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Abstract. We investigate modifications of the selection principles for various kinds of convergences
introduced by L. Bukovský and J. Šupina [9]. We show that if we restrict our selection principles to
continuous functions then they split just to two equivalence classes. Considering other families of limit
functions we obtain our main result saying that selecting “from every sequence of a sequence of sequences
of functions” or just “from infinitely many sequences” can produce properties which can be consistently
distinguished. Moreover, we show that our selection principles are characterizations of some properties of
a topological space, e.g. hereditarily Hurewicz space or hereditarily S1(Γ, Γ)-space.

1. Introduction

All topological spaces throughout the paper are assumed to be Hausdorff and infinite. For preliminary
definitions see Section 2. We follow mainly [4] and [13]. More about cardinal invariants can be found e.g.
in [2].

We investigate sequence selection principles for functions on a topological space. These principles
contain principles investigated by A.V. Arkhangel’skiı̆ [1], M. Scheepers [37], L. Bukovský and J. Haleš [6]
and L. Bukovský and J.Š. [9]. Differences among them are so slight that all investigated selection principles
AB(F ,G) and wAB(F ,G) can be consistently with ZFC equivalent. However, under some set-theoretical
assumptions weaker than CH, many of the principles can be distinguished. Hence, statements about some
relations are undecidable in set theory ZFC.

Let A, B denote one of the following types of convergence: P pointwise, Q quasi–normal, D discrete.
Let X be a topological space, F ,G ⊆ XR being families of functions containing the zero function on X. We
say that X has the sequence selection property AB(F ,G), if for any functions fn,m ∈ Cp(X), fn ∈ F , f ∈ G,
n,m ∈ ω, such that

a) fn,m
A−→ fn on X for every n ∈ ω,

b) fn
A−→ f on X,
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Email address: jaroslav.supina@upjs.sk (Jaroslav Šupina)
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there exists an unbounded β ∈ ωω such that

fn,β(n)
B−→ f on X.

If there exist an increasing α ∈ ωω and an unbounded β ∈ ωω such that fα(n),β(n)
B−→ f on X then

we say that topological space X has the weak sequence selection property wAB(F ,G). Actually, these
weak selection properties turned out to be interesting as well. Moreover, some weak versions of selection
properties can be distinguished from their stronger versions under some set-theoretical assumptions. The
list of such properties is presented in Theorem 8.3.

Our main focus will be familyB(X) or simplyB of all Borel functions on X, family Cp(X) of all continuous
functions on X, and family containing only zero function {0}. Interesting results are obtained for family
U or U(X) of all upper semicontinuous functions on X with values in [0, 1]. One can easily see that the
whole space XR of all real-valued functions on X as families F ,G in definitions of properties AB(F ,G) and
wAB(F ,G) is in fact abundant. Therefore we shall use the family of all Borel functions on X instead of
XR (i.e., always F ,G ⊆ B). However, in case of family F we could use the family of all Fσ-measurable
functions on X and in case of family G we could use the family of all second Baire class functions on X.
Note that quasi-normal limit of continuous functions in a normal space is ∆0

2-measurable, i.e., both Fσ and
Gδ-measurable.

Since fn → f if and only if fn − f → 0 for any fn, f ∈ Cp(X), selection property wPP({0},{0}) is equivalent
with the property (α4) for Cp(X) introduced and investigated by A.V. Arkhangel’skiı̆ [1]. Similarly, property
PP({0},{0}) is equivalent with the sequence selection property for Cp(X) introduced by M. Scheepers [37].
These two properties are equivalent for Cp(X) with similar properties considered by D.H. Fremlin [14], see
e.g. [38] and [39]. Property DP({0},{0}) was considered by L. Bukovský and J. Haleš [6]. Note that there is
other comprehensive investigation of (αi)-like properties introduced by Lj.D.R. Kočinac [22], for more see
e.g. [23].

The paper [9] by the author and L. Bukovský is devoted to the study of properties AB(B,B) and AB(B,{0})
under notation ASB and ASB∗, respectively. An alternative proof of strengthened Recław’s Theorem [33]
was obtained since it was simply proved that if a perfectly normal topological space X has DP(B,B) then X
is a σ-set. We consider the application of property QQ(B,B) in an alternative proof of Tsaban–Zdomskyy
Theorem [40] by the author and L. Bukovský in [9] to be so far the most interesting application of these
properties.

D.H. Fremlin [14] investigated properties related to sequential closure of sets and he showed in fact
the connection between property PP({0},{0}) and property s1. Actually, there is a connection between other
properties wAB(F ,G) and properties related to sequential closure operator.

Properties AD(F ,G) and wAD(F ,G) for A ∈ {P,Q} will not be studied in the paper since there is no
topological space which has any of them. One can take sequences of constant functions not converging
discretely. Therefore these particular properties are never meant when considering selection properties
AB(F ,G) or wAB(F ,G). Moreover, as it will be shown in Proposition 5.1, all properties DD(F ,G) and
wDD(F ,G) are equivalent for any perfectly normal space. Hence, these properties will be sometimes
omitted from our consideration, e.g from Diagrams 2 - 3.

Directly from the definition we may see that it is meaningless to consider other family than {0} in the
second argument of properties AB({0},G) and wAB({0},G), i.e.,

AB({0},G) ≡ AB({0},{0}), wAB({0},G) ≡ wAB({0},{0}).

The introduced selection properties are monotonous, i.e., if F1 ⊆ F2 and G1 ⊆ G2 then

AB(F2,G2)→ AB(F1,G1), wAB(F2,G2)→ wAB(F1,G1). (1)

Since we always assume that 0 ∈ F ,G and F ,G ⊆ B, we immediately obtain that

AB(B,B)→ AB(F ,G)→ AB({0},{0}), wAB(B,B)→ wAB(F ,G)→ wAB({0},{0}). (2)
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Diagram 1 describes relations among selection properties for fixed F ,G ⊆ B that raise from relations
among pointwise, quasi-normal and discrete convergences. If we replace A by weaker and B by stronger
convergence in AB(F ,G) and wAB(F ,G) then we obtain weaker selection property. Namely (for AB(F ,G)):

DD(F ,G)y
PQ(F ,G) −−−−−→ QQ(F ,G) −−−−−→ DQ(F ,G)y y y
PP(F ,G) −−−−−→ QP(F ,G) −−−−−→ DP(F ,G)

Diagram 1

If A,B are any of P, Q, D except B = D then by (2) and Diagram 1 we obtain that

PQ(B,B)→ AB(F ,G)→ wAB(F ,G)→ wDP({0},{0}). (3)

We formulate some basic equivalences among selection properties in the following lemma.

Lemma 1.1. Let X be a topological space, F ,G being families of functions. The following hold true.

a) If G ⊆ F , G ⊆ Cp(X) and F is closed under subtraction, then

AB(F ,G) ≡ AB(F ,{0}), wAB(F ,G) ≡ wAB(F ,{0}).1)

b) If {min{| f |, 1}; f ∈ F } ⊆ F then X has AB(F ,{0}) if and only if for any functions fn,m, fn ∈ X[0, 1],

fn,m ∈ Cp(X), fn ∈ F , n,m ∈ ω, such that fn,m
A−→ fn for every n ∈ ω and fn

A−→ 0 there exists an unbounded

β ∈ ωω such that fn,β(n)
B−→ 0 on X. Similarly for wAB(F ,{0}).

c) wAB({0},{0}) ≡ AB({0},{0}).

d) If (A,B) , (P,Q) and F ⊆ Cp(X), then

AB(F ,G) ≡ AB(F ,{0}) ≡ AB({0},{0}) ≡ wAB(F ,G) ≡ wAB(F ,{0}).

Proof. a) For F , {0} and for functions fn,m ∈ Cp(X), fn ∈ F , f ∈ G consider fn,m − f A−→ fn − f ,n ∈ ω and

fn − f A−→ 0 instead of fn,m
A−→ fn,n ∈ ω and fn

A−→ f .
b) Let X be a topological space, fn, f : X → R, 1n = min{| fn|, 1}, 1 = min{| f |, 1} and A ∈ {P,Q,D}. If

fn
A−→ f then 1n

A−→ 1. Moreover, if 1n
A−→ 0 then fn

A−→ 0.
c) If fn,m ∈ X[0, 1],n,m ∈ ω are continuous and fn,m → 0 for any n ∈ ω then take functions 1n,m defined by

1n,m = max{ fk,m; k ≤ n},n,m ∈ ω.

d) For fn,m ∈ Cp(X), fn ∈ F , f ∈ G such that fn,m
A−→ fn on X for every n ∈ ω and fn

A−→ f on X apply
AB({0},{0}) to fn,m − fn,n,m ∈ ω. Similarly for weak properties wAB(F ,G) and wAB({0},{0}).

1)Adopted from [10].
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It is noted in [10] that the family of sequence selection properties AB(F ,G) and wAB(F ,G) for F ,G ⊆ B
and {0} ⊆ F ,G can be partially preordered by the relation

V ≤W ≡ ZFC ⊢W→ V.

However, if both V ≤W and W ≤ V then ZFC ⊢ V ≡W.
By combining all considered types of convergences and families B,Cp(X), {0} in properties AB(F ,G)

and wAB(F ,G) we obtain 162 principles. 36 of them are meaningless. By aforementioned reductions we
obtain 41 principles such that any of properties AB(F ,G) or wAB(F ,G) for F ,G ∈ {B,Cp(X), {0}} has its
corresponding equivalent principle among them. Their relations already presented in (1) and Diagram 1
are for stronger properties redrawn to Diagrams 2 - 3.

PQ(B,B) −−−−−→ PQ(Cp(X),B)y y
PQ(B,{0}) −−−−−→ PQ(Cp(X),{0}) −−−−−→ PQ({0},{0})

Diagram 2

PQ({0},{0}) - QQ({0},{0}) - DQ({0},{0})

?

PP({0},{0}) -
?

QP({0},{0}) - DP({0},{0})
?

��� @@I

@@R ��	

PQ(B,{0}) - QQ(B,{0}) - DQ(B,{0})

PP(B,{0}) - QP(B,{0}) - DP(B,{0})

��� @@I

@@R ��	

PQ(B,B) - QQ(B,B) - DQ(B,B)

PP(B,B) - QP(B,B) - DP(B,B)

6

?

6

?

? ?

? ?

DD(B,B)

?

QQ(B,B)→ QP(B,B) QQ(B,{0})→ QP(B,{0})

Diagram 3

However, in the following we shall show that many properties of Diagrams 2 - 3 are mutually equivalent.
E.g. 7 principles related to continuous functions split to two equivalence classes. Finally, relations among
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weak sequence selection properties can be described by similar diagrams.
By (1), (3) and Diagram 1 the equivalence classes of PQ(B,B) and DD(B,B) are maximal elements and

the equivalence class of wDP({0},{0}) is the smallest element of the partially ordered set of equivalence
classes of properties AB(F ,G) and wAB(F ,G). It will be shown that for perfectly normal space the greatest
element and the smallest element of this partially ordered set are the equivalence classes of QN and wQN,
respectively.

The paper is organized as follows. Section 2 contains preliminary definitions and results. We give
examples of topological spaces which have investigated sequence selection properties in Section 3 and in
Section 4 we show that topological spaces with these selection principles have other interesting properties.
Essential part of Theorems 4.1 and 4.6 was already known, however, we prove them in a more general
form. Section 5 contains lists of equivalent sequence selection properties. We obtain characterizations of
QN-space, wQN-space, hereditarily S1(Γ,Γ)-space and S1(Γ,Γ)-space with every open γ-cover shrinkable.

In Section 6 we investigate slightly different principles than properties AB(F ,G) and wAB(F ,G) which
are connected to monotonic convergence of a sequence of functions. We obtain characterizations of hered-
itarily Hurewicz space and Hurewicz space with every open γ-cover shrinkable. Section 7 is devoted to
the relation between properties wPP(F ,G) and properties of functional space expressed through sequential
closure operator or properties investigated by T. Orenshtein [31]. In fact, Corollaries 8.5 and 8.6 answer his
Problems 6.0.15 and 6.0.16. Finally, Theorem 8.3 contains a list of properties which can be distinguished
under appropriate additional axiom to ZFC.

We made an effort to formulate essential results as Theorems and auxiliary results as Lemmas or
Propositions.

2. Preliminary definitions

By Cp(X,A) we denote the space of all continuous functions from X to A with topology of pointwise
convergence (i.e., subspace topology of Tychonoff product topology on XR). We use symbol 0 to denote so
number zero as function with constant zero value.

The notation “ fn
P−→ f on X” or just “ fn → f on X” means that the sequence of functions ⟨ fn : n ∈ ω⟩

converges pointwise on X to f . Á. Császár and M. Laczkovich [11] and independently Z. Bukovská [3]
introduced and investigated quasi-normal convergence. A sequence of real-valued functions ⟨ fn : n ∈ ω⟩
converges quasi-normally on X to f , written fn

Q−→ f on X, if there exists a sequence of positive reals {εn}∞n=0
(a control) converging to 0 such that for every x ∈ X we have | fn(x) − f (x)| < εn for all but finitely many

n ∈ ω. A sequence of functions ⟨ fn : n ∈ ω⟩ converges discretely on X to f , written fn
D−→ f on X, if for every

x ∈ X we have fn(x) = f (x) for all but finitely many n ∈ ω. A sequence ⟨ fn : n ∈ ω⟩ of real-valued functions

on X converges monotonically to a function f : X → R, shortly fn
M−→ f , if fn

P−→ f and fn+1 ≤ fn for any
n ∈ ω.

L. Bukovský, I. Recław and M. Repický [7] say that a topological space X is a QN-space if each sequence
of continuous functions converging to 0 on X converges to 0 quasi-normally as well. X is a wQN-space if
each sequence of continuous functions converging to 0 on X contains a subsequence that converges to 0
quasi-normally.

A topological space X is a σ-set if every Fσ subset of X is Gδ set in X. A topological space X is a λ-set if
every countable subset of X is Gδ set in X. A subset A of a topological space X is called perfectly meager2)

if for any perfect set P ⊆ X the intersection A∩P is meager in the subspace P. For more about these notions
see e.g. [28] or [4].

A function f is said to be upper semicontinuous if the set f−1((−∞, r)) = {x ∈ X : f (x) < r} is open in
a topological space X for every real number r. By min{ f1, . . . , fn} and max{ f1, . . . , fn} for real-valued functions
f1, . . . , fn on a topological space X we mean functions defined by min{ f1, . . . , fn}(x) = min{ f1(x), . . . , fn(x)},
max{ f1, . . . , fn}(x) = max{ f1(x), . . . , fn(x)}, respectively, for any x ∈ X.

2)or always of the first category
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H. Ohta and M. Sakai [30] say that a topological space X has property USC (USCs), if for any sequence
⟨ fn : n ∈ ω⟩ of upper semicontinuous functions with values in [0, 1] converging to 0, there is a sequence
⟨1m : m ∈ ω⟩ of continuous functions converging to 0 (and an increasing sequence {nm}∞m=0 of natural
numbers) such that fm ≤ 1m, m ∈ ω ( fnm ≤ 1m, m ∈ ω). A topological space X has a property USCm, if for any
sequence ⟨ fn : n ∈ ω⟩ of upper semicontinuous functions with values in [0, 1] converging to 0 monotonically,
there is a sequence ⟨1m : m ∈ ω⟩ of continuous functions converging to 0 such that fm ≤ 1m, m ∈ ω.

Let Y be a topological space and A ⊆ Y. By scl(A,Y) we denote a sequential closure of A in Y, i.e., a set
{y ∈ Y; (∃{yn}∞n=0 ∈ ωA) yn → y}. D.H. Fremlin [14] investigates the following families:

scl0(A,Y) = A,

sclα(A,Y) = scl

∪
β<α

sclβ(A,Y),Y

 ,

He says that a topological space X is an s1-space if sclω1 (F ,Cp(X)) = scl1(F ,Cp(X)) for every F ⊆ Cp(X).
A family A ⊆ P(X) is a cover of a topological space X if X =

∪A and X < A. A cover A of X is
an ω-cover if for any finite subset F of X there is A ∈ A such that F ⊆ A. An infinite coverA is a γ-cover if
every x ∈ X lies in all but finitely many members ofA. A coverV is said to be a refinement ofA if for any
V ∈ V there is U ∈ A such that V ⊆ U. A γ-coverA is shrinkable if there exists a closed γ-coverV which
is a refinement ofA.

J. Gerlits and Zs. Nagy [18] introduced the notion of a γ-set. A topological space X is a γ-set if any open
ω-cover of X contains γ-subcover. By M. Scheepers [36] a topological space X is an S1(Γ,Γ)-space if for every
sequence ⟨An : n ∈ ω⟩ of open γ-covers there exist sets Un ∈ An,n ∈ ω such that {Un; n ∈ ω} is a γ-cover.

W. Hurewicz [20] introduced and investigated properties E∗ and E∗∗which are nowadays called Hurewicz
properties.3) We say that a topological space X possesses Hurewicz property (or property U f in(O,Γ) or is
a Hurewicz space) if for any sequence ⟨Un : n ∈ ω⟩ of countable open covers not containing a finite subcover
there are finite setsVn ⊆ Un,n ∈ ω such that {∪Vn; n ∈ ω} is a γ-cover.

For a propertyA of a topological space X we say that X is hereditarilyA-space, shortly hA-space, or X
possessesA hereditarily if any subset of X is anA-space.

L. Bukovský, I. Recław and M. Repický [7] proved that any perfectly normal wQN-space has Hurewicz
property and M. Scheepers [37], [39] proved that any S1(Γ,Γ)-space is a wQN-space. By J. Haleš [19]
any perfectly normal QN-space is hereditarily S1(Γ,Γ)-space (any normal QN-space is an S1(Γ,Γ)-space by
L. Bukovský and J. Haleš [6] or M. Sakai [35]). By J. Haleš [19] and M. Sakai [35] it follows that every open
γ-cover of perfectly normal hereditarily S1(Γ,Γ)-space is shrinkable. We say that X is shS1(Γ,Γ)-space if X is
an S1(Γ, Γ)-space and every open γ-cover of X is shrinkable.Thus for perfectly normal space we have

QN→ hS1(Γ,Γ)→ shS1(Γ, Γ)→ S1(Γ,Γ)→ wQN→U f in(O,Γ). (4)

3. Spaces satisfying selection principles

All investigated sequence seletion principles are meaningful. Actually, the author and L. Bukovský
using Tsaban–Zdomskyy Theorem [40] showed in [9] that statements “X is a QN-space”, “X has PQ(B,B)”
and “X has DD(B,B)” are equivalent for any perfectly normal space X. Thus

Proposition 3.1 (L. Bukovský – J. Šupina). Any perfectly normal QN-space has all properties AB(F ,G) and
wAB(F ,G).

3)Note that our definition of Hurewicz property corresponds to property E∗∗ω of L. Bukovský and J. Haleš [5] rather than to original
properties E∗ and E∗∗.
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Consequently, all introduced selection principles hold in any countable set of reals (in fact, in any set of
reals of cardinality less than b, see L. Bukovský, I. Recław and M. Repický [7]).

However, the assumption about topological space to be perfectly normal in Proposition 3.1 is in many
cases abundant. It was shown in [9] that any QN-space has property QQ(B,B), therefore we obtain
Proposition 3.2. Moreover, see Theorem 3.5 as well.

Proposition 3.2 (L. Bukovský – J. Šupina). Any QN-space has selection property AB(F ,G) for each A , P and
each B , D.

Proposition 3.2 is one of two crucial assertions of [9].
L. Bukovský, I. Recław and M. Repický [7] proved that any b-Sierpiński set4) is a QN-set. Hence, we

obtain the following.

Corollary 3.3. Any b-Sierpiński set has all selection properties AB(F ,G) and wAB(F ,G).

Let N be a σ-ideal of all Lebesgue measure zero subsets of reals. If b = cov(N) = cof(N) there is
a b-Sierpiński set of cardinality b. Moreover, if there is a b-Sierpiński set then non(N) ≤ b ≤ cov(N) (see e.g.
[4]).

We prove that some weak sequence selection properties are satisfied in γ-sets.

Theorem 3.4. Any γ-set has property wAB(F ,{0}) for each A and each B , D.

Proof. We shall show that any γ-set has property wPQ(B,{0}). Let fn,m, fn : X → [0, 1] be such that fn,m are
continuous, fn,m → fn,n ∈ ω and fn → 0. Moreover, let us pick a sequence {xk}∞k=0 of distinct points of X. We
define

A = { f−1
n,m((− 1

2k
,

1
2k

)) \ {xk}; k ≤ n,n,m, k ∈ ω}.

A is an ω-cover of X. Actually, for any A ∈ [X]<ω and any k ∈ ω there is n0 such that

xn < A ∧ (x ∈ A→ | fn(x)| < 1
2k

)

for any n ≥ n0. For εn =
1
2k −max{| fn(x)|; x ∈ A} there is a sequence {mn}∞n=n0

such that | fn,m(x) − fn(x)| < εn

for any x ∈ A,m ≥ mn,n ≥ n0. Hence, | fn,m(x)| < 1
2k for any x ∈ A,m ≥ mn,n ≥ n0.

Since X is γ-set there is a γ-coverV ⊆ A. Due to definition ofAwe obtain

|V ∩ { f−1
n,m((− 1

2k
,

1
2k

)) \ {xk}; k ≤ n, k < l,n,m, k ∈ ω}| < ℵ0, l ∈ ω.

Therefore there are increasing functions α, γ ∈ ωω and a function β ∈ ωω such that

{ f−1
α(l),β(l)((−

1
2γ(l)
,

1
2γ(l)

)) \ {xγ(l)}; l ∈ ω}

is a γ-cover. One can easily see that fα(l),β(l)
Q−→ 0 with the control { 1

2γ(l) }∞l=0.

As we shall see later, Theorem 3.4 will help us to distinguish between a number of selection properties.
Well-known set-theoretic assumption for the existence of a γ-set is presented in Section 8. Finally, by
Theorem 3.5 some selection properties hold in arbitrary wQN-space.

Theorem 3.5. Let X be a topological space.

a) X is a QN-space if and only if X has PQ(Cp(X),{0}).

4)A set X ⊆ R is b-Sierpiński set if |X| ≥ b and |A ∩ X| < b for any Lebesgue measure zero set A ⊆ R. For more see e.g. [4].
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b) X is a wQN-space if and only if X has PQ({0},{0}).
c) X is a wQN-space if and only if X has wPQ(Cp(X),{0}).

Proof. a) Let us assume that fn,m, fn ∈ Cp(X) are such that fn,m
P−→ fn,n ∈ ω and fn

P−→ 0. Then fn,m − fn
P−→

0,n ∈ ω and by PP({0},{0}) there is an unbounded β ∈ ωω such that f n
β(n)− fn

P−→ 0. Moreover, since X is a QN-

space both convergences are quasi-normal, i.e., f n
β(n) − fn

Q−→ 0 and fn
Q−→ 0. Then f n

β(n) = f n
β(n) − fn + fn

Q−→ 0.
Let us assume that X has property PQ(Cp(X),{0}) and fn : X → R,n ∈ ω are continuous functions such

that fn → 0. Let fn,m = fn for any n,m ∈ ω. By PQ(Cp(X),{0}) there is β ∈ ωω such that fn = fn,β(n)
Q−→ 0. Thus

X is a QN-space.
b) and c) If X is a wQN-space then X has PP({0},{0}) by D.H. Fremlin [15] and thus X has wPP(Cp(X),{0})

by Lemma 1.1. We prove that X has wPQ(Cp(X),{0}). Let fn,m, fn : X −→ R, n,m ∈ ω be continuous functions

such that fn,m
P−→ fn,n ∈ ω and fn

P−→ 0 on X. By wPP(Cp(X),{0}) there is an unbounded β ∈ ωω such that

fn,β(n)
P−→ 0. Since X is a wQN-space there is an increasing α ∈ ωω such that fα(l),β(α(l))

Q−→ 0.
X has PP({0},{0}) if and only if X has wPP({0},{0}) by Lemma 1.1. Thus if X has PQ({0},{0}) or

wPQ(Cp(X),{0}) then X has PP({0},{0}). However, M. Scheepers [39] showed that if X has PP({0},{0}) then X
is a wQN-space.

Finally, we prove that if X has PP({0},{0}) then X has PQ({0},{0}). Let us assume that fn,m : X −→ R,

n,m ∈ ω are continuous functions such that fn,m
P−→ 0 on X for every n ∈ ω and

1n,m = 2n · fn,m,n,m ∈ ω.

By PP({0},{0}) there is β ∈ ωω such that 1n,β(n)
P−→ 0. Then fn,β(n)

Q−→ 0 with the control { 1
2n }∞n=0.

Hence, any QN-space has property AB(F ,G) for B , D, (A,B) , (P,Q), F ⊆ Cp(X) and any wQN-space
has properties AB({0},{0}) for B , D and wAB(F ,{0}) for B , D, F ⊆ Cp(X).

4. Properties of spaces with selection principles

Topological spaces satisfying investigated selection principles possess other interesting properties. The
following was proved by L. Bukovský and J. Haleš [6] for normal space and property DP({0},{0}). We show
that the assumption of normality is redundant.

Theorem 4.1. A topological space X has property wDP({0},{0}) if and only if X is a wQN-space.

Proof. If X is a wQN-space then X has wDP({0},{0}) by Theorem 3.5, b).
Let X have wDP({0},{0}). By Lemma 1.1, d) X has DP({0},{0}). Let fn,m : X −→ [0, 1], n,m ∈ ω be

continuous functions such that fn,m
P−→ 0 on X for every n ∈ ω and

1n,m = max{ 1
2n , fn,m} −

1
2n ,n,m ∈ ω.

Then 1n,m
D−→ 0 for any n ∈ ω and by DP({0},{0}) there is an unbounded β ∈ ωω such that 1n,β(n)

P−→ 0.

Finally, fn,β(n)
P−→ 0. Actually, let x ∈ X and ε > 0. There is n0 such that 1

2n < ε2 and 1n,β(n)(x) < ε2 for any
n ≥ n0. Then

fn,β(n)(x) ≤ max{ 1
2n , fn,β(n)(x)} < 1

2n +
ε
2
< ε

for any n ≥ n0 and the result follows.

Hence, by (3) all investigated selection properties imply wQN-property.
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Corollary 4.2. A topological space with any of the selection properties AB(F ,G) or wAB(F ,G) is a wQN-space.

Consequently we obtain the following assertion about dimension. J. Haleš [19] says that a topological
space X is an nCM-space (or non-continuously mappable space) if X cannot be continuously mapped onto
[0,1]. It is well-known that any normal nCM-space X has Ind(X) = 0 (see e.g. [4], Theorem 8.22).

Corollary 4.3. Any topological space which has any of the properties AB(F ,G) or wAB(F ,G) is an nCM-space.
Hence, Ind(X) = 0 for any normal space X which has any of the selection properties AB(F ,G) or wAB(F ,G).

L. Bukovský, I. Recław and M. Repický [7] proved that a wQN-subspace of metric separable space is
perfectly meager.

Corollary 4.4. A subset of metric separable space which has any of the selection properties AB(F ,G) or wAB(F ,G)
is perfectly meager.

L. Bukovský, I. Recław and M. Repický [7] showed that every perfectly normal space of less cardinality
than b is a QN-space and there is a set of reals of cardinality b which is not a wQN-space. non(AB(F ,G)),
non(wAB(F ,G)) denote the minimal cardinality of a perfectly normal space which does not have AB(F ,G)
or wAB(F ,G), respectively. Hence, by Proposition 3.1 and Theorem 4.1 we obtain

Corollary 4.5. non(AB(F ,G)) = non(wAB(F ,G)) = b

By Proposition 3.1 all selection properties AB(F ,G) and wAB(F ,G) hold in perfectly normal QN-space.
Vice versa, Theorem 4.6 says that arbitrary topological space which has some of them is a QN-space. The
author and L. Bukovský proved in [9] that a perfectly normal space X is a QN-space if and only if X has
DD({0},{0}). We prove the following.

Theorem 4.6. Let X be a topological space, F ,G being families of functions.
a) If Cp(X) ⊆ F and X has property PQ(F ,G) then X is a QN-space.
b) If X has property wDD(F ,G) then X is a QN-space.

Proof. a) follows by Theorem 3.5.
b) Let us assume that X has property wDD({0},{0}), fm : X −→ [0, 1], m ∈ ω are continuous functions

such that fm
P−→ 0 on X and

1n,m = max{ 1
2n , fm} −

1
2n ,n,m ∈ ω.

Then 1n,m
D−→ 0 for any n ∈ ω. Let

fn,m =
∞∑

k=m

min{ 1
2k+1
, 1n,k},n,m ∈ ω.

Then fn,m
D−→ 0 for any n ∈ ω. Since X has DD({0},{0}) by part d) of Lemma 1.1, there is an increasing β ∈ ωω

such that fn,β(n)
D−→ 0.

Let εm = 1 for m < β(0) and εm =
1
2n for β(n) ≤ m < β(n + 1). Then fm

Q−→ 0 with the control {εm}∞m=0.
Actually, let x ∈ X. There is n0 such that fn,β(n)(x) = 0 for any n ≥ n0. Moreover, 1n,k(x) = 0 for any
k ≥ β(n),n ≥ n0. Then

fk(x) ≤ max{ 1
2n , fk(x)} = 1

2n

for any k ≥ β(n),n ≥ n0 and the result follows.

Consequently, by Proposition 3.2 and Theorem 4.6 we obtain the position of QN-space in preordered set
of all properties AB(F ,G) and wAB(F ,G) for arbitrary topological space. Moreover, we obtain the following
relations among investigated sequence selection properties for arbitrary topological space.
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Corollary 4.7. Let X be a topological space. If X has PQ(Cp(X),{0}) or wDD({0},{0}) then X has QQ(B,B).

The following assertion was proved in [9] for properties DP(B,B) and DP(B,{0}). One may easily see
that property wDP(U,B) could be used in the proof.

Proposition 4.8 (L. Bukovský – J. Šupina). If a perfectly normal topological space X has wDP(U,B) or DP(B,{0})
then X is a σ-set.

Proof of the second part of Proposition 4.8 employees a characterization of σ-set for perfectly normal
space. It is called (γ, γ)-shrinkable space and is due to M. Sakai [35]. A space X is (γ, γ)-shrinkable if for
every open γ-cover ⟨Un : n ∈ ω⟩ of X there exists a closed γ-cover ⟨Fn : n ∈ ω⟩ of X such that Fn ⊆ Un for
each n ∈ ω. H. Ohta and M. Sakai [30] proved that a normal space X is (γ, γ)-shrinkable if and only if X
possesses property USC.

Almost the same proof as the one of the second part of Proposition 4.8 using property DP(U,{0}) gives
part a) of Proposition 4.9 and using property wDP(U,{0}) gives part b) of the same theorem. The second
part of b) follows by Corollary 2.11 in [30], since H. Ohta and M. Sakai showed that every open γ-cover of
a normal space X is shrinkable if and only if X possesses property USCs.

Proposition 4.9. Let X be a perfectly normal space, G being any family of functions,U ⊆ F .

a) If X has property AB(F ,G) then X is (γ, γ)-shrinkable. Hence, X is a σ-set and possesses property USC.
b) If X has property wAB(F ,G) then every open γ-cover of X is shrinkable. Hence, X possesses property USCs.

Proof. a) Let X have property DP(U,{0}), ⟨Un : n ∈ ω⟩ being an open γ-cover of X. Then χX\Un

D−→ 0. Since
X is a perfectly normal space there is a non-decreasing sequence ⟨Fn,m : m ∈ ω⟩ of closed sets such that∪∞

m=0 Fn,m = Un and continuous functions fn,m : X −→ [0, 1] such that fn,m(x) = 0 for x ∈ Fn,m and fn,m(x) = 1

for x ∈ X \Un. Then fn,m
D−→ χUn

. By DP(U,{0}) there is an unbounded β ∈ ωω such that fn,β(n)
P−→ 0. If we

denote Fn = f−1
n,β(n)([0,

1
2 ]), then Fn ⊆ Un,n ∈ ω are closed sets and ⟨Fn : n ∈ ω⟩ is a γ-cover of X. Thus X is

(γ, γ)-shrinkable space and by M. Sakai [35] a σ-set. Finally, X has USC by H. Ohta and M. Sakai [30].
b) Similarly to a).

A perfectly normal space with properties wAB(U,{0}) is an S1(Γ,Γ)-space.

Proposition 4.10. If U ⊆ F and G is any family of functions then a perfectly normal space X with the property
wAB(F ,G) is an S1(Γ, Γ)-space.

Proof. We shall show that a perfectly normal space X with the property wDP(U,{0}) is an S1(Γ,Γ)-space.
Let ⟨Un,m : m ∈ ω⟩ be a γ-cover for any n ∈ ω. By Proposition 4.9 there is a γ-cover ⟨Fn,m : m ∈ ω⟩ of
closed sets and increasing functions αn ∈ ωω for any n ∈ ω such that Fn,m ⊆ Un,αn(m). Therefore there are

continuous functions fn,m : X → [0, 1] such that Fn,m = f−1
n,m(0) and X \Un,αn(m) = f−1

n,m(1). Then fn,m
D−→ 0 for

any n ∈ ω. Since X has DP({0},{0}) by (1) and Lemma 1.1, c), there is β ∈ ωω such that fn,β(n) → 0. A family
{Un,αn(β(n)); n ∈ ω} is a γ-cover of X.

J. Haleš [19] proved that a perfectly normal space X is hereditarily S1(Γ,Γ)-space if and only if X is both,
a σ-set and an S1(Γ,Γ)-space. This holds for Tychonoff space as well, see T. Orenshtein and B. Tsaban [32].
Consequently, by Propositions 4.9 - 4.10 we obtain Corollary 4.11. It was observed already in [9] for property
DP(B,{0}).

Corollary 4.11. If U ⊆ F and G is any family of functions then a perfectly normal space with AB(F ,G) or
wAB(F ,B) is hereditarily S1(Γ,Γ)-space.

A proof of following lemma was motivated by L. Bukovský, I. Recław and M. Repický [7] and their
Theorem 4.1. For the purpose of following two assertions the notation {0}(X) means a set containing only
zero function on X.
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Lemma 4.12. Let C be Fσ-subset of a perfectly normal space X and F ∈ {{0},U,B}, G ∈ {{0},B}. If X has
AB(F (X),G(X)) then C has AB(F (C),G(C)) as well. If X has wAB(F (X),G(X)) then A has wAB(F (C),G(C)) as
well.

Proof. Let us assume that Fn,n ∈ ω are closed subsets of X such that Fn ⊆ Fn+1,n ∈ ω and C =
∪

n∈ω Fn,
Gn,m,n,m ∈ ω are open subsets of X such that Gn,m+1 ⊆ Gn,m,n,m ∈ ω and Fn =

∩
m∈ωGn,m. Let fn,m ∈ Cp(C),

fn ∈ F (C) and f ∈ G(C) be such that fn,m
A−→ fn,n ∈ ω and fn

A−→ f .

We define 1n,m ∈ Cp(X), 1n ∈ F (X) and 1 ∈ G(X) such that 1n,m
A−→ 1n,n ∈ ω and 1n

A−→ 1. Let 1(x) = 0 for
x ∈ X \ C and 1(x) = f (x) for x ∈ C. Similarly, let 1n(x) = 0 for x ∈ X \ Fn and 1n(x) = fn(x) for x ∈ Fn. Finally,
by Tietze–Urysohn Theorem (see e.g. [13], Theorem 2.1.8) there are continuous functions 1n,m,n,m ∈ ω on
X such that 1n,m(x) = 0 for x ∈ X \ Gn,m and 1n,m(x) = fn,m(x) for x ∈ Fn. One can easily see that functions
1n,m, 1n, 1 possess aforementioned properties.

By AB(F ,G) there is β ∈ ωω such that 1n,β(n)
B−→ 1. The sequence ⟨ fn,β(n) : n ∈ ω⟩ is the desired one since

for any x ∈ C there is nx such that 1n,β(n)(x) = fn,β(n)(x) for any n ≥ nx.
Similarly for wAB(F ,G).

The following is motivated by a proof of Theorem 4 in a paper [19] by J. Haleš. We show that some
stronger selection properties are hereditary which is not surprising after one has seen Proposition 4.8.

Theorem 4.13. Let G ∈ {{0},B}. Any metric space X has AB(B,G) if and only if X has AB(B,G) hereditarily. Any
metric space X has wAB(B,B) if and only if X has wAB(B,B) hereditarily.

Proof. Let C be a subset of X, fn,m ∈ Cp(C), fn : C → R and f ∈ G(C) being such that fn,m
A−→ fn,n ∈ ω

and fn
A−→ f . By Kuratowski Theorems (see e.g. [24], §31, I and VI, Théorème) there are Gδ-set G ⊇ C,

continuous extensions 1n,m : G → R of fn,m for all n,m ∈ ω and Borel extensions 1n, 1 : X → R of fn, f ,
respectively (take the zero function on X if f is zero function on C).

We shall firstly consider A = P. Let

EP = {x ∈ G; 1n(x)→ 1(x) ∧ (∀n ∈ ω) 1n,m(x)→ 1n(x)}.

EP is Borel subset of X and C ⊆ EP ⊆ G. By Proposition 4.8 any Borel subset of X is Fσ-set, so EP is Fσ-set. By

Lemma 4.12 there is β ∈ ωω such that 1n,β(n)
B−→ 1 on EP. Hence, fn,β(n)

B−→ f on C.
To prove the assertion for A ∈ {D,Q} one can use sets ED and EQ instead of EP, where

ED ={x ∈ G; (∃nx)(∀n ≥ nx) 1n(x) = 1(x) ∧ (∀n ∈ ω)(∃mn,x)(∀m ≥ mn,x) 1n,m(x) = 1n(x)}
EQ ={x ∈ G; (∃nx)(∀n ≥ nx) |1n(x) − 1(x)| < εn

∧ (∀n ∈ ω)(∃mn,x)(∀m ≥ mn,x) |1n,m(x) − 1n(x)| < εn,m}

and sequences {εn,m}∞m=0, n ∈ ω, {εn}∞n=0 of reals are controls of quasi-normal convergences of sequences
⟨ fn,m : m ∈ ω⟩,n ∈ ω, ⟨ fn : n ∈ ω⟩, respectively.

Similarly for wAB(B,B).

Note that by results of Section 5 some other selection properties are hereditary in the sense of Lemma 4.12
or Theorem 4.13. It follows by properties of wQN-space, QN-space and hereditarily S1(Γ,Γ)-space.

5. Equivalences

We shall see that sequence selection properties related to continuous functions can be completely de-
scribed by quasi-normal convergence properties of a sequence of continuous functions. IfF ,G ∈ {Cp(X), {0}}
then properties AB(F ,G) and wAB(F ,G) are equivalent either to QN-property or to wQN-property. By (1)
and Diagram 1 this can be strengthen for other families of continuous functions. However, if we consider
families of functions containing sufficient amount of other Borel functions, then we very often do not know
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how many nonequivalent classes of properties AB(F ,G) and wAB(F ,G) there are. By proposition 8.1 it is
possible consistently with ZFC, that there is only one class. Theorem 8.3 contains a list of properties which
can be distinguished if additional hypotheses is added to ZFC.

By (2), Diagram 1, Proposition 3.1 and Theorem 4.6 we obtain

Proposition 5.1. Let X be a perfectly normal space, F ,G being families of functions.

a) X has DD(F ,G) if and only if X is a QN-space.
b) X has wDD(F ,G) if and only if X is a QN-space.

Large group of properties related only to continuous functions is in equivalence class of wQN. By
Theorems 4.1, 3.5 and Diagram 3 we obtain the following.

Proposition 5.2. Let X be a topological space, A,B being any of P, Q, D except B = D. Then

X satisfies AB({0},{0}) if and only if X is a wQN-space.

Note that by Proposition 5.2 wQN can be added to equivalences of part d) of Lemma 1.1 except B = D.
Naturally, properties PQ(F ,G) resemble stronger versions of QN-property. L. Bukovský, I. Recław and

M. Repický [8] say that a topological space X is an mQN-space if each sequence of continuous functions
converging monotonically to a function f : X → [0, 1] (not necessarily continuous) converges to f quasi-
normally as well. By Proposition 3.1 and Theorem 4.6 we obtain

Proposition 5.3. Let X be a perfectly normal space, F ,G being families of functions such that Cp(X) ⊆ F .

a) X has PQ(F ,G) if and only if X is a QN-space.
b) IfU ⊆ G then X has wPQ(F ,G) if and only if X is a QN-space.

Proof. By Proposition 3.1 if X is a QN-space then X has any of PQ(F ,G) or wPQ(F ,G).
a) If X has PQ(F ,G) then X has PQ(Cp(X),{0}) and thus X is a QN-space by Theorem 4.6.
b) If X has wPQ(F ,G) then X has wPQ(Cp(X),U). We shall show that X is an mQN-space. Then X is

a QN-space by Theorem 5.10 in L. Bukovský, I. Recław and M. Repický [8].5)

Let us assume that X has property wPQ(Cp(X),U) and fn : X→ R, n ∈ ω are continuous functions such
that fn → f for f : X→ [0, 1] and fn+1 ≤ fn,n ∈ ω. Then f is upper semicontinuous (see e.g. [13], 1.7.14 (a)).

Let fn,m = fn for any n,m ∈ ω. By wPQ(Cp(X),U) there is β ∈ ωω such that fβ(n)
Q−→ f . Finally, fn

Q−→ f as
well.

In fact the following was proved in [9].

Proposition 5.4 (L. Bukovský – J. Šupina). For a perfectly normal space X the following are equivalent.

a) X is a QN-space.
b) X has QQ(B,B).
c) X has wQQ(B,B).

Proof. a)→ b) by Theorem 16 in [9].
b)→ c) is trivial.
c)→ a) by a proof similar to that of (3)→ (1) in [9], Theorem 16. One can go through that proof and use

property wQQ(B,B) instead of property QQ(B,B). Our Corollary 4.2 and Proposition 4.8 are necessary.

Similarly to Lemma 14 in [10] we can prove

5)Note that their definition of an mQN-space uses arbitrary real-valued functions. Hovewer, they proved in fact that an mQN-space
in our sense is a characterization of a QN-space.
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Proposition 5.5. Let X be a topological space, {0} ⊆ F ⊆ B being closed under multiplication by a positive real. X
has DP(F ,{0}) if and only if X has DQ(F ,{0}) and X has wDP(F ,{0}) if and only if X has wDQ(F ,{0}).

Proof. Let fn,m, fn : X → R be such that fn,m are continuous, fn,m
D−→ fn,n ∈ ω and fn

D−→ 0. If we consider

functions 1n,m = 2n+1 fn,m,n,m ∈ ω and 1n = 2n+1 fn,n ∈ ω then 1n,m
D−→ 1n,n ∈ ω and 1n

D−→ 0. By DP(B,{0})
there is β ∈ ωω such that 1n,β(n) → 0. Hence, fn,β(n)

Q−→ 0 with the control {2−(n+1)}∞n=0. Similarly the latter
case.

By Lemmas 14 and 15 of [10] we obtain

Proposition 5.6 (L. Bukovský – J. Šupina). For a normal space X the following statements are equivalent:

X has QQ(B,{0}), X has QP(B,{0}), X has DQ(B,{0}), X has DP(B,{0}).

By latter lemmas of [10] we have the same also for weak properties.

Proposition 5.7 (L. Bukovský – J. Šupina). For a normal space X the following statements are equivalent:

X has wQQ(B,{0}), X has wQP(B,{0}), X has wDQ(B,{0}), X has wDP(B,{0}).

Moreover, family G in properties AB(F ,G) and wAB(F ,G) can be substituted by simple {0} in case of G
being a family of suitable limits of continuous functions. More precisely

Proposition 5.8. Let us assume that X is a topological space, F ,G are families of functions on X and

i) F is closed under subtraction of continuous functions,

ii) for any 1 ∈ G there is a sequence ⟨1n : n ∈ ω⟩ of continuous functions on X such that 1n
C−→ 1,

iii) for any sequence ⟨1n : n ∈ ω⟩ of continuous functions on X if 1n
C−→ 1 then 1n

A−→ 1 and 1n
B−→ 1.

Then

a) X has AB(F ,{0}) if and only if X has AB(F ,G).

b) X has wAB(F ,{0}) if and only if X has wAB(F ,G).

Proof. a) Let us assume that X has AB(F ,{0}) and functions fn,m ∈ Cp(X), fn ∈ F , f ∈ G are such that

fn,m
A−→ fn,n ∈ ω and fn

A−→ f . By ii) there is a sequence ⟨1n : n ∈ ω⟩ of continuous functions on X such that

1n
C−→ f . Then fn,m − 1n

A−→ fn − 1n,n ∈ ω and by iii) also fn − 1n
A−→ 0. Moreover, fn − 1n ∈ F by i). Thus by

AB(F ,{0}) there is β ∈ ωω such that fn,β(n) − 1n
B−→ 0. Finally, by iii) we obtain fn,β(n) = fn,β(n) − 1n + 1n

B−→ f .
b) Similarly to a).

Let us recall that the family of all Fσ-measurable functions on a perfectly normal space corresponds to
the family of all pointwise limits of continuous functions. Consequently we have

Corollary 5.9. Let X be a perfectly normal space. Then X has PP(B,{0}) if and only if X has PP(B,B).

Proof. Perfectly normal space X with PP(B,{0}) is a σ-set by Proposition 4.9. Thus any Borel function on X
is Fσ-measurable and so a pointwise limit of continuous functions.

By results of this section, Diagrams 2 and 3 can be simplified to Diagram 4. Similar diagrams to
Diagrams 2 - 3 for weak properties can be simplified to Diagram 5. Every selection property AB(F ,G) or
wAB(F ,G) for F ,G ∈ {B,Cp(X), {0}} belongs to the equivalence class of some sequence selection property
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in Diagrams 4 - 5. We do not know if there are any properties in Diagrams 4 - 5 which are equivalent. For
those, which cannot be equivalent, see Theorem 8.3.

wQN

@@I

DP(B,{0})

@@I

QN - DQ(B,B)

PP(B,B) - QP(B,B) - DP(B,B)

? ?

Diagram 4

wQN

@@I

wPQ(B,{0})

wPP(B,{0}) - wDP(B,{0})

��� @@I

@@R

QN - wDQ(B,B)

wPP(B,B) - wQP(B,B) - wDP(B,B)

?

? ?

Diagram 5

In the following we proceed with presenting the equivalences among some of the sequence selection
properties related to upper semicontinuous functions. We found helpful the properties introduced by
H. Ohta and M. Sakai [30].

Lemma 5.10. Let X be a topological space.

a) If X has properties USC and PP(Cp(X),{0}) then X has PP(U,{0}).

b) If X has properties USCs and wPQ(Cp(X),{0}) then X has wPQ(U,{0}).

Proof. a) Let fn,m : X→ [0, 1] be continuous and fn : X→ [0, 1] be upper semicontinuous functions such that
fn,m → fn,n ∈ ω and fn → 0. By USC there are continuous functions 1n : X → [0, 1] such that 1n → 0 and
fn ≤ 1n,n ∈ ω. We define continuous functions fn,m : X→ [0, 1] by

1n,m = max{ fn,m, 1n}.

We have 1n,m → 1n for any n ∈ ω. By PP(Cp(X),{0}) there is an unbounded β ∈ ωω such that 1n,β(n) → 0.
Hence, fn,β(n) → 0 as well.
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b) Similarly to a).

Already mentioned results by J. Haleš [19] and H. Ohta and M. Sakai [30] have the following conse-
quences.

Theorem 5.11. Let X be a perfectly normal space, A,B being any of P, Q, D except B = D.

a) If (A,B) , (P,Q) then X has AB(U,{0}) if and only if X is hereditarily S1(Γ,Γ)-space.

b) X has wAB(U,{0}) if and only if X is an S1(Γ,Γ)-space and every open γ-cover of X is shrinkable.

Proof. a) If X has DP(U,{0}) then X is hereditarily S1(Γ,Γ)-space by Corollary 4.11.
If X is hereditarily S1(Γ,Γ)-space then X has USC by J. Haleš [19] and H. Ohta and M. Sakai [30].

Moreover, X has PP(Cp(X),{0}) by (4), Lemma 1.1, d) and Proposition 5.2. Hence, X has PP(U,{0}) by
Lemma 5.10.

If X has QP(U,{0}) then X has QQ(U,{0}) by a slight modification of a proof of Lemma 15 in [10]
(assumption of Lemma 15 in [10] is not satisfied by our familyU but can be appropriately weakened).

b) If every open γ-cover of X is shrinkable then X has USCs by H. Ohta and M. Sakai [30]. If X is
an S1(Γ,Γ)-space then by (4) and Theorem 3.5 X has wPQ(Cp(X),{0}). Hence, if X is an S1(Γ,Γ)-space and
every open γ-cover of X is shrinkable then X has wPQ(U,{0}) by Lemma 5.10.

If X has wAB(U,{0}) then X is an S1(Γ,Γ)-space by Proposition 4.10 and every open γ-cover of X is
shrinkable by Proposition 4.9, b).

6. Monotonic convergence

As it is presented in the preceding section, sequence selection properties AB(F ,G) and wAB(F ,G)
can describe other properties of a topological space, namely to be a QN-space, to be a wQN-space, to be
hereditarily S1(Γ,Γ)-space and to be an S1(Γ,Γ)-space with every open γ-cover shrinkable. M. Scheepers [37]
found characterization of Hurewicz property by a sequence selection principle called monotonic sequence
selection property. Therefore it is not so surprising that if we add monotonic convergence to the list of
convergences in definitions of introduced sequence selection properties we can describe some additional
topological properties by such selection principles. Theorem 6.5 motivates us to define slightly more
general sequence selection properties with added monotonic convergence but for restricted ranges of
functions. However, we proceed in investigation of these properties only in cases of monotonic and
pointwise convergences.

Let A, B, C denote one of the following types of convergence: P pointwise, Q quasi–normal, D discrete,
M monotonic. Let F ,G ⊆ X[0, 1] be families of functions containing the zero function on X. We say that
X has the sequence selection property ABC(F ,G), if for any functions fn,m ∈ Cp(X, [0, 1]), fn ∈ F , f ∈ G,
n,m ∈ ω, such that

a) fn,m
A−→ fn on X for every n ∈ ω,

b) fn
B−→ f on X,

there exists an unbounded β ∈ ωω such that

fn,β(n)
C−→ f on X.

If there exist an increasing α ∈ ωω and an unbounded β ∈ ωω such that fα(n),β(n)
C−→ f on X then we say

that topological space X has the weak sequence selection property wABC(F ,G).
Note that properties ABM(F ,G) and wABM(F ,G) are meaningless, i.e., there is no topological space

which has any of them. Thus there are three versions of properties ABP(F ,G) with monotonic and pointwise
convergences for fixed families F ,G. Relations among them which raise from relations of monotonic
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and pointwise convergences are described by Diagram 6. Similar diagram would describe properties
wABP(F ,G).

PPP(F ,G) −−−−−→ MPP(F ,G)y y
PMP(F ,G) −−−−−→ MMP(F ,G)

Diagram 6

If fn ∈ X[0, 1],n ∈ ω are upper semicontinuous and f ∈ X[0, 1] such that fn
M−→ f on X then f is upper

semicontinuous (see e.g. [13], 1.7.14 (a)). IfU ⊆ F ⊆ B then

MPP(F ,G) ≡MPP(U,G), wMPP(F ,G) ≡ wMPP(U,G)

MMP(F ,G) ≡MMP(U,G), wMMP(F ,G) ≡ wMMP(U,G)

and if moreoverU ⊆ G ⊆ B then

MMP(F ,G) ≡MMP(U,U), wMMP(F ,G) ≡ wMMP(U,U).

If {0} ⊆ F ⊆ U andU ⊆ G ⊆ B then

PMP(F ,G) ≡ PMP(F ,U), wPMP(F ,G) ≡ wPMP(F ,U).

Property MMP({0},{0}) is monotonic sequence selection property introduced by M. Scheepers [37].6)

A topological space with any monotonic property ABP(F ,G) for A,B ∈ {P,M} has property MMP({0},{0}).
M. Scheepers [37] proved that a topological space X has MMP({0},{0}) if and only if X has the Hurewicz
property.

By definitions we have that

PPP({0},{0}) ≡ PMP({0},{0}), MPP({0},{0}) ≡MMP({0},{0})
wPPP({0},{0}) ≡ wPMP({0},{0}), wMPP({0},{0}) ≡ wMMP({0},{0})

Similarly as in Lemma 1.1, c) - d), for {0} ⊆ F ⊆ Cp(X), {0} ⊆ G ⊆ B and A,B ∈ {P,M}we have

ABP(F ,G) ≡ ABP({0},{0}) ≡ wABP({0},{0}) ≡ wABP(F ,G).

Theorem 6.1. Let X be a perfectly normal space.

a) X has MPP(B,{0}) if and only if X has MPP(B,U).
b) X has wMPP(B,{0}) if and only if X has wMPP(B,U).

Proof. a) Let us assume that X has MPP(B,{0}) and fn,m ∈ Cp(X, [0, 1]), fn ∈ B, f ∈ U n,m ∈ ω are such that

fn,m
M−→ fn on X for every n ∈ ω and fn

P−→ f on X. There are 1n ∈ Cp(X, [0, 1]) such that 1n
M−→ f on X (see

e.g. [13], 1.7.14 (c)). We define

hn,m = max{ fn,m − 1n, 0}, hn = max{ fn − 1n, 0}, n,m ∈ ω.

6)Although his monotonic sequence selection property is defined for arbitrary real-valued functions, we may consider 1n,m =
min{ fn,m, 1} instead of fn,m for any n,m ∈ ω.
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We have that hn,m
M−→ hn and hn

P−→ 0. By MPP(B,{0}) there is an unbounded β ∈ ωω such that hn,β(n)
P−→ 0

on X. We shall show that fn,β(n)
P−→ 0.

Actually, let x ∈ X and ε > 0. There is n0 ∈ ω such that hn,β(n)(x) < ε, 1n(x)− f (x) < ε and | fn(x)− f (x)| < ε
for any n ≥ n0. Let n ≥ n0. If fn,β(n)(x) ≥ 1n(x) then fn,β(n)(x) − 1n(x) < ε and 0 ≤ fn,β(n)(x) − f (x) < 2ε. If
f (x) ≤ fn,β(n)(x) < 1n(x) then 0 ≤ fn,β(n)(x) − f (x) < 1n(x) − f (x) < ε. Finally, if fn(x) ≤ fn,β(n)(x) < f (x) then
0 < f (x) − fn,β(n)(x) ≤ f (x) − fn(x) < ε.

b) Similarly to a).

Corollary 6.2. Let X be a perfectly normal space.

a) If X has MPP(B,{0}) then X has MMP(B,B).
b) If X has wMPP(B,{0}) then X has wMMP(B,B).

So as in Theorem 5.11, properties introduced by H. Ohta and M. Sakai [30] are useful for description of
some properties ABP(F ,G) or wABP(F ,G).

Proposition 6.3. Let X be a perfectly normal space.

a) If X has property MPP(B,{0}) then X possesses property USC. Hence, X is a σ-set and (γ, γ)-shrinkable.
b) If X has property wMPP(B,{0}) then X possesses property USCs. Hence, every open γ-cover of X is shrinkable.

Proof. a) Let fn : X → [0, 1] be upper semicontinuous functions such that fn
P−→ 0 on X. There are

fn,m ∈ Cp(X, [0, 1]) such that fn,m
M−→ fn on X for every n ∈ ω (see e.g. [13], 1.7.14 (c)). By MPP(B,{0}) there

is an unbounded β ∈ ωω such that fn,β(n)
P−→ 0 on X. Thus X has USC and X is (γ, γ)-shrinkable space by

H. Ohta and M. Sakai [30]. Finally, X is a σ-set by M. Sakai [35].
b) Similarly to a).

Lemma 6.4. Let X be a topological space.

a) If X has MMP({0},{0}) and USC then X has MPP(B,{0}).
b) If X has MMP({0},{0}) and USCs then X has wMPP(B,{0}).
c) If X has MMP({0},{0}) and USCm then X has MMP(B,{0}).

Proof. a) Let us assume that X has MMP({0},{0}) and USC. Then X has MPP(Cp(X),{0}) by the equivalences

above Theorem 6.1. Let fn,m ∈ Cp(X, [0, 1]), fn ∈ B n,m ∈ ω be such that fn,m
M−→ fn on X for every n ∈ ω and

fn
P−→ 0 on X. By property USC there are functions 1n ∈ Cp(X, [0, 1]) such that 1n → 0 and fn ≤ 1n,n ∈ ω. We

define 1n,m = max{ fn,m, 1n} and we have 1n,m
M−→ 1n for any n ∈ ω. By MPP(Cp(X),{0}) there is an unbounded

β ∈ ωω such that 1n,β(n)
P−→ 0 on X. We can conclude that fn,β(n)

P−→ 0 as well.
b) and c) Similarly to a).

A perfectly normal space X has Hurewicz property hereditarily if and only if X is a σ-set and has
the Hurewicz property, see B. Tsaban and L. Zdomskyy [40] or T. Orenshtein and B. Tsaban [32]. H. Ohta
and M. Sakai [30] showed that every normal countably paracompact space has property USCm and every
space with the property USCm is countably paracompact. Let us recall that every perfectly normal space is
countably paracompact (see e.g. [13], Corollary 5.2.5). Hence, we obtain

Theorem 6.5. Let X be a perfectly normal space.

a) X has MPP(B,{0}) if and only if X possesses Hurewicz property hereditarily.
b) X has wMPP(B,{0}) if and only if X possesses Hurewicz property and every open γ-cover of X is shrinkable.
c) X has MMP(B,{0}) if and only if X has Hurewicz property.
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Proof. a) Let X have MPP(B,{0}). Then X has MMP({0},{0}) and by M. Scheepers [37] X has Hurewicz
property. X is a σ-set by Proposition 6.3. Finally, X possesses Hurewicz property hereditarily by B. Tsaban
and L. Zdomskyy [40].

If X possesses Hurewicz property hereditarily then X has MMP({0},{0}) by M. Scheepers [37] and X
is a σ-set by D.H. Fremlin and A.W. Miller [16] (see the paper by T. Orenshtein and B. Tsaban [32] for
appropriate strengthening). Thus X has USC by H. Ohta and M. Sakai [30]. Finally, by Lemma 6.4 we
obtain that X has MPP(B,{0}).

b) and c) Similarly to a).

Corollary 6.6. A perfectly normal space X has MMP(B,{0}) if and only if X has wMMP(B,{0}).

H. Ohta and M. Sakai [30] proved that every separable metrizable space which has USCs is perfectly
meager. The unit interval [0, 1] or Cantor set have MMP(B,{0}) but neither of them has USCs. Hence, we
obtain that

wMPP(B,{0}) .MMP(B,{0}).

7. Sequential closure

D.H. Fremlin [14] showed that any topological space X is an s1-space if and only if X has PP({0},{0}). By
a referee of [9] we were warned about the thesis [31] by T. Orenshtein and about the connection between
sequence selection principles investigated in [9] and properties described by sequential closure operator.

Let us recall that a topological space X is an s1-space if and only if sclω1 (F ,Cp(X)) = scl1(F ,Cp(X)) for
every F ⊆ Cp(X). Moreover, we know even more. By Theorem 3.5 and Proposition 5.2 a topological space
X has wPQ(Cp(X),{0}) if and only if X has PP({0},{0}). Thus any topological space X is an s1-space if and
only if any function from sclω1 (F ,Cp(X)) is a quasi-normal limit of a sequence of functions fromF for every
F ⊆ Cp(X).

T. Orenshtein [31] calls a topological space X an s1(XR)-space if sclω1 (F , XR) = scl1(F , XR) for every
F ⊆ Cp(X). Note that by Lebesque’s Theorem there are functions of all Baire classes on the unit interval
[0, 1], therefore [0, 1] is not an s1(XR)-space. One can easily see that if a topological space X has property
wPP(B,B) then X is an s1(XR)-space.

Proposition 7.1. Any topological space X has property wPP(B,B) if and only if X is an s1(XR)-space. In particular:

a) If X is a perfectly normal QN-space then X is an s1(XR)-space.
b) If X is a perfectly normal QN-space then any function f ∈ sclω1 (F , XR) is quasi-normal limit of functions

from F for any F ⊆ Cp(X).
c) If X is a perfectly normal QN-space then any function f ∈ sclω1 (Cp(X), XR) is discrete limit of functions from

Cp(X).

Proof. The fisrt statement follows by definitions. By Proposition 3.1 any perfectly normal QN-space X has
property wPQ(B,B) which gives (1) and (2). Assertion (3) follows by (2) and by the fact that quasi-normal
limit of a sequence of continuous functions on normal space X is a discrete limit of a sequence of continuous
functions on X (see e.g. first section of [9]).

By Propositions 4.8 and 7.1 we obtain the following.

Corollary 7.2. Any perfectly normal s1(XR)-space is a σ-set.

T. Orenshtein [31] studies property
(F
G
)

which was introduced by M. Scheepers [36] under notation

Sub(F ,G). A topological space X possesses property
(S′

0

Γ0

)
if for any set F ⊆ Cp(X) \ {0}with 0 ∈ sclω1 (F , XR)

there is a sequence ⟨ fn : n ∈ ω⟩ of functions from F such that fn → 0. Thus a topological space X possesses
property

(S′0
Γ0

)
if and only if sclω1 (A, XR) ∩Cp(X) = scl1(A, XR) ∩Cp(X) for any A ⊆ Cp(X). Consequently by
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definition of s1(XR)-space and by Proposition 7.1 we obtain the following. One can easily see that any
s1(XR)-space possesses property

(S′0
Γ0

)
.

Corollary 7.3. If a topological space X has property wPP(B,B) then X possesses
(S′0
Γ0

)
. In particular, any perfectly

normal QN-space possesses
(S′0
Γ0

)
.

T. Orenshtein [31] proves that if a perfectly normal space X possesses
(S′0
Γ0

)
then X is an S1(Γ, Γ)-space. In

Problem 6.0.17 he asks if any perfectly normal S1(Γ, Γ)-space possesses
(S′0
Γ0

)
.

Similarly, we may express other properties in terms of sequential closure. Propositions 7.4 and 7.6 follow
easily by definitions.

Proposition 7.4. Any topological space X has property wPP(B,{0}) if and only if

scl2(F , XR) ∩ Cp(X) = scl1(F , XR) ∩ Cp(X)

for any F ⊆ Cp(X).

Consequently by the above natural characterization of
(S′0
Γ0

)
we obtain the following. The former follows

by Proposition 4.9.

Corollary 7.5. If a topological space X possesses
(S′0
Γ0

)
then X has property wPP(B,{0}). Hence, every open γ-cover

of X is shrinkable.

Proposition 7.6. Any topological space X has property wPP(Cp(X),B) if and only if

scl(sclω1 (F ,Cp(X)), XR) = scl1F , XR)

for any F ⊆ Cp(X).

8. Consistency results

B. Tsaban and L. Zdomskyy [40] have realized the consequences of the result by A. Dow [12] on relation
of QN-space and wQN-space, i.e., wQN is equivalent to QN in the Laver model. The Laver model is
that constructed by A. Laver [25]. Later, A.W. Miller and B. Tsaban [29] slightly improved the result and
obtained that the statement “X is a wQN-space” is in the Laver model equivalent to “|X| < b” for any set of
reals X.

Proposition 8.1. Let F ,G,Q,H be families of functions, A,B,M,N being any of P, Q, D. Then the theory

ZFC +AB(F ,G) ≡MN(Q,H) ≡ wAB(F ,G) ≡ wMN(Q,H)

is consistent. Added equivalences are understood to hold for any perfectly normal space.

Hence, the answer to Problem 6.0.17 by T. Orenshtein [31] is “consistently Yes”.
J. Gerlits and Zs. Nagy [18] showed that the minimal cardinality of a set which is not a γ-set is p. By

Corollary 4.5 we obtain

Proposition 8.2. If p < b then AB(F ,G)9 γ nor wAB(F ,G)9 γ.
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F. Galvin and A.W. Miller [17] showed that assuming MA (p = c is sufficient) there is a γ-set of reals of
cardinality c which is c-concentrated on a countable subset. If cf(κ) > ℵ0 then set of cardinality κ which is
κ-concentrated on a countable subset cannot be a λ-set (see e.g. M. Sakai [34]). M. Scheepers [38] adapted
the construction of an S1(Γ,Γ)-set by W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki [21] and obtained
the following: If t = b then there is an S1(Γ,Γ)-set X of real numbers of cardinality b such that X is not
a λ-set (see e.g. [4] as well). Finally, T. Orenshtein and B. Tsaban [32] showed that if p = b then there is
a γ-set of real numbers of cardinality b which is p-concentrated on a countable subset. Note that p = t by
M. Malliaris and S. Shelah [26].

Theorem 8.3 contains several sequence selection properties which can be distinguished. By (1) and
Diagram 1 it follows that there is a number of others.

Theorem 8.3. Let (A,B) be any couple of P, Q, D with the exception of (P,D), (Q,D), (D,D), (P,Q). If p = b then

a) AB(F ,{0}) . AB(Cp(X),{0}) forU ⊆ F ⊆ B.
b) wAB(F ,B) . wAB(F ,{0}) forU ⊆ F ⊆ B.
c) AB(F ,{0}) . wAB(F ,{0}) forU ⊆ F ⊆ B.
d) PQ(Cp(X),{0}) . PQ({0},{0}).
e) PQ(Cp(X),{0}) . wPQ(Cp(X),{0}).
f) MPP(B,{0}) . wMPP(B,{0}).

The most interesting diagram of relations is Diagram 7 which describes what we know about relations
among properties AB(F ,{0}) and wAB(F ,{0}) forU ⊆ F ⊆ B. Note that forF ∈ {U,B} and normal space we
know that any property AB(F ,{0}) or wAB(F ,{0}) has its corresponding equivalent principle in Diagram 7.
Negative arrow represents non-provability of implication.

QN - DP(F ,{0})-PP(F ,{0}) - hS1(Γ,Γ) - σ

wPQ(F ,{0})

? ?

- wDP(F ,{0})-wPP(F ,{0})

?

- S1(Γ,Γ)

?

- wQNγ -

6 6 6 6

U ⊆ F ⊆ B

Diagram 7

A.W. Miller [27] showed that the theory ZFC+“any σ-set of reals is countable” is consistent. Any second-
countable space X with ind(X) = 0 is homeomorphic to a subset of reals (see e.g. [13], Theorem 6.2.16).
Thus any separable metrizable space with properties AB(F ,G) or wAB(F ,B) forU ⊆ F is by Corollaries 4.3
and 4.11 homeomorphic to a hereditarily S1(Γ,Γ)-set of reals. By J. Haleš [19] such set is a σ-set. Moreover,
by Corollary 4.5 any countable set of reals has investigated sequence selection properties. However, there
is an uncountable γ-set in Miller’s model by T. Orenshtein and B. Tsaban [32]. Let us recall that any
second-countable topological space X is metrizable if and only if X is regular (see e.g. [13], Theorem 4.2.9).

Proposition 8.4. Let (A,B) be any couple of P, Q, D with the exception of (P,D), (Q,D), (D,D), (P,Q). Then the
theory

ZFC + “AB(B,B) ≡ AB(U,{0}) ≡ wAB(U,B)” + “AB(U,{0}) . wAB(U,{0})”

is consistent. Added equivalences are understood to hold for any separable metrizable space.
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Diagram 8 describes in more detail the relations in Miller’s model.

QN ≡ PQ(Cp(X),{0}) ≡ AB(F ,B) ≡ wAB(F ,B) ≡ AB(F ,{0}) ≡ hS1(Γ,Γ) ≡ σ-set

wAB(F ,{0})

wQN ≡ wPQ(Cp(X),{0}) ≡ AB(Cp(X),{0}) ≡ AB({0},{0}) ≡ PQ({0},{0})

? 6

?

(A,B) , (P,Q), B , D,U ⊆ F ⊆ B

Diagram 8

T. Orenshtein [31] proved that any perfectly normal s1(XR)-space is an S1(Γ,Γ)-space and he asked in
Problem 6.0.15 if the reversed implication could hold.

Corollary 8.5. The statement

“any perfectly normal S1(Γ,Γ)-space is an s1(XR)-space”

is undecidable in ZFC.

Proof. By (4), Propositions 5.2, 7.1, 8.1 and by the above result by T. Orenshtein [31] we obtain that the
theory ZFC + s1(XR) ≡ S1(Γ,Γ) is consistent. Added equivalence is understood to hold for any perfectly
normal space.

By Theorem 7.2 an s1(XR)-space is a σ-set. Hence, the aforementioned set by M. Scheepers [38] is
an S1(Γ, Γ)-set which is not an s1(XR)-space.

By definitions an s1(XR)-space possesses
(S′0
Γ0

)
. T. Orenshtein [31] asked again in Problem 6.0.16 if the

reversed implication could hold. Note that J. Gerlits and Zs. Nagy [18] showed that a Tychonoff space X is
γ-set if and only if Cp(X) is Fréchet-Urysohn. Hence any γ-set has

(S′0
Γ0

)
.

Corollary 8.6. The statement

“any perfectly normal space possessing
(S′0
Γ0

)
is an s1(XR)-space”

is undecidable in ZFC.

Proof. By Propositions 7.1, 8.1 and Corollaries 7.3, 7.5 we obtain that the theory ZFC +
(S′0
Γ0

) ≡ s1(XR) is
consistent. Added equivalence is understood to hold for any perfectly normal space.

By Theorem 7.2 an s1(XR)-space is a σ-set. Hence, the γ-set by T. Orenshtein and B. Tsaban [32] cannot
be an s1(XR)-space but possesses

(S′0
Γ0

)
by J. Gerlits and Zs. Nagy [18].
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