(14) as a special case. It is an important model in the network beamforming [17, 19].

Using the SDRLC approach, problem (16) is relaxed as

max
x,∆

Tr(R∆)
Tr(Q∆) + 1

(17)

s.t. Tr(Pi∆) ≤ 1, i = 1, . . . , l,

Tr(∆) ≤ α1eTx,

∆ ≽ xxT, x ≽ 0,

where α1 is given as in Example 2. The above problem can be recast as the following epigraph form:

max
x,∆,t≥0

t

s.t. Tr(R∆) ≥ tTr(Q∆) + t,
Tr(Pi∆) ≤ 1, i = 1, . . . , l,

Tr(∆) ≤ α1eTx,

∆ ≽ xxT, x ≽ 0,

which is a quasi-convex problem and can be solved by the bisection method. Denote the optimal solution of problem
(17) by (x1,∆1), then we provide an approximate solution of problem (16) by employing the following Gaussian
randomization procedure:
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(1) Generate random vectors ζk (k = 1, . . . ,L) from Gaussian distribution N(x1,∆1 − x1xT
1 ). Then introduce new

variable ζ̄k as follows: for j-th component of ζ̄k, let

ζ̄k( j) =
{
ζk( j), if ζk( j) ≥ 0;
0, otherwise, j = 1, . . . ,n, k = 1, . . . ,L.

(2) Denote x(ζ̄k) = ζ̄k

/
max1≤i≤l

√
|ζ̄T

k Piζ̄k|.
(3) Let

x̂ = arg max
1≤k≤L

x(ζ̄k)TRx(ζ̄k)
x(ζ̄k)TQx(ζ̄k) + 1

be the approximate solution to problem (16).

Simulation 3. Consider an instance of problem (16) by taking Pi, R and Q as follows:

P1 =


0.1425 −0.2353 −0.4085 −0.2949
−0.2353 0.3884 0.6745 0.4869
−0.4085 0.6745 1.1714 0.8455
−0.2949 0.4869 0.8455 0.6102

 ,

P2 =


0.0875 −0.2364 0.0389 −0.1683
−0.2364 0.6385 −0.1051 0.4546
0.0389 −0.1051 0.0173 −0.0748
−0.1683 0.4546 −0.0748 0.3237

 ,

P3 =


2.1760 −1.3879 −0.5751 1.2121
−1.3879 0.8853 0.3668 −0.7731
−0.5751 0.3668 0.1520 −0.3204
1.2121 −0.7731 −0.3204 0.6752

 ,

P4 =


0.0548 0.2322 −0.0206 0.0622
0.2322 0.9842 −0.0873 0.2635
−0.0206 −0.0873 0.0077 −0.0234
0.0622 0.2635 −0.0234 0.0705

 ,

R =


0.1232 0.2604 0.3334 0.1820
0.2604 0.5506 0.7049 0.3849
0.3334 0.7049 0.9023 0.4927
0.1820 0.3849 0.4927 0.2690

 ,

Q =


2.0837 −1.4547 0.6404 1.4238
−1.4547 1.0156 −0.4471 −0.9940
0.6404 −0.4471 0.1968 0.4376
1.4238 −0.9940 0.4376 0.9729

 .
The global optimal solution and objective value of problem (16), and the extracted approximate solutions from the
optimal solutions of SDRLC and SDR with randomization methods for different sample size L are listed in Table 3.

We can observe in Table 3 that, to obtain feasible solution with the same objective value, the SDRLC method
needs far less sample size than the SDR method. For example, with randomization, the SDRLC method only needs
500 samples to derive feasible solution with objective 2.0648, which is close enough to the optimal value 2.0660 of
problem (16), however, the sample size using SDR method is larger than 500000 to obtain the same approximate effect.
Therefore, the proposed method can provide better feasible solution.

5. Conclusion

A new relaxation method is presented to approximately solve non-convex QCQP problem, and random-
ization is introduced to extract good feasible solution of original QCQP problem from the optimal solution
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solution objective

optimal (0.6237, 0.9153, 0.6144, 0) 2.0660

L SDR SDRLC SDR SDRLC

500 (0.6539, 0.5409, 0.8406, 0) (0.6180, 0.9164, 0.6114, 0) 1.2804 2.0648

1000 (0.6441, 0.6157, 0.7941, 0) (0.6178, 0.9165, 0.6115, 0) 1.4367 2.0654

5000 (0.4605, 0.7026, 0.6800, 0) (0.6240, 0.9152, 0.6146, 0) 1.6556 2.0659

10000 (0.6858, 0.9011, 0.6196, 0) (0.6232, 0.9154, 0.6142, 0) 1.9950 2.0659

50000 (0.6827, 0.9015, 0.6155, 0) (0.6273, 0.9147, 0.6161, 0) 1.9864 2.0659

100000 (0.6731, 0.8797, 0.6522, 0) (0.6215, 0.9158, 0.6134, 0) 1.9958 2.0660

500000 (0.6212, 0.9145, 0.6140, 0) (0.6249, 0.9151, 0.6150, 0) 2.0636 2.0660

Table 3: The comparison of the approximation performances of SDRLC and SDR approaches.

of the SDRLC problem. The new relaxation strategy provides a tenser solution than the traditional SDR
strategy theoretically. Some examples are given to compare the approximate performances of the SDR and
SDRLC approaches.
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