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Remoteness, proximity and few other distance invariants in graphs

Jelena Sedlara
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Abstract. We establish maximal trees and graphs for the difference of average distance and proximity
proving thus the corresponding conjecture posed in M. Aouchiche, P. Hansen, Proximity and remoteness
in graphs: results and conjectures, Networks 58 (2) (2011) 95102. We also establish maximal trees for the
difference of average eccentricity and remoteness and minimal trees for the difference of remoteness and
radius proving thus that the corresponding conjectures posed in M. Aouchiche, P. Hansen, Proximity and
remoteness in graphs: results and conjectures, Networks 58 (2) (2011) 95102 hold for trees.

1. Introduction

All graphs G in this paper are simple and connected. A vertex set of graph G will be denoted by V, an
edge set by E. A number of vertices in G is denoted by n, a number of edges by m. A path on n vertices will
be denoted by Pn, while Cn will denote a cycle on n vertices. A tree is the graph with no cycles, and a leaf
in a tree is any vertex of degree 1.We say that a tree G is a caterpillar tree if it consists of the path P and the
only vertices outside P are leafs neighboring to vertices on P.

The distance d(u, v) between two vertices u and v in G is defined as the length of the shortest path
connecting vertices u and v. The average distance between all pairs of vertices in G is denoted by l̄. The
eccentricity e(v) of a vertex v in G is the largest distance from v to another vertex of G. The radius r of a
graph G is defined as the minimum eccentricity in G, while the diameter D of G is defined as the maximum
eccentricity in G. The average eccentricity of G is denoted by ecc. That is

r = min
v∈V

e(v), D = max
v∈V

e(v), ecc =
1
n

∑
v∈V

e(v).

The center of a graph is the vertex v of minimum eccentricity. It is well-known that every tree has either
only one center or two centers which are adjacent. The diametric path in G is the shortest path from u to v,
where d(u, v) is equal to the diameter of G.

The transmission of a vertex v in a graph G is the sum of the distances between v and all other vertices
of G. The transmission is said to be normalized if it is divided by n− 1. Normalized transmission of a vertex
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The support of the Ministry of Science, Education and Sport of the Republic of Croatia (grant. no. 083-0831510-1511) and of

EUROCORES Programme EUROGIGA (project GReGAS) of the European Science Foundation is gratefully acknowledged.
Email address: jsedlar@gradst.hr (Jelena Sedlar)



J. Sedlar / Filomat 27:8 (2013), 1425–1435 1426

v will be denoted by π(v). The remoteness ρ is defined as the maximum normalized transmission, while the
proximity π is defined as the minimum normalized transmission. That is

π = min
v∈V
π(v), ρ = max

v∈V
π(v).

In other words, the proximity π is the minimum average distance from a vertex of G to all others, while
the remoteness ρ of a graph G is the maximum average distance from a vertex of G to all others. These two
invariants were introduced in [1], [2]. A vertex v ∈ V is centroidal if π(v) = π(G), and the set of all centroidal
vertices is the centroid of G.

Recently, these concepts and relations between them have been extensively studied (see [1], [2], [3], [4],
[11], [12]). For example, in [3] the authors established the Nordhaus–Gaddum theorem for π and ρ. In [4]
upper and lower bounds for π and ρwere obtained expressed in number n of vertices in G. Also, relations
of both invariants with some other distance invariants (like diameter, radius, average eccentricity, average
distance, etc.) were studied. The authors posed several conjectures (one of which was solved in [11]),
among which the following.

Conjecture 1.1. Among all connected graphs G on n ≥ 3 vertices with average distance l̄ and proximity π, the
difference l̄ − π is maximum for a graph G composed of three paths of almost equal lengths with a common end point.

Conjecture 1.2. Let G be a connected graph on n ≥ 3 vertices with remoteness ρ and average eccentricity ecc. Then

ecc − ρ ≤
{

3n+1
4

n−1
n − n

2 if n is odd,
n−1

4 − 1
4n−4 if n is even,

with equality if and only if G is a cycle Cn.

Conjecture 1.3. Let G be a connected graph on n ≥ 3 vertices with remoteness ρ and radius r. Then

ρ − r ≥
{ 3−n

4 if n is odd,
n2

4n−4 − n
2 if n is even.

The inequality is best possible as shown by the cycle Cn if n is even and by the graph composed by the cycle Cn together
with two crossed edges on four successive vertices of the cycle.

In this paper we prove Conjecture 1.1, and find the extremal trees for ecc − ρ and ρ − r (maximal and
minimal trees respectively) showing thus that Conjectures 1.2 and 1.3 hold for trees.

All these conjectures were obtained with the use of AutoGraphiX, a conjecture-making system in graph
theory (see for example [6] and [7]). Some results on center and centroidal vertices will be used which are
already known in literature since those concepts were also quite extensively studied (see for example [5],
[8], [9], [10]).

2. Preliminaries

Let us introduce some additional notation for trees and state some auxiliary results known in literature.
First, we will often use the notion of the diametric path. So, if a tree G of diameter D has diametric path P,
we will suppose that vertices on P are denoted by vi so that P = v0v1 . . . vD.When deleting edges of P from
G,we obtain several connected components which are subtrees rooted in vertices of P.Now, Gi will denote
the connected component of tree G\P rooted in vertex vi of P and Vi will denote the set of vertices of Gi.

Furthermore, for a tree G let e ∈ E be an edge in G and u ∈ V a vertex in G.With Gu(e) we will denote
the connected component of G − e containing u.We denote Vu(e) = V(Gu(e)) and nu(e) = |Vu(e)| . Now the
following lemma holds.

Lemma 2.1. The following statements hold for a tree G:
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1. a vertex v ∈ V(G) is a centroidal vertex if and only if for any edge e incident with v it holds that nv(e) ≥ n
2 ,

2. G has at most two centroidal vertices,
3. if there are two centroidal vertices in G, then they are adjacent,
4. G has two centroidal vertices if and only if there is an edge e in G, such that the two components of G − e have

the same order. Furthermore, the end vertices of e are the two centroidal vertices of G.

Proof. See [11].

Since we will often use transformation of tree G to G′, for the sake of notation simplicity we will write
D′ for D(G′), ρ′ for ρ(G′), π′(v) for π(v) in G′, etc.

3. Average distance and proximity

To prove Conjecture 1.1 for trees, we will use graph transformations which transform tree to either:
1) path Pn,
2) a tree consisting of four paths of equal length with a common end point,
3) a tree consisting of three paths of almost equal length with a common end point.
So let us first prove that among those graphs the difference l̄ − π is maximum for the last.

Lemma 3.1. The difference l̄ − π is greater for a tree G on n ≥ 4 vertices consisting of three paths of almost equal
length with a common end point than for path Pn.

Proof. For a path Pn we have l̄(Pn) = 1+n
3 , whileπ(Pn) = n2

4(n−1) for n even andπ(Pn) = n+1
4 for n odd. Therefore

the difference l̄(Pn) − π(Pn) equals n2−4
12(n−1) for n even and n+1

12 for n odd. Now, let G be a tree on n vertices
consisting of three paths of almost equal length with a common end point. Here we have

l̄(G) − π(G) =


7n2+13n−2

27n − 2+n
6 for n = 3k + 1

(7n−8)(1+n)2

27n(n−1) −
n(n+1)
6(n−1) for n = 3k + 2

7n2+6n−9
27(n−1) −

n(n+1)
6(n−1) for n = 3k + 3

where k ∈ N. Now, one has to show that the difference l̄(G) − π(G) is greater than l̄(Pn) − π(Pn) in each of
the six possible cases. For example, if n is even and n = 3k + 1, then(

l̄(G) − π(G)
)
−

(
l̄(Pn) − π(Pn)

)
=

(n+2)3

108n(n−1) > 0

and the claim holds. In a similar way it can be seen that the claim holds in each of the remaining five
cases.

Lemma 3.2. The difference l̄ − π is greater for the tree G on n ≥ 9 vertices, where n = 1 mod(4), consisting of three
paths of almost equal length with a common end point than for the tree G′ on n vertices consisting of four paths of
equal length.

Proof. First note that we already established the value of l̄(G)−π(G) in the proof of Lemma 3.1. Now, let us
establish the value of l̄(G′) − π(G′). Note that l̄(G′) = 5n2+14n−3

24n , while π(G′) = n+3
8 . Therefore, l̄(G′) − π(G′) =

2n2+5n−3
24n .Now, one has to show that the difference l̄(G)−π(G) is greater than l̄(G′)−π(G′) in each of the three

possible cases. For example, if n = 3k + 1 then(
l̄(G) − π(G)

)
−

(
l̄(G′) − π(G′)

)
= 2n2−13n+11

216n > 0.

In a similar way it can be seen that the claim holds in each of the remaining two cases.
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Lemma 3.3. Let G be a tree on n ≥ 6 vertices with at least four leafs. Then there is a tree G′ on n vertices with three
leafs for which the difference l̄ − π is greater or equal than for G.

Proof. Let u be a centroidal vertex of G, let v be the branching vertex furthest from u.We distinguish two
cases.

CASE I: u , v. Let Gv be the subtree of G rooted in v consisting of all vertices w such that path from u
to w leads through v. Since v is a branching vertex furthest from u, tree Gv consists of paths with common
end v. Let P1 and P2 be two such paths. For i = 1, 2 let xi be a vertex in Pi adjacent to v and let yi be a leaf
in Pi. Let G′ be the tree obtained from G by deleting edge vx2 and adding edge x2y1. This transformation is
illustrated in Figure 1. Note that G′ has one leaf less than G.We want to prove that the difference l̄ − π is
greater for G′ then for G. For that purpose let us denote d1 = d(v, y1) and d2 = d(v, y2). Note that

π(G′) ≤ π′(u) = π(u) +
d1d2

n − 1
= π(G) +

d1d2

n − 1

and

l̄(G′) = l̄(G) +
2

n(n − 1)
· d2(n − d1 − d2 − 1)d1.

From here we obtain

l̄(G′) − π(G′) ≥ l̄(G) − π(G) +
d1d2

n − 1

(
2(n − d1 − d2 − 1)

n
− 1

)
.

By Lemma 2.1 we have n − d1 − d2 − 1 ≥ n
2 , therefore l̄(G′) − π(G′) ≥ l̄(G) − π(G).

CASE II: u = v. Obviously, v is the only branching vertex in G. Therefore G consists of paths with
common end point v. Let P1 and P2 be two shortest such path. If V\(P1∪P2∪{v}) contains at least n

2 vertices,
then we make the same argument as in case I. Otherwise G is a tree consisting of four paths of equal length
with a common end point and the claim follows by Lemma 3.2.

Applying the transformations from cases I and II repeatedly, one obtains the claim.

Figure 1: Tree transformation in the proof of Lemma 3.3.

Lemma 3.4. Among trees with three leafs, the difference l̄ − π is maximal for the tree G on n vertices consisting of
three paths of almost equal length with a common end vertex.

Proof. Let G be a tree with three leafs. That implies G consists of three paths with a common end vertex.
Let u be centroidal vertex of G, let v be the branching vertex furthest from u. If u , v, then by the same
argument as in the case I of the proof of Lemma 3.3 we obtain that the difference l̄ − π is greater or equal
for path Pn than for G. Now the claimed follows from Lemma 3.1. Else if u = v, then all three paths graph
G consists of have less than n

2 vertices. Let v1 be the leaf furthest from u and v2 the leaf closest to u. Let G′
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be a tree obtained from G by deleting the edge incident to v1 and adding the edge v1v2.We want to prove
that the difference l̄ − π is greater or equal for G′ than for G. Let d1 = d(u, v1) and d2 = d(u, v2).We have

π′(u) = π(u) − d1 − d2 − 1
n − 1

and

l̄(G′) = l̄(G′) − 2
n(n − 1)

(n − d1 − d2 − 1) (d1 − d2 − 1) .

From here we obtain

l̄(G′) − π(G′) ≥ l̄(G) − π(G) +
d1 − d2 − 1

n − 1

(
1 − 2

n
(n − d1 − d2 − 1)

)
.

Since all three paths of G have less then n
2 vertices, we can conclude that n − d1 − d2 − 1 ≤ n

2 from which
follows l̄(G′) − π(G′) ≥ l̄(G) − π(G). By repeating this tree transformation we obtain the claim.

We can summarize the results of Lemmas 3.1, 3.2, 3.3 and 3.4 into following theorem.

Theorem 3.5. Among all trees on n ≥ 4 (n , 5) vertices with average distance l̄ and proximity π, the difference l̄−π
is maximal for a tree G composed of three paths of almost equal lengths with a common end vertex.

Therefore, we have proved Conjecture 1.1 for trees on n ≥ 4 (n , 5) vertices. Note that for n = 3 there is
only one tree with n vertices and that is P3. For n = 5 the claim does not hold since for a star S5 (i.e. a graph
consisting of one vertex of degree 4 and 4 vertices of degree 1) holds

l̄(S5) − π(S5) =
16
10
− 4

4
=

3
5
,

while for a tree G on n = 5 vertices composed of three paths of almost equal lengths with a common end
vertex holds

l̄(G) − π(G) =
18
10
− 5

4
=

11
20
.

Therefore obviously l̄(S5) − π(S5) > l̄(G) − π(G).
Now we want to prove Conjecture 1.1 for general graphs. If for every graph we find a tree for which

difference l̄ − π is greater or equal, the Conjecture 1.1 for general graphs will follow from Theorem 3.5.

Theorem 3.6. Among all connected graphs G on n ≥ 4 (n , 5) vertices with average distance l̄ and proximity π, the
difference l̄ − π is maximal for a graph G composed of three paths of almost equal lengths with a common end vertex.

Proof. Let G be a connected graph on n ≥ 3 vertices and let u ∈ V(G) be a vertex in G such that π(u) = π(G).
Let G′ be a breadth-first search tree of G rooted at u. Obviously, π(G) = π(u) = π′(u) ≥ π(G′). As for l̄, by
deleting edges from G distances between vertices can only increase, therefore l̄(G) ≤ l̄(G′). Now we have
l̄(G) − π(G) ≤ l̄(G′) − π(G′) and the claim follows from Theorem 3.5.

4. Average eccentricity and remoteness

Now, let us find maximal trees for ecc − ρ, proving thus that the Conjecture 1.2 holds for trees.

Lemma 4.1. Let G be a tree on n vertices with diameter D and let P = v0v1 . . . vD be a diametric path in G. If there
is j ≤ D/2 such that the degree of vk is at most 2 for k ≥ j + 1, then the difference ecc − ρ is greater or equal for the
path Pn than for G.
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Proof. Let w be a leaf in G distinct from v0 and vD. Let G′ be a tree obtained from G by deleting the edge
incident to w and adding the edge vDw. Note that the diameter of G′ equals D + 1.We want to prove that
difference ecc − ρ did not decrease by this transformation. First note that eccentricity increased by 1 for at
least n − D+1

2 vertices. Therefore, ecc′ ≥ ecc + 2n−D−1
2n . As for remoteness, first note that ρ(G) = π(vD) and

ρ(G′) = π′(w). Now, let dw be the distance between vertices w and vD in G, i.e. dw = d(w, vD). Obviously
dw ≥ D+2

2 . Now, we have

π′(w) = π(vD) +
n − dw − 1

n − 1
≤ π(vD) +

2n −D − 4
2(n − 1)

.

Therefore,

ecc′ − ρ′ ≥ ecc − ρ + 2n −D − 1
2n

− 2n −D − 4
2(n − 1)

≥ ecc − ρ.

We obtain the claim by repeating this transformation.

Theorem 4.2. Among trees on n ≥ 3 vertices, the difference ecc − ρ is maximal for path Pn.

Proof. Let G be a tree on n vertices and with diameter D. Let P = v0v1 . . . vD be a diametric path in G. Let
Gi be the tree that is connected component of G\P rooted in vi and let Vi be the vertex set of Gi. If there is
j ≤ D/2 such that the degree of vk is at most 2 for k ≥ j+ 1, then the claim follows from Lemma 4.1. Else, let
v j and vk be vertices on P of degree at least 3 such that j ≤ D

2 < k and k − j is minimum possible. Let w j be a
vertex outside of P adjacent to v j and let wk be a vertex outside of P adjacent to vk. Let G′ be a tree obtained
from G so that:

1) for every vertex w adjacent to v j, except w = w j and w = v j+1, edge wv j is deleted and edge ww j aded,
2) for every vertex w adjacent to vk, except w = wk and w = vk−1, edge wvk is deleted and edge wwk aded.

This transformation is illustrated in Figure 2. Note that diameter of G′ equals D + 2.We want to prove that
ecc′ − ρ′ ≥ ecc − ρ. For that purpose, let us denote

V′j =
{
v ∈ V j : d(v,w j) < d(v, v j)

}
,

V′k = {v ∈ Vk : d(v,wk) < d(v, vk)} .

Now, let us introduce following partition of set of vertices V

X1 = V0 ∪ . . . ∪ V j−1 ∪ (V j\(V′j ∪
{
v j

}
)),

X2 = V′j,

X3 =
{
v j

}
∪ V j+1 ∪ . . . ∪ Vk−1 ∪ {vk} ,

X4 = V′k,

X5 =
(
Vk\(V′k ∪ {vk})

)
∪ Vk+1 ∪ . . . ∪ VD.

Let xi = |Xi| .Now, let us compare e′(v) and e(v) for every vertex v ∈ V.Note that for v ∈ X2∪X3∪X4 it holds
that e′(v) = e(v) + 1,while for v ∈ X1 ∪ X5 it holds that e′(v) = e(v) + 2. Therefore,

ecc′ = ecc +
2x1 + x2 + x3 + x4 + 2x5

n
= ecc + ∆1.

Now, we want to compare π′(v) and π(v) for every v ∈ V.We distinguish several cases depending whether
v ∈ X1, v ∈ X2, v ∈ X3, v ∈ X4 or v ∈ X5. It is sufficient to consider cases v ∈ X1, v ∈ X2 and v ∈ X3, since
v ∈ X4 is analogous to v ∈ X2 and v ∈ X5 is analogous to v ∈ X1.

If v ∈ X1, then the difference d′(v,u) − d(v,u) equals 0 for u ∈ X1, equals −1 for u ∈ X2, equals 1 for
u ∈ X3 ∪ X4 and equals 2 for u ∈ X5. Therefore,

π′(v) = π(v) +
−x2 + x3 + x4 + 2x5

n − 1
= π(v) + ∆2.
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If v ∈ X2, then the difference d′(v,u) − d(v,u) equals −1 for u ∈ X1, equals 0 for u ∈ X2 ∪ X3 ∪ X4 and equals
1 for u ∈ X5. Therefore,

π′(v) = π(v) +
−x1 + x5

n − 1
= π(v) + ∆3.

If v ∈ X3, then the difference d′(v,u) − d(v,u) equals 1 for u ∈ X1 ∪ X5 and equals 0 for u ∈ X2 ∪ X3 ∪ X4.
Therefore,

π′(v) = π(v) +
x1 + x5

n − 1
= π(v) + ∆4.

It is easily verified that ∆1 − ∆2 ≥ 0, ∆1 − ∆3 ≥ 0 and ∆1 − ∆4 ≥ 0, so for every v ∈ V we obtain ecc′ − π′(v) ≥
ecc − π(v).

Now, let u ∈ V be a vertex for which π′(u) = ρ(G′).We have

ecc(G′) − ρ(G′) = ecc(G′) − π′(u) ≥ ecc(G) − π(u) ≥
≥ ecc(G) −max {π(v) : v ∈ V} = ecc(G) − ρ(G).

Figure 2: Tree transformation in the proof of Theorem 4.2.

Therefore, we have proved that Pn is the tree which maximizes the difference ecc − ρ. Now, from

ecc(Pn) − ρ(Pn) =
{

n−2
4 for even n,

n
4 − 2n+1

4n for odd n.

easily follows that Conjecture 1.2 holds for trees.

5. Remoteness and radius

First, we want to find minimal trees for ρ − r. For that purpose, the first step is to reduce the problem to
caterpillar trees.

Lemma 5.1. Let G be a tree on n vertices. There is a caterpillar tree G′ on n vertices for which the difference ρ − r is
less or equal than for G.

Proof. Let P = v0v1 . . . vD be a diametric path in G. Let Gi be the tree that is connected component of G\P
rooted in vi and let Vi be the vertex set of Gi. Let G′ be the caterpillar tree obtained from G in a following
manner. In a tree Gi let v be the non-leaf vertex furthest from vi, let w1, . . . ,wk be all leafs adjacent to v, and
let u be the only remaining vertex adjacent to v. Now, for every j = 1, . . . , k edge w jv is deleted and edge
w ju is added. This transformation is illustrated in Figure 3.The procedure is done repeatedly in every Gi
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(2 ≤ i ≤ D − 2) until the caterpillar tree G′ is obtained. Note that G′ has the same diameter (and therefore
radius) as G.What remains to be proved is that remoteness in G′ is less or equal than in G. It is sufficient
to prove that the described transformation does not increase remoteness. Obviously, π′(u) ≤ π(u) for every
u ∈ V\ {v} . Number π′(v) can be greater than π(v), but note that π′(v) = π′(wi) ≤ π(wi) ≤ ρ. Therefore
ρ′ ≤ ρ.

Figure 3: Tree transformation in the proof of Lemma 5.1.

Now that we reduced the problem to the caterpillar trees, let us prove some auxiliary results for such
trees. First note that because of Lemma 2.1, a leaf in a tree can not be centroidal vertex. Therefore, in a
caterpillar tree a centroidal vertex must be on diametric path P.

Lemma 5.2. Let G , Pn be a caterpillar tree on n vertices with diameter D, remoteness ρ and only one centroidal
vertex. Let P = v0v1 . . . vD be the diametric path in G such that v j ∈ P is the only centroidal vertex in G and every
of the vertices v j+1, . . . , vD is of the degree at most 2. Then there is a caterpillar tree G′ on n vertices of the diameter
D + 1 and the remoteness at most ρ + 1

2 .

Proof. If v j is of degree 2, then by Lemma 2.1 follows that j ≤ D
2 , so ρ = π(vD). Let w be any leaf in G distinct

from v0 and vD. Let G′ be a graph obtained from G by first deleting edge incident to w, then deleting edge
v j−1v j and adding path v j−1wv j instead. This transformation is illustrated in Figure 4. Note that the diameter
of G′ is D + 1,while the remoteness is still obtained for vD.Note that the distance from vD has increased by
1 for at most n

2 − 1 vertices. Therefore, π′(vD) ≤ π(vD) + n−2
2(n−1) from which follows ρ′ ≤ ρ + 1

2 and the claim
is proved in this case.

If the degree of v j is greater than 2, then v j must have at least one neighbor that is a leaf. Let us denote
that leaf neighboring to v j by w. Let VL = V1 ∪ . . . ∪ V j−1 and VR = V j+1 ∪ . . . ∪ VD. Since v j is a centroidal
vertex, from Lemma 2.1 follows that VL and VR have at most n

2 vertices. If any of them had exactly n
2

vertices, then G would have two centroidal vertices by Lemma 2.1, which would be contradiction with v j

being the only centroidal vertex. Therefore, we conclude |VL| ≤ n−1
2 and |VR| ≤ n−1

2 . Now it is possible to

divide the set of vertices V j\
{
v j

}
into two subsets V′j and V′′j such that

∣∣∣∣VL ∪ V′j
∣∣∣∣ ≤ n−1

2 and
∣∣∣∣VR ∪ V′′j

∣∣∣∣ ≤ n−1
2 .

Let G′ be a graph obtained from G by first deleting the edge incident to w, then deleting the edge v jv j+1
and adding a path v jwv j+1 instead, and finally for every vertex v ∈ V′′j the edge vv j is deleted and the edge
vw added. This transformation is illustrated in Figure 4. Note that the diameter of G′ is D + 1. Now, if
v ∈ VL ∪ V′j ∪

{
v j,w

}
the distance d(v,u) has increased by 1 only if u ∈ VR ∪ V′′j , therefore π′(v) ≤ π(v) + 1

2 .

If v ∈ VR ∪ V′′j the distance d(v, u) has increased by 1 only if u ∈ VL ∪ V′j, therefore π′(v) ≤ π(v) + 1
2 . We

conclude ρ′ ≤ ρ + 1
2 , and the claim is proved in this case too.
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a) b)

Figure 4: Tree transformations in the proof of Lemma 5.2: a) v j is of degree 2, b) v j is of degree at least 3.

Lemma 5.3. Let G , Pn be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal
vertices. Let P = v0v1 . . . vD be a diametric path in G such that v j, v j+1 ∈ P are centroidal vertices and every of the
vertices v j+1, . . . , vD is of degree at most 2. Then there is a caterpillar tree G′ on n vertices of the diameter D + 1 and
the remoteness at most ρ + 1

2 .

Proof. Since v j+1 is centroidal vertex, from Lemma 2.1 follows that j ≤ D
2 , so ρ = π(vD). Let w be any leaf

in G distinct from v0 and vD. Let G′ be a graph obtained from G by first deleting the edge incident to w,
then deleting the edge v jv j+1 and adding the path v jwv j+1 instead. The diameter of G′ is D + 1 and the
remoteness is still obtained for vD. Note that distances from vD increased by 1 for at most n

2 − 1 vertices, so
π′(vD) ≤ π(vD) + n−2

2(n−1) . Therefore, ρ′ ≤ ρ + 1
2 .

Lemma 5.4. Let G , Pn be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal
vertices of different degrees. Let P = v0v1 . . . vD be a diametric path in G such that v j, v j+1 ∈ P are centroidal vertices
and every of the vertices v0, . . . , v j−1, v j+2, . . . , vD is of degree at most 2. Then there is a caterpillar tree G′ on n vertices
of the diameter D + 1 and the remoteness at most ρ + 1

2 .

Proof. Let d1 = d(v0, v j) and d2 = d(v j+1, vD).Without loss of generality we may assume that d1 ≤ d2. Since
the degrees of v j and v j+1 differ, from Lemma 2.1 we conclude d1 , d2. Therefore, d1 < d2. From this follows
j + 1 ≤ D

2 , so ρ = π(vD). Let G′ be a graph obtained from G so that for every leaf w incident to v j (distinct
from v0) we delete the edge wv j and add the edge wv j+1. The diameter of G′ is still D,while the remoteness
ρ′ is less or equal than ρ. Note that G′ has diametric path P = v0v1 . . . vD and only one centroidal vertex
which is v j+1. All other vertices on P are of degree at most 2. Therefore, we can apply Lemma 5.2 on G′ and
the claim follows.

Lemma 5.5. Let G , Pn be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal
vertices of equal degrees. Let P = v0v1 . . . vD be a diametric path in G such that v j, v j+1 ∈ P are centroidal vertices
and every of the vertices v0, . . . , v j−1, v j+2, . . . , vD is of degree at most 2. Then the difference ρ − r is less or equal for
path Pn than for G.

Proof. Let d1 = d(v0, v j) and d2 = d(v j+1, vD). Since v j and v j+1 have equal degrees, and every of the vertices
v0, . . . , v j−1, v j+2, . . . , vD is of degree at most 2, we conclude that d1 = d2. Now, we will transform the tree
twice which is illustrated in Figure 5. First, since G is not a path, both v j and v j+1 must have a pendent leaf.
Denote those leafs with w1 and w2 respectively. Let G′ be a graph obtained from G by first deleting edges
incident to w1 and w2, then deleting edge v jv j+1 and adding path v jw1w2v j+1 instead. Note that D′ = D + 2.
Therefore, r′ = r + 1.Note that remoteness in both G and G′ is obtained for v0 and vD. Since distances from
v0 have increased by 2 for at most n

2 − 1 vertices, we conclude π′(v0) ≤ π(v0) + 2(n−2)
2(n−1) from which follows

ρ′ ≤ ρ + 1. Thus we obtain ρ′ − r′ ≤ ρ − r. If G′ is a path, then the claim is proved. Else, we transform G′ so
that for every leaf w in G′ incident to v j edge wv j is deleted and edge ww1 is added. Also, for every leaf w
in G′ incident to v j+1 edge wv j+1 is deleted and edge ww2 is added. Note that this transformation changes
neither radius neither remoteness. Thus we obtain the tree on which we can repeat the whole procedure.
After repeating procedure finite number of times we obtain the path Pn and the claim is proved.
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Figure 5: Tree transformations in the proof of Lemma 5.5.

Now that we have established auxiliary results for caterpillar trees, we can find minimal trees for ρ − r
among caterpillar trees.

Lemma 5.6. Let G be a caterpillar tree on n vertices. If n is odd, then the difference ρ − r is less or equal for path Pn
then for G. If n is even, then the difference ρ − r is less or equal for path Pn−1 with a leaf appended to a central vertex
than for G.

Proof. Let D be the diameter in G and let P = v0v1 . . . vD be the diametric path in G. Suppose D ≤ n− 3. That
means G has at least two leafs outside P. Let v j ∈ P be a centroidal vertex in G. If there are two vertices vk
and vl on P (k < j < l) with a pendent leaf on them (distinct from v0 and vD), then the caterpillar tree G′

obtained from G by deleting a leaf from v j and vk and adding a leaf on v j+1 and vk−1 has the same radius
and the remoteness which is less or equal than in G. By repeating this procedure, we obtain a caterpillar
tree G′ of the same diameter as G with diametric path P = v0v1 . . . vD such that:

1. G′ has exactly one centroidal vertex v j ∈ P and every of the vertices v j+1, . . . , vD is of degree at most 2,
2. G′ has two centroidal vertices v j, v j+1 ∈ P and every of the vertices v j+1, . . . , vD is of degree at most 2,
3. G′ has two centroidal vertices v j, v j+1 ∈ P and every of the vertices v0, . . . , v j−1, v j+2, . . . , vD is of degree

at most 2.

Therefore, on the obtained graph G′ one of the Lemmas 5.2, 5.3, 5.4 or 5.5 can be applied. If Lemma 5.5
is applied, the claim is proved. Else if Lemma 5.2, 5.3 or 5.4 is applied, we obtain graph G′ of diameter D+1
and remoteness ρ + 1

2 . Since for D + 1 it holds that D + 1 ≤ n − 2, we can apply the whole procedure with
G = G′ (as the second step) and thus obtain a caterpillar tree G′ of diameter D+2 and remoteness ρ′ ≤ ρ+1.
Since for thus obtained G′ it holds that D′ = D + 2,we conclude r′ = r + 1. Therefore, ρ′ − r′ ≤ ρ − r.

Repeating this double step, we obtain a caterpillar tree G′ of diameter D′ = n− 2 or D′ = n− 1 for which
the difference ρ − r is less or equal than for G. Now we distinguish several cases with respect to D′ and
parity of n. Suppose first D′ = n − 1. Then G′ = Pn. If n is odd then the claim is proved. If n is even it is
easily verified that the difference ρ − r is less for path Pn−1 with a leaf appended to a central vertex than
for G′ = Pn and the claim is proved in this case too. Suppose now that D′ = n − 2. That means G′ is a path
Pn−1 with a leaf appended to one vertex of Pn−1. If n is odd, then deleting the only leaf in G′ to extend it
to Pn increases radius by 1 and remoteness by less than 1, so the claim holds. If n is even, then deleting
the leaf in G′ outside Pn−1 and appending it to central vertex of Pn−1 preserves the radius and decreases the
remoteness. Therefore, the claim holds in this case too.

We can summarize the results of these lemmas in the following theorem which gives minimal trees for
ρ − r.

Theorem 5.7. Let G be a tree on n vertices. If n is odd, then the difference ρ− r is less or equal for path Pn then for G.
If n is even, then the difference ρ − r is less or equal for path Pn−1 with a leaf appended to a central vertex than for G.

Proof. Follows from Lemmas 5.1 and 5.6.
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For a path Pn on odd number of vertices n it holds that ρ − r = 1
2 which, together with Theorem 5.7,

obviously implies that trees on odd number of vertices satisfy Conjecture 1.3. Now, let us consider graph
G on even number of vertices n consisting of a path Pn−1 with a leaf appended to a central vertex. For G it
holds that ρ − r = n

2(n−1) which implies that trees on even number of vertices satisfy Conjecture 1.3 too.

6. Conclusion

We have established that the maximal tree for l̄ − π is a tree composed of three paths of almost equal
lengths with a common end point. Thus, we proved that Conjecture 1.1 posed in [4] for general graph holds
for trees. Using reduction of a graph to a corresponding subtree, this result enabled us to prove Conjecture
1.1 for general graphs too. Furthermore, we established that the maximal tree for ecc − ρ is the path Pn and
that the minimal tree for ρ − r is the path Pn in case of odd n and the path Pn−1 with a leaf appended to a
central vertex in case of even n. Since for these extremal trees Conjectures 1.2 and 1.3 posed in [4] hold, it
follows that those conjectures hold for trees.
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