
Filomat 27:8 (2013), 1385–1392
DOI 10.2298/FIL1308385A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Matrix Transforms of A-statistically Convergent Sequences with Speed
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Abstract. Let X,Y be sequence spaces and (X,Y) the set of all matrices mapping X into Y. Let A be a
non-negative regular matrix and λ a speed, i.e. a positive monotonically increasing sequence. In this paper
the notion of A-statistical convergence with speed λ is introduced and the class of matrices (stλA ∩ X,Y),
where stλA is the set of all A-statistically convergent sequences with speed λ, is described.

1. Introduction

The notion of statistical convergence of a sequence was defined by Fast [6] and Steinhaus [20]
independently in 1951. Further this subject have been studied in several works (see, for example, [1], [8],
[13], [17]-[19]). In 1988 Kolk [14] (see also [15]-[16]) introduced the concept of A-statistical convergence for
a non-negative regular matrix A and studied matrix transforms of A-statistically convergent sequences.

The speed (or the rate) of convergence of statistically and A-statistically convergent sequences were
introduced in various ways [3]-[5], [9]. In the present paper we choose another way to define the speed of
convergence of A-statistically convergent sequences, applying the notion of convergence with speed λ (λ
is a monotonically increasing positive sequence), introduced by Kangro in 1969 [11]. Also we investigate
the matrix transforms of A-statistically convergent sequences with speed. We show that in the special case,
if λ is bounded, from our results follow some results of Kolk [15]-[16]. The author wish to thank professor
Kolk for valuable advices for preparing this paper.

2. Notation and preliminaries

Let, as usual, s,m, c, c0 be respectively the spaces of all sequences x := (xk) (with real or complex
entries), of all bounded sequences, of all convergent sequences, of all sequences converging to 0. Throughout
this paper we assume that indices and summation indices run from 0 to∞ unless otherwise specified.

In the following by an index set we mean an infinite subset {ki} of N with ki < ki+1. For an arbitrary
index set K = {ki} the sequence x[K] = (yk),where

yk =

{
xk if k ∈ K,
0 otherwise,
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is called the K-section of x. A sequence space X is called section-c1osed if x[K] ∈ X for every x ∈ X and for
every index set K. A sequence space X is called subsequence-c1osed if every subsequence of X belongs
to X. For example, the spaces s,m, c0 are section-closed and the space c is subsequence-c1osed, but not
section-closed.

Let X,Y be two sequence spaces and A = (ank) be a matrix with real or complex entries. If for each
x = (xk) ∈ X the series

Anx =
∑

k

ankxk

converge and the sequence Ax = (Anx) belongs to Y,we say that the matrix A transforms X into Y. By (X,Y)
we denote the set of all matrices which transform X into Y. A matrix A is said to be regular if A ∈ (c, c) and

lim
n

Anx = lim
k

xk

for each x ∈ c. It is well-known (see [2]) that A = (ank) is regular if and only if

lim
n

ank = 0, (2.1)

lim
n

∑
k

ank = 1, (2.2)

∑
k

|ank| = O (1) . (2.3)

A matrix A is called uniformly regular if it satisfies the conditions (2.2)-(2.3) and

lim
n

sup
k
|ank| = 0. (2.4)

For example, the Cesàro matrix C1 = (ank), where ank = 1/n for k ≤ n and ank = 0 otherwise, is uniformly
regular.

Let K be a fixed index set. By A[K] we denote the K-column-section of the matrix A, i.e.A[K] = (dnk),
where

dnk =

{
ank if k ∈ K,
0 otherwise.

By φ[K] we denote the characteristic sequence of K, i.e. φ[K] =
(
φ[K]

j

)
,where

φ[K]
j =

{
1 if j ∈ K,
0 otherwise.

If C1 transforms φ[K] into c, then the limit

lim
n

1
n

n∑
j=0

φ[K]
j

is said to be the asymptotic density of K and is denoted by δ(K). Let further throughout the paper A is a
regular non-negative matrix. Following Freedman and Sember [7], for A an index set K is said to have
A-density

δA(K) := lim
n

Anφ
[K]

if Aφ[K] ∈ c. So
δA(K) = lim

n

∑
k∈K

ank.
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By Fast [6] (see also [20]), a sequence x = (xk) is called statistically convergent to a number ξ if
δ(Kϵ) = 0 for every ϵ > 0,where

Kϵ := {k : | xk − ξ | ≥ ϵ}.
A sequence x is said to be A-statistically convergent to ξ if δA(Kϵ) = 0 for every ϵ > 0 (see [14], [16]). In this
case we write

stA − lim xk = ξ.

We denote the set of all A-statistically convergent sequences by stA, and the set of all sequences, converging
A-statistically to 0, by st0

A.
As for every x = (xk) ∈ c the set Kϵ is finite for each ϵ > 0, then δA(Kϵ) = 0 for every ϵ > 0 by condition

(2.1). Thus every convergent sequence is A-statistically convergent, i.e. c ∈ stA. It was shown in [16] that for
a uniformly regular non-negative matrix A the A-statistical convergence is strictly stronger than ordinary
convergence.

Observe that for A = I (where I is the identity matrix) the concept of A-statistical convergence
coincides with ordinary convergence, and for A = C1 with the statistical convergence.

Let throughout this paper λ = (λk) be a positive monotonically increasing sequence. Following
Kangro [11], [12] a convergent sequence x = (xk) with

lim
k

xk := ξ and lk = λk (xk − ξ) (2.5)

is called bounded with the speed λ (shortly, λ-bounded) if lk = O (1), and convergent with the speed λ
(shortly, λ-convergent) if

∃ lim
k

lk := b. (2.6)

We denote the set of all λ-bounded sequences by mλ, and the set of all λ-convergent sequences by cλ. Let

cλ0 = {x = (xk) : x ∈ cλ and b = 0},

mλ0 = {x = (xk) : x ∈ mλ and ξ = 0},
zλ = {x = (xk) : x ∈ cλ and ξ = 0},

nλ = {x = (xk) : x ∈ cλ and ξ = b = 0}.
It is not difficult to see that nλ ⊂ zλ ⊂ cλ ⊂ mλ ⊂ c and nλ ⊂ cλ0 ⊂ cλ. In addition to it, for unbounded
sequence λ these inclusions are strict. For λk = O (1) we get cλ0 = cλ = mλ = c and zλ = nλ = c0.

For a non-negative regular matrix A we say that a sequence x = (xk) is A-statistically convergent
with speed λ (shortly, Aλ-statistically convergent) if x ∈ stA and l := (lk) ∈ stA. For the particular case A = C1

we say that a sequence x is statistically convergent to ξ with speed λ (shortly, λ-statistically convergent to
ξ). The set of all Aλ-statistically convergent sequences we denote by stλA.

Obviously stλA ⊂ stA. Also we can assert that cλ ⊂ stλA. Indeed, for every x ∈ cλ we have x ∈ c ⊂ stA

and l ∈ c ⊂ stA. Consequently x ∈ stλA.
It is easy to see that for A = I the concept of Aλ-statistical convergence coincides with the concept of

λ-convergence, and for λk = O (1) with the concept of ordinary A-statistical convergence.
For x = (xk) ∈ stλA we denote

stA − lim xk = η and stA − lim tk = β; tk = λk
(
xk − η

)
. (2.7)

Further we also need the following subsets of stλA:

stλA, 0 = {x = (xk) : x ∈ stλA and β = 0},

z-stλA = {x = (xk) : x ∈ stλA and η = 0},
n-stλA = {x = (xk) : x ∈ stλA and η = 0, β = 0}.

We note that n-stλA ⊂ z-stλA ⊂ stλA and n-stλA ⊂ stλA, 0.
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3. Matrix transforms of A-statistically convergent sequences with speed

At first we introduce some notations and formulate some results, which we need further. Let
e = (1, 1, ...), ek = (0, ..., 0, 1, 0, ...), where 1 is in the k-th position, and λ−1 = (1/λk).

Lemma 3.1 ([14], [15], see also [8]). Let A be a non-negative regular matrix. A sequence x = (xk) converges
A-statistically to ξ if and only if there exists an infinite set of indices K = {ki} so that the subsequence (xki ) converges
to ξ and δA(N\K) = 0 (and hence δA(K) = 1).

Lemma 3.2 (see [16]). Let Y , s be a subsequence-closed sequence space. If a matrix A is uniformly regular, the
following statements about a matrix B = (bnk) (with real or complex entries) are equivalent:

(I) B ∈ (s,Y);
(II) B[K] ∈ (s,Y) for every index set K with δA(K) = 0;
(III) Bek ∈ Y and there exists a number k0 such that

bnk = 0 for every k > k0 and n ∈ N.

Now we are able to prove the main results of the paper.

Theorem 3.3. Let λ be a monotonically increasing positive sequence and A a non-negative regular matrix. A
sequence x = (xk) converges Aλ-statistically to η if and only if there exists an infinite set of indices K = {ki} so that
the subsequence (xki ) is λ-convergent to η and δA(N\K) = 0 (and hence δA(K) = 1).
Proof. As for a bounded sequence λwe have stλA = stA, then in this case Theorem 3.3 coincides with Lemma
3.1. Therefore suppose that λ is unbounded. By the definition, x = (xk) ∈ stλA if and only if relation (2.7)
holds. With the help of Lemma 3.1 we get that stA − lim tk = β if and only if there exists an infinite set of
indices K = {ki} so that the ordinary limit

lim
i

tki = β (3.1)

exists and δA(K) = 1. As the sequence λ is monotonically increasing, then the subsequence
(
λki

)
of λ is

unbounded. Consequently it follows from (3.1) that there exists the ordinary limit lim
i

xki = η. This relation

together with δA(K) = 1 implies stA − lim xk = η. Thus the proof is complete.

Theorem 3.4. Let λ = (λk) be a monotonically increasing positive sequence, X a section-closed sequence space
containing e and λ−1, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix
B ∈

(
stλA

∩
X,Y

)
if and only if B ∈

(
cλ

∩
X,Y

)
and

B[K] ∈ (X,Y) (δA(K) = 0). (3.2)

Proof. Necessity. Let B ∈
(
stλA

∩
X,Y

)
. As cλ ⊂ stλA, we immediately have B ∈

(
cλ

∩
X,Y

)
. Let K be a set of

indices with δA(K) = 0, and x = (xk) ∈ X. Then the sequence yλ :=
(
yλk

)
, where

yλk =
{
λkxk if k ∈ K,
0 otherwise,

converges A-statistically to 0. Consequently the sequence y = x[K] converges Aλ-statistically to 0.Moreover,
y ∈ X, since X is section-closed. Hence y ∈ stλA

∩
X, and therefore By ∈ Y. As

B[K]x =
(
B[K]

n x
)
=

(
Bny

)
= By,

then B[K]x ∈ Y. Thus condition (3.2) is valid.
Sufficiency. We show that B ∈

(
stλA

∩
X,Y

)
if B ∈

(
cλ

∩
X,Y

)
and condition (3.2) is fulfilled. Let x = (xk) ∈

stλA
∩

X, i.e. relation (2.7) holds. We prove that Bx ∈ Y. It follows from (2.7) that

xk = η +
β

λk
+

tk − β
λk
,
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i.e. every x ∈ stλA we can present in the form

x = ηe + βλ−1 + x0, where x0 :=
(

tk − β
λk

)
∈ n-stλA.

As e ∈ cλ
∩

X and λ−1 ∈ cλ
∩

X, then Be ∈ Y and Bλ−1 ∈ Y. Therefore it is sufficient to show that Bx ∈ Y
for every x ∈ n-stλA. Thus suppose x ∈ n-stλA, i.e. relation (2.7) holds with η = β = 0. Then by Theorem 3.3
there exist a set of indices K with δA(K) = 0 (then δA(N\K) = 1) so that lim

k
uk = 0, where u := (uk) is the

N\K-section of t := (tk), i.e.

uk =

{
λkxk if k ∈ N\K,
0 otherwise.

Hence for y = (yk) := x[N\K] we get lim
k

yk = 0. Thus y ∈ nλ ⊂ cλ. Also y ∈ X, since X is section-closed. This

implies By ∈ Y.Moreover, B[K]x ∈ Y by (3.2), and

Bx = By + B[K]x.

Therefore Bx ∈ Y. The proof is complete.

Similarly to Theorem 3.4 we can prove the analogous results for the sets cλ0 , z
λ and nλ.

Theorem 3.5. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space containing e,
Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix B ∈

(
stλA, 0

∩
X,Y

)
if and only if

B ∈
(
cλ0

∩
X,Y

)
and relation (3.2) holds.

Theorem 3.6. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space containing
λ−1, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix B ∈

(
z-stλA

∩
X,Y

)
if and

only if B ∈
(
zλ

∩
X,Y

)
and relation (3.2) holds.

Theorem 3.7. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space, Y an
arbitrary sequence space and A a regular non-negative matrix. Then a matrix B ∈

(
n-stλA

∩
X,Y

)
if and only if

B ∈
(
nλ

∩
X,Y

)
and relation (3.2) holds.

For a bounded sequence λ from Theorem 3.4 it follows Theorem 4.1 of Kolk [16] and from Theorem
3.6 (or Theorem 3.7) we get Theorem 4.2 of Kolk [16]. For a uniformly regular matrix A we get the following
result.

Theorem 3.8. Let λ be a monotonically increasing positive sequence, Y , s a subsequence-closed sequence space and
A a uniformly regular non-negative matrix. Then

(
stλA,Y

)
=

(
stλA, 0,Y

)
=

(
z-stλA,Y

)
=

(
n-stλA,Y

)
= (s,Y) .

Proof. As
(s,Y) ⊂

(
stλA,Y

)
⊂

(
stλA, 0,Y

)
⊂

(
n-stλA,Y

)
and

(s,Y) ⊂
(
stλA, 0,Y

)
⊂

(
n-stλA,Y

)
,

then it is sufficient to prove that
(
n-stλA,Y

)
⊂ (s,Y). If B ∈

(
n-stλA,Y

)
, then by Theorem 3.7 (for the case X = s)

B[K] ∈ (s,Y) for every set of indices K with δA(K) = 0. Hence B ∈ (s,Y) by Lemma 3.2. The proof is complete.

For a bounded sequence λ from Theorem 3.8 we get Theorem 4.3 of [16]. Using the equivalence of
conditions (I) and (III) of Lemma 3.2, from Theorem 3.8 we immediately get the extension of Corollary 4.4
of [16].

Corollary 3.9. By the assumptions of Theorem 3.8 the equivalent inclusions B ∈
(
stλA,Y

)
, B ∈

(
stλA, 0,Y

)
, B ∈(

z-stλA,Y
)

and B ∈
(
n-stλA,Y

)
hold if and only if B has at most finitely many non-zero columns belonging to Y.
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As s,m, c0 are section- and subsequence-closed, and c is only subsequence-closed, then Theorems
3.4-3.7 it is possible to apply for the cases X = s, X = m and X = c0, and Theorem 3.8 for the cases Y = m,
Y = c0 and Y = c0. We prove that similarly we can apply Theorems 3.4-3.7 for X = mλ0 and X = nλ, and
Theorem 3.8 for Y = cλ0 , Y = nλ and Y = mλ. Also we show that Theorem 3.8 is applicable for Y = cλ and
Y = zλ only in the special case.

Proposition 3.9. Let λ = (λk) be a monotonically increasing positive unbounded sequence. Then the following
statements hold:

a) mλ0 and nλ are section-closed, but mλ, cλ, cλ0 and zλ are not;
b) mλ0 , mλ, nλ and cλ0 are subsequence-closed;
c) cλ and zλ are subsection-closed if and only if there exists the finite limit

lim
k

λk

λik
(3.3)

for every subsequence
(
λik

)
of λ.

Proof.
a) The assertion immediately follows from the definitions of these sets.
b) Let x = (xk) ∈ mλ, i.e. relation (2.5) with lk = O (1) is satisfied. Then for every subsequence

(
xik

)
of x

we get lim
k

xik = ξ, since mλ ⊂ c. For every subsequence
(
xik

)
of x we define the sequence (uk) with

uk := λk
(
xik − ξ

)
.

As λ is monotonically increasing, then

|uk| ≤ λik

∣∣∣xik − ξ
∣∣∣ ≤ λk |(xk − ξ| .

This implies uk = O (1) for each x ∈ mλ and each subsequence
(
xik

)
of x, and lim

k
uk = 0 for each x ∈ cλ0 and each

subsequence
(
xik

)
of x. Moreover, mλ0 ⊂ mλ and nλ ⊂ cλ0 . Hence mλ0 , mλ, nλ and cλ0 are subsequence-closed.

c) Let x = (xk) ∈ cλ, i.e. relations (2.5) and (2.6) are valid. As in this case l := (lk) ∈ c, then l can be
represented in the form

l = l0 + be, l0 :=
(
l0k
)
∈ c0.

Thus
l0k + b = λk (xk − ξ) ,

and consequently

xk =
l0k
λk
+

b
λk
+ ξ. (3.4)

Obviously for every subsequence
(
xik

)
of x we get limk xik = ξ. Using (3.4) we can write

vk := λk
(
xik − ξ

)
=
λk

λik

(
l0ik + b

)
.

If b = 0, then (vk) ∈ c, because λk/λik = O (1) by the monotonicity of λ. If b , 0, then (vk) ∈ c for every
subsequence

(
xik

)
of x if and only if there exists finite limit (3.3) for every subsequence

(
λik

)
of λ. Thus in

this case cλ is subsequence-closed. The proof for zλ is similar.

Remark 3.1. We note that the finite limit (3.3) exists for every subsequence
(
λik

)
of λ if, for example, λ is defined by

the equality λk := (k + 1)k.
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4. Matrix transforms of Aλ-statistically convergent λ-bounded null sequences

Let throughout this section λ = (λk) and µ = (µk) are monotonically increasing positive unbounded
sequences. We consider some applications of the results of previous section. Taking X = mλ0 and Y = zµ in
theorem 3.6, we get that B ∈

(
z-stλA

∩
mλ0 , z

µ
)

if and only if B ∈
(
zλ, zµ

)
and B[K] ∈

(
mλ0 , z

µ
)

for every index
set K with δA(K) = 0 (since zλ ⊂ mλ0 ). Similarly, if we take X = mλ0 and Y = nµ in theorem 3.7, we get that
B ∈

(
n-stλA

∩
mλ0 , n

µ
)

if and only if B ∈
(
nλ,nµ

)
and B[K] ∈

(
mλ0 ,n

µ
)

for every index set K with δA(K) = 0 (since

nλ ⊂ mλ0 ). The characterizations of matrix classes
(
cλ, cµ

)
and

(
mλ,mµ

)
are given by Kangro (Theorem 1 of

[11] and Theorem 1 of [12]). Similarly, using the known characterizations of matrix classes (c, c), (c0, c0),
(m, c) and (m, c0) (see [2], [10]), it can be easily show that the following results hold.

Lemma 4.1. A matrix B = (bnk) ∈
(
zλ, zµ

)
if and only if Bek ∈ zµ, Bλ−1 ∈ zµ and

(IV) µn
∑
k

|bnk |
λk
= O (1) .

Lemma 4.2. A matrix B = (bnk) ∈
(
mλ0 , z

µ
)

if and only if condition (IV) holds and
(V) ∃ lim

n
µnbnk := Lk,

(VI) lim
n

∑
k

|µnbnk−Lk|
λk

= 0.

Lemma 4.3. A matrix B = (bnk) ∈
(
nλ,nµ

)
if and only if Bek ∈ nµ and condition (IV) is satisfied.

Lemma 4.4. A matrix B = (bnk) ∈
(
mλ0 ,n

µ
)

if and only if

(VII) lim
n
µn

∑
k

|bnk |
λk
= 0.

Using Lemmas 4.1 and 4.2, from Theorem 3.6 we immediately get

Corollary 4.5. A matrix B = (bnk) ∈
(
z-stλA

∩
mλ0 , z

µ
)

if and only if Bek ∈ zµ, Bλ−1 ∈ zµ, condition (IV) holds and
there exists an index set K with δA(K) = 0 so that

(VIII) lim
n

∑
k∈K

|µnbnk−Lk|
λk

= 0.

Using Lemmas 4.3 and 4.4, from Theorem 3.7 we immediately get

Corollary 4.6. A matrix B = (bnk) ∈
(
n-stλA

∩
mλ0 ,n

µ
)

if and only if Bek ∈ nµ, condition (IV) holds and there exists
an index set K with δA(K) = 0 so that

(IX) lim
n
µn

∑
k∈K

|bnk |
λk
= 0.
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