
Filomat 27:8 (2013), 1393–1403
DOI 10.2298/FIL1308393T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Symbolic computation of the Moore-Penrose inverse
using the LDL∗ decomposition of the polynomial matrix

Milan B. Tasića, Ivan P. Stanimirovića

aUniversity of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract. The full-rank LDL∗ decomposition of a polynomial Hermitian matrix is examined. Explicit
formulae are given evaluating the coefficients of matrices li j and d j j. Also, a new method is developed,
based on the LDL∗ factorization of the matrix product A∗A, for symbolic computation of the Moore-Penrose
inverse matrix. The paper follows the results of [I.P. Stanimirović, M.B. Tasić, Computation of generalized
inverses by using the LDL∗ decomposition, Appl. Math. Lett., 25 (2012), 526–531], where the matrix products
A∗A, AA∗ and the corresponding LDL∗ factorizations are considered in order to compute the generalized
inverse of A.

1. Introduction

A well known technique from numerical analysis is to replace LL∗ factorization by LDL∗, such that the
computation of square root entries can be avoided (therefore, the LDL∗ decomposition is often called square-
root free Cholesky decomposition). Obviously, this method (explained by Golub and Van Loan in [4]) is
of great importance when working with polynomial and rational matrices. Therefore, a motivation is to
modify the method for the Cholesky decomposition of a polynomial matrix A(x), by providing an additional
diagonal matrix D which ensures no entries containing square roots. Obviously, the LDL∗ decomposition is
much more appropriate to manipulate with polynomial matrices, and can be later used to find generalized
inverses of the decomposed matrix.

For the case of a complex Hermitian matrix A, its LDL∗ decomposition can be obtained, using the
following recursive relations for the entries of D and L:

d j j = a j j −
j−1∑
k=1

l jkl∗jkdkk, li j =
1
d j

(ai j −
j−1∑
k=1

likl∗jkdkk), f or i > j. (1)

We propose that these calculations only have to be performed for j = 1, r, where r = rank(A). In that case,
the iterative procedure (1) generates the full-rank factorization of A, where the matrix L is without the zero
columns, and the matrix D is without zero rows and zero columns (since the matrices L and D are of the
rank r).

2010 Mathematics Subject Classification. Primary 15A09; Secondary 15A23, 68W40
Keywords. LDL∗ decomposition , generalized inverse, symbolic computation, MATHEMATICA
Received: 28 April 2012; Accepted: 30 June 2012
Communicated by Dragana Cvetković- Ilić
Research supported by the Research Project 174013 of the Serbian Ministry of Science.
Email addresses: milan12t@ptt.rs (Milan B. Tasić), ivan.stanimirovic@gmail.com (Ivan P. Stanimirović)



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1394

Denote the set of m×n matrices with elements in C(x) by C(x)m×n, and the conjugate transpose matrix of
L by L∗. Let us observe the polynomial Hermitian matrix A ∈ C(x)n×n

r of rank r with the following entries:

ai j(x) =
aq∑

k=0

ak,i, jxk, 1 ≤ i, j ≤ n, (2)

where the maximal exponent of A(x) is denoted by aq.
Full-rank square-root free Cholesky decomposition of the matrix A is A = LDL∗, where L ∈ C(x)n×r,

li j = 0 for i < j, and D ∈ C(x)r×r is the diagonal rational matrix. Non-zero elements of the rational matrices
L(x) and D(x) are of the form:

d j j(x) =

dq∑
k=0

dk, j, jxk

dq∑
k=0

dk, j, jxk

, l j j(x) = 1, 1 ≤ j ≤ r; li j(x) =

lq∑
k=0

lk,i, jxk

lq∑
k=0

lk,i, jxk

, 1 ≤ j ≤ n, 1 ≤ i ≤ r, j < i. (3)

For an arbitrary matrix A ∈ C(x)m×n, the matrix A† is said to be the Moore-Penrose inverse matrix of A
if it satisfies equations (1)–(4) of the unknown X, where ∗ denotes conjugate transpose.

(1) AXA=A, (2) XAX=X, (3) (AX)∗=AX, (4) (XA)∗=XA.

So far, the Greville’s partitioning method [5] and the Leverrier–Faddeev algorithm are used in the
symbolic implementation of generalized inverses. Various extensions of the partitioning algorithm to
rational and polynomial matrices have been established. The first generalization is the extension on
Greville’s algorithm to the set of one-variable polynomial and/or rational matrices, introduced in [10]. For
the further uses of this problem and a modification of the algorithm for computations of the weighted
Moore-Penrose inverse see [7, 12]. For more information about the practical computation of Drazin inverse,
the Moore-Penrose inverse or the weighted Moore-Penrose inverse, see [1–3, 8, 9, 11].

Our main motivation is to develop an efficient method for the symbolic computation of the Moore-
Penrose inverse matrix of polynomial matrices.By using the LDL∗ factorization instead of Cholesky decom-
position, the computations of square root entries are avoided, and this is of essential importance in symbolic
polynomial computation.

The paper is organized as follows. In the second section, the full-rank LDL∗ decomposition of a
polynomial matrix is observed. Therefore, a theorem is developed providing a practical method for the
evaluation of the coefficients occurring in the entries of rational matrices L and D. In the third section, we
use the method for the symbolic computation of the full-rank LDL∗ decomposition to generate a theorem
providing an effective way of computing the Moore-Penrose inverse of a polynomial matrix. Thereat,
we give an algorithm for the symbolic computation of the Moore-Penrose inverse, which summarizes
the previous results. In the fourth section, some numerical experiments are carried out to illustrate the
presented methods. Some conclusion remarks are provided in the last section.

2. Full-rank LDL∗ decomposition of a polynomial matrix

The mentioned iterative procedure (1) can be modified in order to produce the full-rank decomposition
of a polynomial matrix A(x). Therefore, the following relations for the rational entries of matrices D(x) and
L(x) are satisfied for each j = 1, r:

fi j(x) =

j−1∑
k=1

lik(x)l∗jk(x)dkk(x), for i = j,n, (4)

d j j(x) = a j j(x) − f j j(x), (5)

li j(x) =
1

d j j(x)
(ai j(x) − fi j(x)), for i = j + 1,n. (6)



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1395

To determine the coefficients of the rational matrices L and D, relations (4)-(6) are used in the following
theorem. In the sequel of the paper, variables with one bar will be used for numerator coefficients, and
variables with two bars will be used to denote denominator coefficients.

Theorem 2.1. Full-rank LDL∗ decomposition of a Hermitian polynomial matrix A(x) ∈ C(x)n×n
r with entries of the

form (2) is A(x) = L(x)D(x)L(x)∗, where L(x) and D(x) are rational matrices of the forms (3), and the coefficients of
d j j(x) and li j(x) are as follows

dk, j =

k∑
k1=0

ak−k1, j, j f k1, j, j − f k, j, j, 0≤k≤dq = max(aq + f q, f q), (7)

dk, j = f k, j, j, 0≤k≤dq = f q, (8)

lk,i, j =
k∑

k1=0

dk−k1, j

 k1∑
k2=0

ak1−k2,i, j f k2,i, j − f k1,i, j

 ,
0≤k≤ lq = dq +max(aq + f q, f q), (9)

lk,i, j =
k∑

k1=0

dk−k1, j f k1,i, j, 0≤k≤ lq = dq + f q, (10)

whereat the coefficients f k,i, j are evaluated as

f k,i, j =

k∑
k2=0

j−1∑
k3=0

pk−k2,i, j,k3
qk2,i, j,k3 , 0≤k≤ f q = 2lq + dq + f q − 2lq − dq, (11)

and f k,i, j, 0≤k≤ f q, are the coefficients of the following polynomial:

PolynomialLCM


2lq+dq∑

k=0

pk,i, j,1xk,

2lq+dq∑
k=0

pk,i, j,2xk, . . . ,

2lq+dq∑
k=0

pk,i, j, j−1xk

 , (12)

where

pt1,i, j,k =

t1∑
t2=0

t1−t2∑
t3=0

lt3,i,kl
∗
t1−t2−t3, j,kdt2,k, 0≤ t1≤2lq+dq,

pt1,i, j,k =

t1∑
t2=0

t1−t2∑
t3=0

lt3,i,kl
∗
t1−t2−t3, j,kdt2,k, 0≤ t1≤2lq+dq.

and the values qk,i, j,t are the coefficients of polynomial qi, j,t(x) =

f q∑
k=0

f k,i, jx
k

2lq+dq∑
k=0

pk,i, j,txk

.



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1396

Proof. Since the entries of L(x) and D(x) are rational functions, the equality (4) becomes:

fi j(x) =

j−1∑
k=1

lq∑
t=0

lt,i,kxt

lq∑
t=0

lt,i,kxt

lq∑
t=0

l
∗
t, j,kxt

lq∑
t=0

l
∗
t, j,kxt

dq∑
t=0

dt,kxt

dq∑
t=0

dt,kxt

=

j−1∑
k=1

2lq+dq∑
t1=0

(
t1∑

t2=0

t1−t2∑
t3=0

lt3,i,kl
∗
t1−t2−t3, j,kdt2,k

)
xt1

2lq+dq∑
t1=0

(
t1∑

t2=0

t1−t2∑
t3=0

lt3,i,kl
∗
t1−t2−t3, j,kdt2,k

)
xt1

=

j−1∑
k=1

2lq+dq∑
t1=0

pt1,i, j,kxt1

2lq+dq∑
t1=0

pt1,i, j,kxt1

=

2lq+dq∑
t1=0

pt1,i, j,1xt1

2lq+dq∑
t1=0

pt1,i, j,1xt1

+

2lq+dq∑
t1=0

pt1,i, j,2xt1

2lq+dq∑
t1=0

pt1,i, j,2xt1

+ . . . +

2lq+dq∑
t1=0

pt1,i, j, j−1xt1

2lq+dq∑
t1=0

pt1,i, j, j−1xt1

.

Since the least common multiple (LCM) of the denominator polynomials is denoted by:

PolynomialLCM


2lq+dq∑

k=0

pk,i, j,1xk,

2lq+dq∑
k=0

pk,i, j,2xk, . . . ,

2lq+dq∑
k=0

pk,i, j, j−1xk

 =
f q∑

k=0

f k,i, jx
k,

and the following identities hold

qi, j,t(x) =

f q∑
k=0

f k,i, jx
k

2lq+dq∑
k=0

pk,i, j,txk

=

f q−2lq−dq∑
k=0

qk,i, j,txk, 1≤ t< j < i,

the polynomials fi j(x) can be expressed by

fi j(x) =

j−1∑
k=1

f q∑
k1=0

(
k1∑

k2=0
pk1−k2,i, j,kqk2,i, j,k

)
xk1

f q∑
k=0

f k,i, jxk

=

f q∑
k1=0

k1∑
k2=0

j−1∑
k3=0

pk1−k2,i, j,k3
qk2,i, j,k3 xk1

f q∑
k=0

f k,i, jxk

=

f q∑
k=0

f k,i, jx
k

f q∑
k=0

f k,i, jxk

.

Observe that from the equation (5) proceeds the following equation:

d j j(x) =

aq∑
k=0

ak, j, jxk −

f q∑
k=0

f k, j, jx
k

f q∑
k=0

f k, j, jxk

=

aq∑
k=0

ak, j, jxk
f q∑

k=0
f k, j, jx

k −
f q∑

k=0
f k, j, jx

k

f q∑
k=0

f k, j, jxk

=

max(aq+ f q, f q)∑
k1=0

(
k1∑

k2=0
ak1−k2, j, j f k2, j, j − f k1, j, j

)
xk1

f q∑
k=0

f k, j, jxk

=

dq∑
k=0

dk, jxk

dq∑
k=0

dk, jxk

.



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1397

Finally, according to the equality (6), the next equation is valid:

li j(x) =

dq∑
k=0

dk, jxk

dq∑
k=0

dk, jxk


aq∑

k=0

ak,i, jxk −

f q∑
k=0

f k,i, jx
k

f q∑
k=0

f k,i, jxk


=

dq∑
k=0

dk, jxk

dq∑
k=0

dk, jxk

max(aq+ f q, f q)∑
k1=0

(
k1∑

k2=0
ak1−k2,i, j f k2,i, j − f k1,i, j

)
xk1

f q∑
k=0

f k, j, jxk

=

dq+max(aq+ f q, f q)∑
k=0

(
k∑

k1=0
dk−k1, j

(
k1∑

k2=0
ak1−k2,i, j f k2,i, j − f k1,i, j

))
xk

dq+ f q∑
k=0

(
k∑

k1=0
dk−k1, j f k1,i, j

)
xk

=

lq∑
k=0

lk,i, jxk

lq∑
k=0

lk,i, jxk

.

Theorem 2.1 provides the practical method for the calculation of the coefficients of li j(x) and d j j(x) from
the previously evaluated lik(x), l jk(x) and dkk(x), for k < j.

3. Evaluation of the Moore-Penrose inverse of a polynomial matrix

For the sake of completeness we restate the result from [6].

Theorem 3.1. [6] Consider the rational matrix A ∈ C(x)m×n
r and the full-rank LDL∗ factorization of the matrix

(A∗A)∗(A∗A), where L ∈C(x)n×r and D ∈C(x)r×r. Then it is satisfied:

A†=L(L∗LDL∗L)−1L∗(A∗A)∗A∗. (13)

By observing the full-rank LDL∗ factorization of the matrix (AA∗)(AA∗)∗, where L ∈C(x)m×r and D ∈C(x)r×r, it is
satisfied:

A† = A∗(AA∗)∗L(L∗LDL∗L)−1L∗. (14)

According to the previous result we introduce the next Theorem.

Theorem 3.2. Let A ∈ C(x)m×n
r be a polynomial matrix with entries of the form (2). Consider the full-rank LDL∗

factorization of the matrix (A∗A)∗(A∗A), where L ∈C(x)n×r and D ∈C(x)r×r are matrices with entries of the form (3).
We will denote the entries of the inverse matrix N = (L∗LDL∗L)−1 ∈C(x)r×r by

ni j(x) =

nq∑
t=0

nt,k,lxt

nq∑
t=0

nt,k,lxt

.

Then an arbitrary element of the generalized inverse of A can be evaluated as A†i j(x) = Γi j(x)

Γi(x)
, where

Γi j(x) =

Γq−bq+bq∑
t=0

 n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

t∑
t1=0

βt1,i, j,k,l,µ,κ,λγt−t1,i,k,l,µ

 xt, (15)

Γi(x) = PolynomialLCM


bq∑

t=0

βt,i,k,l,µx
t
∣∣∣µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r}

 (16)



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1398

and where Γq is the maximal exponent of polynomials Γi(x), 1 ≤ i ≤ m, the values γt,i,k,l,µ, 0 ≤ t ≤ Γq − bq, are

coefficients of the polynomial Γi,k,l,µ(x) = Γi(x)
bq∑
t=0
βt,i,k,l,µxt

, for each µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r}, and the

following notations are used, for κ = 1,m, λ = 1, n:

βt,i, j,k,l,µ,κ,λ =
t∑

t1=0
pt1,i,k,l,µαt−t1, j,µ,κ,λ, 0 ≤ t ≤ bq = 2lq + nq + 3aq, (17)

βt,i,k,l,µ =
t∑

t1=0

t−t1∑
t2=0

lt1,i,knt−t1−t2,k,ll
∗
t2,µ,l, 0 ≤ t ≤ bq = 2lq + nq, (18)

pt,i,k,l,µ =
t∑

t1=0

t−t1∑
t2=0

lt1,i,knt−t1−t2,k,ll
∗
t2,µ,l, 0 ≤ t ≤ 2lq + nq (19)

αt, j,µ,κ,λ =
t∑

t1=0

t−t1∑
t2=0

at1,κ,λa∗t−t1−t2,κ,µ
a∗t2, j,λ

, 0 ≤ t ≤ 3aq. (20)

Proof. Notice that the following statements are valid:

(LNL∗)i j =

r∑
l=1

 r∑
k=1

liknkl

 l∗jl =
r∑

l=1

r∑
k=1

liknkll∗jl,

((A∗A)∗A∗)i j =

n∑
l=1

 m∑
k=1

akla∗ki

 a∗jl =
n∑

l=1

m∑
k=1

akla∗kia
∗
jl.

According to the first statement of the Theorem 3.1, an arbitrary (i, j)-th element of the Moore-Penrose
inverse of A can be calculated as:

A†i j =

n∑
µ=1


min{µ,r}∑

l=1

min{i,r}∑
k=1

liknkll∗µl


 n∑
λ=1

m∑
κ=1

aκλa∗κµa
∗
jλ

 = n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

liknkll∗µlaκλa
∗
κµa
∗
jλ

Therefore, by working with polynomial entries, the (i, j)-th element of A† is evaluated as:

A†i j(x) =

n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

lq∑
t=0

lt,i,kxt

lq∑
t=0

lt,i,kxt

nq∑
t=0

nt,k,lxt

nq∑
t=0

nt,k,lxt

lq∑
t=0

l
∗
t,µ,lxt

lq∑
t=0

l
∗
t,µ,lxt

aq∑
t=0

at,κ,λxt
aq∑

t=0

a∗t,κ,µx
t

aq∑
t=0

a∗t, j,λx
t

=

n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

2lq+nq∑
t=0

pt,i,k,l,µx
t

2lq+nq∑
t=0
βt,i,k,l,µxt

3aq∑
t=0

αt, j,µ,κ,λxt

=

n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

bq∑
t=0
βt,i, j,k,l,µ,κ,λx

t

bq∑
t=0
βt,i,k,l,µxt

.



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1399

Therefore, we have A†i j(x) = Γi j(x)

Γi(x)
,where

Γi(x) =PolynomialLCM


bq∑

t=0

βt,i,k,l,µx
t
∣∣∣µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r}

 =
Γq∑

t=0

γt,ix
t,

Γi j(x) =
n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

Γi,k,l,µ(x)
n∑
λ=1

m∑
κ=1

bq∑
t=0

βt,i, j,k,l,µ,κ,λx
t

 ,
where each polynomial Γi,l,k,µ(x) is equal to Γi(x)/

 bq∑
t=0
βt,i,k,l,µx

t

 = Γq−bq∑
t=0
γt,i,k,l,µxt. Therefore

Γi j(x) =
n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

Γq−bq+bq∑
t=0

 t∑
t1=0

βt1,i, j,k,l,µ,κ,λγt−t1,i,k,l,µ

 xt,

which coincides with the form (15), and the proof is complete.

Notice that a similar theorem can be derived by observing the second statement of Theorem 3.1. Now we
are able to summarize all results with the following algorithm.

Algorithm 3.1 Symbolic computation of MP-inverse using the full-rank LDL∗ decomposition

Require: Polynomial matrix A(x) ∈ C(x)m×n
r with entries of the form ai j(x) =

aq∑
t=0

at,i, jxt.

1: Generate the full-rank LDL∗ decomposition of the matrix (A∗A)∗(A∗A), where L ∈C(x)n×r and D ∈C(x)r×r

are matrices with entries of the forms (3), by applying the method provided by the equations (7)-(12) of
Theorem 2.1.

2: Transform the rational matrix M = L∗LDL∗L to the form: M = 1
p(x) M1, where p(x) is a polynomial and

M1 is a polynomial matrix.
3: Find the inverse of the matrix M1 using the Algorithm 3.2 from [12]. Generate the inverse matrix

N =M−1 = p(x)M−1
1 , and reduce it to the form: ni j(x) =

 nq∑
k=0

nk,i, jxk

 /
 nq∑

k=0
nk,i, jxk

 .
4: For each i = 1,m, µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r} calculate the following:

pt,i,k,l,µ =

t∑
t1=0

t−t1∑
t2=0

lt1,i,knt−t1−t2,k,ll
∗
t2,µ,l, 0 ≤ t ≤ 2lq + nq (21)

βt,i,k,l,µ =

t∑
t1=0

t−t1∑
t2=0

lt1,i,knt−t1−t2,k,ll
∗
t2,µ,l, 0 ≤ t ≤ 2lq + nq. (22)

5: For each j = 1,n, µ = 1,n, κ = 1,m, λ = 1,n make the following calculations:

αt, j,µ,κ,λ =

t∑
t1=0

t−t1∑
t2=0

at1,κ,λa
∗
t−t1−t2,κ,µa

∗
t2, j,λ, 0 ≤ t ≤ 3aq. (23)

6: Make the notations bq = 2lq + nq + 3aq, bq = 2lq + nq and for each i = 1,m, j = 1,n, µ = 1,n, k =
1,min{i, r}, l = 1,min{µ, r}, κ = 1,m, λ = 1,n evaluate

βt,i, j,k,l,µ,κ,λ =

t∑
t1=0

pt1,i,k,l,µαt−t1, j,µ,κ,λ, 0 ≤ t ≤ bq. (24)



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1400

7: For i = 1,m calculate the denominator polynomials of the element A†i, j as

Γi(x) = PolynomialLCM


bq∑

t=0

βt,i,k,l,µx
t
∣∣∣µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r}

 , (25)

and denote it by Γi(x) =
∑Γq

t=0 γt,ix
t.

8: For each i = 1,m, µ = 1,n, k = 1,min{i, r}, l = 1,min{µ, r} evaluate the following polynomial:

Γi(x)/

 bq∑
t=0
βt,i,k,l,µx

t

, and denote it as Γi,l,k,µ(x) =
Γq−bq∑
t=0
γt,i,k,l,µxt.

9: For i = 1,m, j = 1,n calculate the numerator polynomials:

Γi j(x) =
Γq−bq+bq∑

t=0

 n∑
µ=1

min{µ,r}∑
l=1

min{i,r}∑
k=1

n∑
λ=1

m∑
κ=1

t∑
t1=0

βt1,i, j,k,l,µ,κ,λγt−t1,i,k,l,µ

 xt. (26)

10: For i = 1,m, j = 1,n set the (i, j)-th element of the generalized inverse matrix A† to Γi j(x)/Γi(x).

LDL∗ decomposition is of the same complexity as the Cholesky decomposition. Notice that LDL∗ de-
composition produces one more diagonal matrix, but returns square root free results, more preferable for
symbolic computations. Also, the total number of non-zero entries is the same as for Cholesky decom-
position. Let us observe that an arbitrary, (i, j)-th element of the matrix (A∗A)∗(A∗A) can be evaluated as
n∑

l=1

m∑
k=1

m∑
k′=1

a∗klakia∗k′lak′ j. These polynomials are the input of Algorithm 3.1, used for the LDL∗ decomposition in

Step 1. The similar idea is carried out in Step 3, when determining input of Algorithm 3.2 from [12].

4. Illustrative examples

In the next few examples we will examine our algorithm and then test different implementations and
approaches in order to compare processor times for the set of test matrices.

Example 4.1. Consider the symmetric polynomial matrix of the rank 2 from [13]:

S3 =

 1 + x x 1 + x
x −1 + x x

1 + x x 1 + x

 .
For j = 1 we set d11 = 1 + x, and therefore l21(x) = x

1+x , l31(x) = 1+x
1+x = 1. For j = 2 we have that f22(x) =

x2

1+x , f32(x) = x. According to these results, it is satisfied: d22(x) = − 1
1+x , l32(x) = 1

d22(x) (x − f32(x)) = 0, and
therefore, the following rational matrices are generated:

L(x) =

 1 0
x

1+x 1
1 0

 , D(x) =
[

1 + x 0
0 − 1

1+x

]
.

Example 4.2. Observe the polynomial matrix from the previous example. In order to evaluate the entries
of A†, the LDL∗ decomposition of the matrix (S∗3S3)∗S∗3S3 is determined by the direct computation of entries
of matrices L ∈ C(x)3×2 and D ∈ C(x)2×2 according to Theorem 2.1. Therefore,

L =


1 0

5x+21x2+27x3+27x4

8+32x+57x2+54x3+27x4 1
1 0

 , D =
[

8 + 32x + 57x2 + 54x3 + 27x4 0
0 8

8+32x+57x2+54x3+27x4

]
.



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1401

After performing the transformation of the matrix L∗LDL∗L and by applying the Algorithm 3.2 from [12]
we get:

N = (L∗LDL∗L)−1 =

 1
32

(
1 − 4x + 12x2 + 27x4

)
−85x−657x2−2349x3−5265x4−7695x5−8019x6−5103x7−2187x8

256+1024x+1824x2+1728x3+864x4

−85x−657x2−2349x3−5265x4−7695x5−8019x6−5103x7−2187x8

256+1024x+1824x2+1728x3+864x4
2048+24576x+142905x2+532782x3+1420335x4+2858328x5+4466826x6+5484996x7+5288166x8+3936600x9+2184813x10+826686x11+177147x12

2048+16384x+61952x2+144384x3+228384x4+252288x5+191808x6+93312x7+23328x8


Computation of the coefficients from Steps 4-6 is easily processed, as well as the evaluation of the polynomial
Least Common Multiplier in Step 7, but notice that the simplification is of essential importance in Step 8,
upon which the coefficients γt,i,k,l,µ, i = 1, 3, k = 1, 2, l = 1, 3, µ = 1, 3 are computed. Finally, the generalized
inverse matrix

S†3 =


1−x

4
x
2

1−x
4

x
2 −1 − x x

2
1−x

4
x
2

1−x
4


is obtained after performing the simplification of each entry of the fraction form Γi j(x)/Γi(x), i = 1, 3, j = 1, 3
by computing the greatest common divisor of each numerator and denominator pair.

Example 4.3. Observe the following 4 × 3 polynomial matrix A3 from [13]:

A3 =


3 + x 2 + x 1 + x
2 + x 1 + x x
1 + x x −1 + x

x −1 + x −2 + x


Since the rank of A3 is equal to 2, our full-rank LDL∗ decomposition of the matrix (A∗3A3)∗A∗3A3 produces
matrices L ∈ C(x)3×2 and D ∈ C(x)2×2 with the following entries:

L =


1 0

21+38x+37x2+18x3+6x4

33+60x+52x2+24x3+6x4 1
9+16x+22x2+12x3+6x4

33+60x+52x2+24x3+6x4 2

 , D =
[

264 + 480x + 416x2 + 192x3 + 48x4 0
0 300

33+60x+52x2+24x3+6x4

]
.

By applying Algorithm 3.1 to the matrices A3, L and D, we get the following Moore-Penrose inverse matrix
of A3:

A†3 =


− 3

20 (−1 + x) 1
60 (8 − 3x) 1

60 (7 + 3x) 1
20 (2 + 3x)

1
10

1
30 − 1

30 − 1
10

1
20 (1 + 3x) 1

60 (−4 + 3x) 1
60 (−11 − 3x) − 3

20 (2 + x)

 .
Remark. The proposed method in this work is quite fast, however it is not the fastest one. Notice that
rank deficient matrices are processed faster than full-rank matrices of the same size, which is a result of the
smaller dimensions of the matrices L and D used by the Algorithm 3.1. However, processor times rapidly
grow with the increase of the matrix sizes and densities. Computing the inverse of a general matrix is
computationally expensive (an O(n3) problem), and very sensitive to ill-conditioned matrices.

5. Conclusion

Explicit formulas for the evaluation of the coefficients in factorization matrices L(x) and D(x) were
derived. According to this result and the method for computing generalized inverse of the given rational
matrix, introduced in [6], we developed a method and an algorithm for the direct calculation of the
coefficients occurring in the entries of the generalized inverse matrix A†, where A is a polynomial matrix.
We showed that this algorithm is very efficient and suitable for the implementation in procedural languages.

A motivation for future research is to extend and generalize these results to the case of rational matrices,
the 2-variable and the general n-variable case.



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1402

6. Appendix

We report the MATHEMATICA implementation of the Algorithm 3.1 as the additional information.

LDLGInverse@A_ListD := ModuleB8t, i, j, k, l, mu, m = Length@AD, n = Length@A@@1DDD,
r = MatrixRank@AD, L, D, N, GInv, f, p, beta1, beta2, alpha, kap, lam, r1<,
8L, D< = LDLDecomposition@Conjugate@Transpose@ADD.A.Conjugate@Transpose@ADD.AD;
Print@m, n, rD;
L = ExpandDenominator@ExpandNumerator@LDD;
D = ExpandDenominator@ExpandNumerator@Together@DDDD;
N = Simplify@Inverse@Conjugate@Transpose@LDD.L.D.Conjugate@Transpose@LDD.LDD;
N = ExpandDenominator@ExpandNumerator@NDD; Print@N �� MatrixFormD;
p = Table@0,
82 * Max@Exponent@L, xDD + Max@Exponent@N, xDD + 1<, 8m + 1<, 8r + 1<, 8r + 1<, 8n + 1<D;

alpha = Table@0, 83 * Max@Exponent@A, xDD + 35<, 8n + 1<, 8n + 1<, 8m + 1<, 8n + 1<D;
beta1 = Table@0, 8m<, 8n<, 8r<, 8r<, 8n<, 8m<, 8n<D; beta2 = Table@0, 8m<, 8r<, 8r<, 8n<D;
GInv = Table@0, 8m<, 8n<D;
ForBi = 1, i £ m, i++, ForBk = 1, k £ Min@i, rD, k++,

ForBl = 1, l £ Min@mu, rD, l++, ForBmu = 1, mu £ n, mu++,

beta2@@i, k, l, muDD = 0;
ForBt = 0, t £ Max@Exponent@L@@i, kDD, xDD +

Max@Exponent@N@@k, lDD, xDD + Max@Exponent@L@@mu, lDD, xDD, t++,

p@@t + 1, i, k, l, muDD = â
t1=0

t

â
t2=0

t-t1

HCoefficient@Numerator@L@@i, kDDD, x, t1D *

Coefficient@Numerator@N@@k, lDDD, x, t - t1 - t2D *
Conjugate@Coefficient@Numerator@L@@mu, lDDD, x, t2DDL;

beta2@@i, k, l, muDD += x^t * â
t1=0

t

â
t2=0

t-t1

HCoefficient@Denominator@L@@i, kDDD,

x, t1D * Coefficient@Denominator@N@@k, lDDD, x, t - t1 - t2D *
Conjugate@Coefficient@Denominator@L@@mu, lDDD, x, t2DDL;F;F;F;F;F;

ForBj = 1, j £ n, j++, ForBmu = 1, mu £ n, mu++, ForBkap = 1, kap £ m,

kap++, ForBlam = 1, lam £ n, lam++,

ForBt = 0, t £ 3 * Max@Exponent@A, xDD, t++,

alpha@@t + 1, j, mu, kap, lamDD = â
t1=0

t

â
t2=0

t-t1

HCoefficient@A@@kap, lamDD, x, t1D *

Conjugate@Coefficient@A@@kap, muDD, x, t - t1 - t2DD *
Conjugate@Coefficient@A@@j, lamDD, x, t2DDL;F;F;F;F;F;

ForBi = 1, i £ m, i++, ForBj = 1, j £ n, j++, ForBk = 1, k £ Min@i, rD,

k++, ForBl = 1, l £ Min@mu, rD, l++,

ForBmu = 1, mu £ n, mu++, ForBkap = 1, kap £ m, kap++,

ForBlam = 1, lam £ n, lam++,

ForBt = 0, t £ 2 * Max@Exponent@Numerator@LD, xDD + Max@Exponent@
Numerator@ND, xDD + 3 * Max@Exponent@Numerator@AD, xDD, t++,

beta1@@i, j, k, l, mu, kap, lamDD += x^t * â
t1=0

t

Hp@@t1 + 1, i, k, l,

muDD * alpha@@t - t1 + 1, j, mu, kap, lamDDL;F;F;F;F;F;F;F;F;

ForBi = 1, i £ m, i++, ForBj = 1, j £ n, j++, ForBmu = 1, mu £ n, mu++,

ForBl = 1, l £ Min@mu, rD, l++,

ForBk = 1, k £ Min@i, rD, k++,

br = beta2@@i, k, l, muDD �. x ® 1;

IfBbr ¹ 0, ForBlam = 1, lam £ n, lam++,

ForBkap = 1, kap £ m, kap++,

GInv@@i, jDD +=

SimplifyB
beta1@@i, j, k, l, mu, kap, lamDD

beta2@@i, k, l, muDD
F;F;F;F;F;F;F;F;F;

Return@Simplify@GInvDD;F;



M. Tasić, I. Stanimirović / Filomat 27:8 (2013), 1393–1403 1403

LDLDecomposition@A_ListD := ModuleB8i, j, k, n = MatrixRank@AD, m = Length@AD, L, D<,
L = Table@0, 8m<, 8n<D; D = Table@0, 8n<, 8n<D;

ForBj = 1, j £ n, j++, LPj,jT = 1; DPj,jT = SimplifyBAPj,jT -â
k=1

j-1

ILPj,kTM2 DPk,kTF;

ForBi = j + 1, i £ m, i++, LPi,jT = SimplifyB
1

DPj,jT
APi,jT -â

k=1

j-1

LPi,kT LPj,kT DPk,kT FFF;

Return@8L, D<DF

References

[1] D.S. Cvetković-Ilić, New conditions for the reverse order laws for {1,3} and {1,4}-generalized inverses, Electronic Journal of Linear
Algebra, 23 (2012), 231–242.

[2] D.S. Cvetković-Ilić, P. Stanimirović, M. Miladinović, Comments on some recent results concerning {2,3} and {2,4}-generalized inverses,
Appl. Math. Comp. 217 (22) (2011), 9358–9367.

[3] D.S. Cvetković-Ilić, New additive results on Drazin inverse and its applications, Appl. Math. Comp. 218(7) (2011), 3019-3024.
[4] G. H. Golub, C. F. Van Loan, Matrix Computations, Third edition, The Johns Hopkins University Press, Baltimore, 1996.
[5] T.N.E. Greville, Some applications of the pseudo-inverse of matrix, SIAM Rev. 3 (1960), 15–22.
[6] I.P. Stanimirović, M.B. Tasić, Computation of generalized inverses by using the LDL* decomposition, Applied Mathematics Letters, 25

(2012), 526–531.
[7] P.S. Stanimirović, M.B. Tasić, Drazin Inverse of One-Variable Polynomial Matrices, Filomat, 15 (2001), 71–78.
[8] P.S. Stanimirović, M.B. Tasić, P. Krtolica and N.P. Karampetakis, Generalized inversion by interpolation, Filomat, 21:1 (2007), 67–86.
[9] P.S. Stanimirović, D.S. Cvetković-Ilić, S. Miljković, M. Miladinović, Full-rank representations of {2,3}, {2,4}-inverses and successive

matrix squaring algorithm, App. Math. Comp. 217 (22) (2011), 9358–9367 .
[10] P.S. Stanimirović and M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004), 137–163.
[11] P.S. Stanimirović , D. Pappas, V. N. Katsikis, I.P. Stanimirović, Symbolic computation of A(2) T,S-inverses using QDR factorization,

Linear Algebra and its Applications, 437 (2012) 1317–1331.
[12] M.B. Tasić, P.S. Stanimirović and M.D. Petković, Symbolic computation of weighted Moore-Penrose inverse using partitioning method,

Appl. Math. Comput. 189 (2007), 615–640.
[13] G. Zielke, Report on test matrices for generalized inverses, Computing 36 (1986), 105–162.


