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A variation on ward continuity

Hüseyin Çakallıa

aMaltepe University, Faculty of Arts and Science, Department of Mathematics, Istanbul, Turkey

Abstract. In this paper, we prove that any ideal ward continuous function is uniformly continuous either
on an interval or on an ideal ward compact subset of R. A characterization of uniform continuity is also
given via ideal quasi-Cauchy sequences.

1. Introduction

A real function is continuous on the set of real numbers if and only if it preserves Cauchy sequences.
Using the idea of continuity of a real function in terms of sequences, many kinds of continuities were
introduced and investigated. Not all but some of them we recall in the following: slowly oscillating
continuity ([10]), quasi-slowly oscillating continuity, ∆-quasi-slowly oscillating continuity ([15], and [5]),
ward continuity ([6]), δ-ward continuity ([7]), statistical ward continuity, lacunary statistical ward continuity
([8, 9, 11]), and λ-statistically ward continuity ([14]). Investigation of some of these kinds of continuities
lead some authors to find certain characterizations of uniform continuity of a real function in terms of
sequences in the above manner ([21, Theorem 8], [8, Theorem 6], [2, Theorem 1], [3, Theorem 3.8]).

The concept of ideal convergence, which is a generalization of statistical convergence, was introduced
by Kostyrko, S̆alàt and Wilczyński [18] by using the ideal I of subsets of the set of positive integers. Using
the main idea in defining new continuities, the concept of I-ward continuity of a real function is recently
introduced and investigated.

The purpose of this paper is to continue the investigation given in [4], and obtain further interesting
results on I-ward continuity.

2. Preliminaries

Some definitions and notation will be given in the following. Throughout this paper, N, and R will
denote the set of all positive integers, and the set of all real numbers, respectively. We will use boldface
letters α, β, x, y, z, ... for sequences (αn), (βn), (xn), (yn), (zn), ... of terms in R.

Although an ideal is defined as a hereditary and additive family of subsets of a non-empty arbitrary set,
here in our study it suffices to take I as a family of subsets of N such that A∪B ∈ I for each A,B ∈ I, and each
subset of an element of I is an element of I. An ideal I is called non-trivial if I , ∅ and N < I. A non-trivial
ideal I is called admissible if {{n} : n ∈ N} ⊂ I. Further details on ideals can be found in Kostyrko, et.al (see
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[18]). Throughout this paper we assume I is a non-trivial admissible ideal in N, and an ideal will mean an
non-trivial admissible ideal I. Recall that a sequence (αn) of points in R is I-convergent to a real number ℓ if
{n ∈ N : |αn − ℓ| ≥ ε} ∈ I for every ε > 0. In this case we write I− limαn = ℓ. A sequence (αn) of points in R is
said to be I-quasi-Cauchy if I− lim(αn+1−αn) = 0. We note that the definition of a quasi-Cauchy sequence is
a special case of an ideal quasi-Cauchy sequence where I is taken as the finite subsets of the set of positive
integers. The notion is useful not only in mathematical analysis but also in other branches for example in
the ergodic theory and computer science theory. Now we give the following interesting examples which
show emphasis the interest in different research areas.

Example 2.1. Let n be a positive integer. In a group of n people, each person selects at random and
simultaneously another person of the group. All of the selected persons are then removed from the group,
leaving a random number n1 < n of people which form a new group. The new group then repeats
independently the selection and removal thus described, leaving n2 < n1 persons, and so forth until either
one person remains, or no persons remain. Denote by pn the probability that, at the end of this iteration
initiated with a group of n persons, one person remains. Then the sequence p = (p1, p2, , pn, ...) is a quasi-
Cauchy sequence, and limpn does not exist (see [22]).

Example 2.2. Let n be a positive integer. In a group of n people, each person selects independently and
at random one of three subgroups to which to belong, resulting in three groups with random numbers n1,
n2, n3 of members; n1 + n2 + n3 = n. Each of the subgroups is then partitioned independently in the same
manner to form three sub subgroups, and so forth. Subgroups having no members or having only one
member are removed from the process. Denote by tn the expected value of the number of iterations up
to complete removal, starting initially with a group of n people. Then the sequence (t1,

t2
2 ,

t3
3 , ...,

tk
k , ...) is a

bounded nonconvergent quasi-Cauchy sequence (see [16]).

Example 2.3. Let x := (xn) be a sequence such that for each nonnegative integer n, xn is either 0 or 1. For
each positive integer n set an =

x1+x2+...+xn
n . Then an is the arithmetic mean average of the sequence up to

time or position n. Clearly for each n, 0 ≤ an ≤ 1. (an) is a quasi-Cauchy sequence. That is, the sequence of
averages of 0 s and 1 s is always a quasi-Cauchy sequence (see [16]).

Example 2.4. Limit of the sequence of the ratios of Fibonacci numbers converge to the golden mean. This
is a lacunary sequential method obtained via the sequence of Fibonacci numbers, method, i.e. θ = (kr) is the
lacunary sequence defined by writing k0 = 0 and kr = Fr+2 where (Fr) is the Fibonacci sequence, i.e. F1 = 1,
F2 = 1, Fr = Fr−1 + Fr−2 for r ≥ 3 (see [3]). For this lacunary sequence θ = (kr), any quasi-Cauchy sequence is
also lacunary statistically quasi-Cauchy (see [11]).

A function f is called I-ward continuous on a subset E of R if f preserves I-quasi-Cauchy sequences of
points in E, i.e. ( f (αn)) is I-quasi-Cauchy whenever (αn) is an I-quasi-Cauchy sequences of numbers in E
([4]).

3. Results

C(R) be the set of continuous functions of R. Noticing the observation in [1], we have the following: if
f ∈ C(R) and E is a compact subset of R, then f/E is uniformly continuous. But the standard proof shows
something more is true: ∀ε > 0 ∃δ > 0 such that if |α− β| < δ and α, β ∈ E, then | f (α)− f (β)| < ε. To see this,
suppose to the contrary that ∀n ∈ N ∃αn, βn such that if |αn − βn| < 1

n and αn, βn ∈ E, then | f (αn)− f (βn)| ≥ ε.
By compactness the sequence (αn) has a cluster point α ∈ E. But α is also a cluster point of the sequence (βn)
and so continuity of f at α fails. We replace the word ”compactness” by ideal ward-compactness in this
strong argument in proofs of our theorems in the following, which makes the proofs easy.

Theorem 3.1. If a function f is uniformly continuous on a subset E of R, then ( f (xn)) is I-quasi Cauchy whenever
(xn) is a quasi-Cauchy sequence of points in E.



H. Çakallı / Filomat 27:8 (2013), 1545–1549 1547

Proof. Let f be uniformly continuous on E. Suppose that there exists a quasi-Cauchy sequence (xn) so that
( f (xn)) is not I-quasi-Cauchy. Therefore there is an ε0 > 0 such that {n : | f (xn+1) − f (xn)| ≥ ε0} < I. As f is
uniformly continuous on E, for this ε0, there exists a δ > 0 such that | f (α) − f (β)| < ε0 whenever |α − β| < δ
and α, β ∈ E. Since (xn) is quasi-Cauchy, for this δ0 there is an n0 ∈ N such that |xn+1 − xn| < δ for n ≥ n0.
Admissibility of I implies that the set {n : | f (xn+1)− f (xn)| ≥ ε0} is an infinite subset of N. Hence there exists
an n1 ∈ N, which is greater than n0, such that | f (xn1+1)− f (xn1 )| ≥ ε0. This contradiction completes the proof
of the theorem.

It is well known that any continuous function on a compact subset E of R is uniformly continuous on E.
It is also true for the ideal case, i.e. any I-ward continuous function on an I-ward compact subset E of R is
also uniformly continuous on E.

Theorem 3.2. Let E be an I-ward compact subset E of R and f : E → R. f is I-ward continuous on E, then it is
uniformly continuous.

Proof. Suppose that f is not uniformly continuous on E so that there exist an ϵ0 > 0 and sequences (αn) and
(βn) of points in E such that

|αn − βn| < 1/n

and

| f (αn) − f (βn)| ≥ ϵ0

for all n ∈ N. Since E is I-ward compact, there is an I-quasi-Cauchy subsequence of (αnk ) of (αn). On the
other hand, there is an I-quasi-Cauchy subsequence of (βnkj

) of (βnk ). It is clear that the corresponding
sequence (αnkj

) is also an I-quasi-Cauchy, since (βnkj
) is an I-quasi-Cauchy sequence and

αnkj
− αnkj+1

= (αnkj
− βnkj

) + (βnkj
− βnkj+1

) + (βnkj+1
− αnkj+1

).

Now define a sequence z = (z j) by setting z1 = αnk1
, z2 = βnk1

, z3 = αnk2
, z4 = βnk2

, z5 = αnk3
, z6 = βnk3

, and
so on. Thus the sequence z = (z j) defined in this way is an I-quasi-Cauchy while f (z) = ( f (z j)) is not
I-quasi-Cauchy. Hence this establishes a contradiction so this completes the proof of the theorem.

Corollary 3.3. If a real valued function defined on a bounded subset of R is I-ward continuous, then it is uniformly
continuous on E.

Proof. The proof follows from the preceding theorem and [4, Theorem 8].

We give below that any real ideal-ward continuous function defined on an interval is uniformly contin-
uous. First we give the following lemma.

Lemma 3.4. If (ξn, ηn) is a sequence of ordered pairs of points in an interval such that limn→∞ |ξn − ηn| = 0, then
there exists an I-quasi-Cauchy sequence (αn) with the property that for any positive integer i there exists a positive
integer j such that (ξi, ηi) = (α j−1, α j).

Proof. Although the following proof is similar to that of [9], we give it for completeness. For each positive
integer k, we can fix zk

0, z
k
1, ..., z

k
nk

in E with zk
0 = ηk, zk

nk
= ξk+1, and |zk

i − zk
i−1| <

1
k for 1 ≤ i ≤ nk. Now write

(ξ1, η1, z1
1, ..., z

1
n1−1, ξ2, η2, z2

1, ..., z
2
n2−1, ξ3, η3, ..., ξk, ηk, zk

1, ..., z
k
nk−1
, ξk+1, ηk+1, ...)

Then denoting this sequence by (αn) we obtain that for any i ∈ N there exists a j ∈ N such that (ξi, ηi) =
(α j−1, α j). This completes the proof of the lemma.

Theorem 3.5. If a function defined on an interval E is I-ward continuous, then it is uniformly continuous.
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Proof. Suppose that f is not uniformly continuous on E. Then there is an ε0 > 0 such that for any δ > 0
there exist x, y ∈ E with |x− y| < δ but | f (x)− f (y)| ≥ ε0. For every n ∈ N fix ξn, ηn ∈ E with |ξn − ηn| < 1

n and
| f (ξn) − f (ηn)| ≥ ε0. By Lemma 3.4, there exists an I-quasi-Cauchy sequence (αi) such that for any integer
i ≥ 1 there exists a j with ξi = α j and ηi = α j+1. This implies that | f (α j+1) − f (α j)| ≥ ε0; hence ( f (αi)) is
not I-quasi-Cauchy. Thus f does not preserve I-quasi-Cauchy sequences. This completes the proof of the
theorem.

Since the sequence constructed in Lemma 3.4 is also quasi-Cauchy, we see that the statement ( f (xn)) is
I-quasi Cauchy whenever (xn) is quasi-Cauchy sequence of points in E implies the uniform continuity of f
on E. Now combining Theorem 3.1 with this observation we have the following result.

Corollary 3.6. Let f be a function defined on an interval E. Then f is uniformly continuous on E if and only if
( f (xn)) is I-quasi Cauchy whenever (xn) is quasi-Cauchy sequence of points in E.

Corollary 3.7. If a function defined on an interval is I-ward continuous, then it is ward continuous.

Proof. The proof follows from Theorem 3.5, and [9, Theorem 5] so it is omitted.

Corollary 3.8. If a function defined on an interval is I-ward continuous, then it is slowly oscillating continuous.

Proof. The proof follows from Theorem 3.5, and [9, Theorem 5] so it is omitted.

Now we give a result related to Nθ-quasi-Cauchy sequences (see [13] for concepts related to Nθ-quasi
sequences).

Corollary 3.9. If f is I-ward continuous on an interval, then ( f (xn)) is Nθ-quasi Cauchy whenever (xn) is a quasi-
Cauchy sequence of points in E.

Corollary 3.10. If f is I-ward continuous on an interval, then ( f (xn)) is lacunary statistically quasi-Cauchy whenever
(xn) is a quasi-Cauchy sequence of points in E.

Corollary 3.11. If f is I-ward continuous on an interval, then ( f (xn)) is λ-statistically quasi-Cauchy whenever (xn)
is quasi-Cauchy sequence of points in E.

Finally we note the following further investigation problem arises.

Remark 3.12. For further study, we suggest to investigate I-quasi-Cauchy sequences of fuzzy points and I-
ward continuity for the fuzzy functions. However due to the change in settings, the definitions and methods
of proofs will not always be analogous to those of the present work (for example see [12, 17, 19, 20].
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[12] H. Çakalli, Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., 22, 11 (2009), 1665-1669. MR 2010k:54006.



H. Çakallı / Filomat 27:8 (2013), 1545–1549 1549
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