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Abstract. The vertex PI index is a distance–based molecular structure descriptor, that recently found
numerous chemical applications. In this letter we obtain a lower bound on the vertex PI index of a connected
graph in terms of number of vertices, edges, pendent vertices, and clique number, and characterize the
extremal graphs.

1. Introduction

In theoretical chemistry molecular–graph based structure descriptors – also called topological indices
– are used for modeling physico–chemical, pharmacologic, toxicologic, etc. properties of chemical com-
pounds ([4, 12]). There exist several types of such indices, reflecting different aspects of molecular structure.
Arguably the best known of these indices is the Wiener index W = W(G), equal to the sum of distances
between all pairs of vertices of the molecular graph G ([4, 12]). The Szeged index is closely related to the
Wiener index and coincides with it in the case of trees [3, 5, 10, 12]. In the notation explained below, it is
defined as

Sz = Sz(G) =
∑

e=viv j∈E(G)

ni(e|G) n j(e|G) . (1)

In view of the considerable success of the Szeged index (for details see the review [5] and the book [3]),
an additive version of it has been put forward, called the vertex PI index [9]:

PI = PI(G) =
∑

e=viv j∈E(G)

[ni(e|G) + n j(e|G)] . (2)

Its basic mathematical properties were established in a number of recent papers [2, 6, 9, 11, 13]. At this
point it is worth noting that in chemical graph theory also an edge PI index has been considered [3, 8].
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Let G = (V,E) be a simple graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G) , |E(G)| = m . For
vi ∈ V(G) , the degree (= number of first neighbors) of the vertex vi is denoted by di .

For vr, vs ∈ V(G) , the length of the shortest path between the vertices vr and vs is their distance, d(vr, vs|G) .
Let e = viv j be an edge of the graph G, connecting the vertices vi and v j . Define two sets Ni(e|G) and

N j(e|G) as

Ni(e|G) = {vk ∈ V(G) | d(vk, vi|G) < d(vk, v j|G)},

N j(e|G) = {vk ∈ V(G) | d(vk, v j|G) < d(vk, vi|G)} .

The number of elements of Ni(e|G) and N j(e|G) are denoted by ni(e|G) and n j(e|G) , respectively. Thus,
ni(e|G) counts the vertices of G lying closer to the vertex vi than to the vertex v j . The meaning of n j(e|G)
is analogous. Vertices equidistant from both ends of the edge viv j belong neither to Ni(e|G) nor to N j(e|G) .
Note that for any edge e = viv j of G , ni(e|G) ≥ 1 and n j(e|G) ≥ 1 , because vi ∈ Ni(e|G) and v j ∈ N j(e|G) . The
Szeged and the vertex PI indices are then defined via Eqs. (1) and (2).

For any n-vertex tree T as well as for the complete graph Kn,

PI(T) = PI(Kn) = n(n − 1) .

Denote by H(n, ω), ω ≤ n−1, is the graph on n vertices consisting of a clique onω vertices and randomly
connect n − ω pendent to arbitrary vertices of Kω. It is easily verified that PI(H(n, ω)) = n(n − 1).

In this paper we obtain a lower bound on the vertex PI index of a connected graph G in terms of the
number of vertices (n), edges (m), pendent vertices (p), and clique number (ω), and characterize the extremal
graphs.

2. Lower bounds on vertex PI index

For bipartite graph G (ω = 2), PI(G) = mn. So it is interesting to find the lower bound on PI index for
ω ≥ 3:

Theorem 2.1. Let G be a connected graph with n vertices, m edges, p pendent vertices, and clique numberω (ω ≥ 3).
Then

PI(G) ≥ 2m + (n − 2)p + (n − ω)(ω − 1) (3)

with equality holding if and only if G � Kn or G � H(n, ω) .

Proof. If G is isomorphic to the complete graph Kn , then m = n(n− 1)/2 , ω = n, p = 0 and hence the equality
holds in (3). Therefore we may assume that G � Kn , in which case ω ≤ n − 1.

For each edge e = viv j ∈ E(G),

ni(e|G) + n j(e|G) ≥ 2 . (4)

If e is a pendent edge, then

ni(e|G) + n j(e|G) = n . (5)

Since G has clique number ω (ω ≥ 3), the complete graph Kω is contained in G. Suppose that V(Kω) =
{v1, v2, . . . , vω}, ω ≥ 3 and S = V(G) \ V(Kω) = {vω+1, vω+2, . . . , vn}. Then |S| = n − ω > 0.

Case(i) : We first assume that there exist two vertices vs, vt ∈ V(Kω) such that d(vi, vs|G) , d(vi, vt|G) for
all vi ∈ S. Let d(i) = min{d(vi, v j|G) | v j ∈ V(Kω)}. Suppose that d(i) is the smallest distance between
the vertex vi and any vertex in R = {v1, v2, . . . , vr} ⊆ V(Kω). Then d(vi, v j|G) > d(i) for any vertex v j in
V(Kω) \ R = {vr+1, vr+2, . . . , vω} = R′. For any edge e = v jvk ∈ E(Kω), v j ∈ R, vk ∈ R′. Denote by N jk(e|G) the
union N j(e|G) ∪Nk(e|G).
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Then the vertex vi ∈ S belongs to r(ω− r) sets N jk(e|G), v j ∈ R, vk ∈ R′, that is, the vertex vi in S belong to
at least ω− 1 sets N jk(e|G), v j ∈ R, vk ∈ R′. Since Kω has ω(ω− 1)/2 edges and n−ω is the number of vertices
in G \ Kω (|S| = n − ω), we have∑

v jvk=e∈E(Kω)

(n j(e|G) + nk(e|G)) (6)

=
∑

v jvk=e∈E(Kω)

(
|N j(e|G)| + |Nk(e|G)| + |N j(e|G) ∩Nk(e|G)|

)
as |N j(e|G)| = n j(e|G), |Nk(e|G)| = nk(e|G) and |N j(e|G) ∩Nk(e|G)| = 0

=
∑

v jvk=e∈E(Kω)

|N j(e|G) ∪Nk(e|G)| =
∑

v jvk=e∈E(Kω)

|N jk(e|G)|

≥ ω(ω − 1) + (n − ω)(ω − 1) . (7)

Claim 1.∑
vivj=e∈E(G\Kω)

di,d j>1

[ni(e|G) + n j(e|G)] ≥ 2
(
m − 1

2
ω(ω − 1) − p

)
(8)

with equality holding if and only if m = ω(ω − 1)/2 + p .

Proof of Claim 1. Since G is connected and n > ω, the number of non-pendent edges in G \ Kω is equal to
m−ω(ω− 1)/2− p, that is, m ≥ ω(ω− 1)/2+ p. By (4), we get the result (8). If m > ω(ω− 1)/2+ p, then at least
one non-pendent edge belongs to G \ Kω. Thus there is a non-pendent edge e = v jvk such that v j ∈ V(Kω)
and vk ∈ V(G \ Kω), and vk is not adjacent to all vertices in the set {v1, v2, . . . , vω}. Thus, n j(e|G) + nk(e|G) ≥ 3
and hence ∑

vivj=e∈E(G\Kω )

di,d j>1

[ni(e|G) + n j(e|G)] > 2
(
m − 1

2
ω(ω − 1) − p

)
.

This implies that equality in (8) holds if and only if m = ω(ω − 1)/2 + p .
Now,

PI(G) =
∑

viv j=e∈E(G)

[ni(e|G) + n j(e|G)]

=
∑

vivj=e∈E(G)

di or d j=1

[ni(e|G) + n j(e|G)] +
∑

vivj=e∈E(G)

di,d j>1

[ni(e|G) + n j(e|G)]

= np +
∑

viv j=e∈E(Kω)

[ni(e|G) + n j(e|G)] +
∑

vivj=e∈E(G\Kω )

di,d j>1

[ni(e|G) + n j(e|G)]

by (5)

≥ np + ω(ω − 1) + (n − ω)(ω − 1) + 2
(
m − 1

2
ω(ω − 1) − p

)
(9)

by (7) and (8).

From above we get the required result (3).
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Case(ii) : We consider the subset S′ of the, set S (|S′| = h > 0), whose elements vi have the property
d(vi, v j|G) = d(vi, vk|G) = d for any two vertices v j, vk ∈ V(Kω). Further, let the shortest paths from the vertex
vi to the clique Kω be

vi vi(1)
0

vi(1)
1
. . . vi(1)

d−2
v1, vi vi(2)

0
vi(2)

1
. . . vi(2)

d−2
v2, . . . , vi vi(ω)

0
vi(ω)

1
. . . vi(ω)

d−2
vω .

It may be that the vi(r)
j

and vi(s)
j

are the same, r , s.

Thus we have v j ∈ Ni i( j)
0

(e|G) = Ni(e|G) ∪Ni( j)
0

(e|G) , j = 1, 2, . . . , ω, and hence

∑
vivj=e∈E(G\Kω )

di,d j>1

[ni(e|G) + n j(e|G)] > h(ω − 1) + 2
(
m − 1

2
ω(ω − 1) − p

)

as |S′| = h.
There exist two vertices v j and vk ∈ V(Kω) such that d(vi, v j|G) , d(vi, vk|G) for any vertex vi in S \ S′

(|S| − |S′| = n − h − ω). In addition, since Kω has ω(ω − 1)/2 edges, similarly as in Case (i), we have∑
viv j=e∈E(Kω)

[ni(e|G) + n j(e|G)] ≥ ω(ω − 1) + (n − h − ω)(ω − 1) .

Using the above results, we get

PI(G) =
∑

viv j=e∈E(G)

(ni(e|G) + n j(e|G))

=
∑

vivj=e∈E(G)

di or d j=1

[ni(e|G) + n j(e|G)] +
∑

vivj=e∈E(G)

di,d j>1

[ni(e|G) + n j(e|G)]

= np +
∑

e∈E(Kω)

(ni(e|G) + n j(e|G)) +
∑

e∈E(G\Kω )
di,d j>1

[ni(e|G) + n j(e|G)] by (5)

> np + ω(ω − 1) + (n − h − ω)(ω − 1) + h(ω − 1)

+ 2
(
m − 1

2
ω(ω − 1) − p

)
. (10)

From above we get the required result (3). Hence the first part of the proof is done.

By direct checking one can easily verify that equality in (3) holds for the complete graph Kn and the
graph H(n, ω).

Suppose now that equality holds in (3). Then we must have equality also in (9). Then there exist two
vertices vs, vt ∈ V(Kω) such that d(vi, vs|G) , d(vi, vt|G) for any vertex vi in V(G \ Kω). The equality holds
also in (7) and (8). From equality in (8), m = ω(ω − 1)/2 + p . Thus all edges in G \ Kω pendent and the
number of pendent vertices in G is n − ω. Hence G � H(n, ω).
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