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Two Regularized Solutions of an Ill1-Posed Problem for The Elliptic
Equation with Inhomogeneous Source
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Abstract. In this paper, we address a Cauchy problem for elliptic equations with inhomoge-
neous source data. The problem is shown to be ill-posed as the solution exhibits an unstable
dependence on the given data functions. Here, we shall deal with this problem by using two
different regularized methods. Moreover, convergence estimates are established under some

priori assumptions on the exact solution. Some numerical examples are given to illuminate the
effect of our methods.
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1. Introduction

The Cauchy problem for the elliptic equation has been extensively investigated in many practi-
cal areas. For example, some problems relating to geophysics [22], plasma physics [19], bioelectric

tield problems [14] are equivalent to solving the Cauchy problem for the elliptic equation. In this
paper, we consider the following Cauchy problem for elliptic equation

uy = Lu+ f(x,t),(x, 1) € QA% (0,1),

u(x,t) =0,t € (0,1),x € 9Q, 1)
u(x,0) = p(x),x € Q

u(x,0) = g(x), x € Q.
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where Q) is a connected bounded domain in R",n > 1, dQ is the boundary of Q and L : D(L) C
H — H denotes a linear densely defined self-adjoint operator. The functions ¢, g € L?(Q) and
f € L%(0,1;L*(Q)) are given.

This problem is well-known to be severely ill-posed; i.e., a small perturbation in the given
Cauchy data may cause a very large error on the solution. Therefore, it is very difficult to solve
it by using classic numerical methods. In order to overcome this difficulty, the regularization
methods are required [24, 25].

The Cauchy problem of an elliptic equation is well known to be ill-posed in the sense of
Hadamard. There have been many studies on the homogeneous problem where f = 0 in Eq. (1).
For instance, Eldén and Berntsson [12] used the logarithmic convexity method to obtain a stability
result of Holder type. Besides that, Alessandrini, Rondi, Rosset and Vessella [7] provided essen-
tially optimal stability results, in wide generality and under substantially minimal assumptions.
In 2008, Chu-Li Fu et al [29] used the method of quasi-reversibility and truncation method to
solve the homogeneous problem. Recently, the homogeneous problem is investigated in series of
articles of [13,15,20,23,29-37].

Although we have many works on the homogeneous case of the elliptic problem, the literature
of the inhomogeneous case is quite scarce. The ealier work on the abstract elliptic second order
equation with inhomogeneous source was introduced in [27] by R.E. Showalter (See page 469).
Motivated by this reason, in the present paper, we propose two regularization methods to study
Problem (1). Moreover, we establish some error estimates between the regularized solution and
exact solution. Especially, the convergence of the approximate solution at t = 1 is also proved.

The paper is organized as follows. In Section 2, we present the first regularization method
and obtain the convergence estimates. In Section 3, we use a second method to construct a stable
approximation solution and give the convergence estimates. Finally, a numerical experiment will
be given in Section 4.

2. Preliminaries

Through this paper, we assume that the functions ¢,g € L?(Q). Physically, ¢,g can only
be measured, there will be measured errors, and we would actually have as some functions
©¢, g¢ € L>(Q) for which

P -ol<elg gl <e
lo = ol < llg - 9] <

where the constant € > 0 represents a bound on the measurement error, ||.|| denotes the L2-norm.

Since L is a linear densely defined self-adjoint and positive definite elliptic operator on a
connected bounded domain () with zero Dirichlet boundary condition, the eigenvalues of L are
given by

O<hshsAz<.. <A <.

and A, — o0 asp — oo (See [18]). And the eigenfunctions of operator L are respectively given by
Xy € Hé (Q). Here assume that {Xp};(’:1 is considered as an orthonormal basis of L2(QQ)

{pr(x) = —ApXp(x),x € Q (2)

X,(x) = 0,x € Q.
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forp=1,2,..

Applying the method of separation of variables, it is easy to obtain the solution of Problem (1)
is as follows

u(x, t) = i

t
sinh( \/)\_pt) sinh ( \/)\—p(t - s))
cosh( /Apt)pp + ———g, + fo(s)ds | X,(x) 3)
= \/: 14 \/A—p p Oj‘ \//\_]ﬂ P 4
where
Ip = fQ 9 Xp(x)dx, @p = fQ P Xp(x)dx, fo(s) = fQ f(x, 9)Xp(x)dx. (4)

3. The First Method.

We modify the exact solution u as follows

u(x, t)
[ (@PIVA — B +explyAt) - (expl(yAy — pAn)t) — expl- Ayt
=), : Pp+ o] %00
2,
t
00 expf{( \//\_p - ﬁ/\p)t - \//\_ps} — expf \/A—p(s _ t)}]
' f($)ds| X, ) )
] = ol

where ¢, g, are defined by (4). And f is the regularization parameter which depends on €. Let
the function v be defined

v°(x, t)
o [( UV = BAH + expl=Apt})  (expl(y/A, = BAp)H —expl= At} |
= Z 2 (PP + = gp Xp(x)
7w
t
o0 eXP{( \//\—P - ﬁAp)t - \//\_pS} - exp{ \/A_p(s _ t)}]
' f(S)dS X (X), (6)
’; Lf[ 2 \//\_P b 4
where
9p = fQ g () Xp(0)dx, @, = fQ ()X, ()dx. "

Regarding the stability of the regularized solution, we have the following result.

Theorem 3.1. Let Aq be positive number such that fol exp{ /A, = 2/Aps} fpz(s)ds < Aj. Let us choose

p= 4khl1(1) (0 < k < 2), then we have

”Ue('/ t) - M(., t)” < ClA + \/C_l V2€2 + 2€2_k, (8)

4kIn(L)
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for every t € [0, 1] and where
SDI? + SDIP+A
4 = M, DI 4GP A o, L),
-1 Vi
Proof. Step 1. First, we estimate the following error
llu(., £) = us(, Il < BA.
Indeed, we have
u(x, t) =
s [w— +w‘) . [w‘ _w‘) ) f[w—u _ems—o]f( ol
A A Y E p(8)ds | Xp(x).
p=1 2 234, J 24/%
©)
Then
(e VIt (N
u(x, ) =G )= Y [e 3 [ f “V sfp(S)ds) ®. (10
i
Moreover, by taking derivative of u with respect to t, we have
Mt(x, t) =
i \//\7 (g\/A_Pt_e_\/}Tth [e Apt_i_e—\//Tpt] ; e\/;\_p(t_s)+e\//t_p(s—t) £ ois| %,
P—(PP+—9P+f pl8)as | Aplx).
2% T
It implies that

<u(x, t), Xp(x) > +\/LA— <u(x, t), Xp(x) >=e Apt ((pp + =+ —f ﬂsfp(s)ds) (11)

p

Lett =1, we get

< u(x, 1), X, (x) > L 1) X, (x) >= e VY

1), Op+ —— + —
w\—p v
Therefore, we obtain
Vs £ (9)d
\/— \/—f fp(s) 5
= e“/A_V(< u(x, 1), Xp(x) > +\/L/\_ < u(x, 1), Xp(x) > —ft e‘/_ ‘/_S s)ds]

p

f “VhE g (o)d ] (12)

(13)
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Combine (10) and (13) yields
<u(x, t) — u(x, t), Xp(x) >
e VMt _ (APt
[ 2e ‘/A_” ] [
R ORV/ (1-e Pt [
2

1
< u(x, 1), X, (x) > +\/LA_ < up(x, 1), X, (x) > — f e V= Vs fp(s)ds)

4 t

1
u(x, 1), Xp(x) > +\/LA_ <uy(x, 1), Xp(x) > —f e\/A_P‘ \/A_nSfp(s)ds].
p t

(14)
Using the inequalities (a + b)? < 2(a*> + b*) and 1 —e™™ <m, m > 0, we have

| < u(x, t) — u(x, t), Xp(x) >

1 5 1 1 _
< Ze2<f 1>«/A752A§t2 (| < u(x, 1), X,(x) > 2 + A_,,l <ur(x, 1), Xp(x) > 2 + ft 2N =2/Aps fpz(s)ds).

(15)
It is easy to prove the inequality for z,p > 0
A2 4
o \/_ z4
Thus, fort <1, putz =1-t, we get
2
ADVEg2)2 4p (16)

p= (1-p¥
Combine (15) with (16) we obtain
| <, B) = u(x, 1), Xp(0) > [

2 1
P (| <u(x, 1), Xp(x) > * + i| <u(x, 1), Xp(x) > [ + f 2 V2 VAys fg(s)ds).
A 0

Si-n p
It follows that
(., £) = u(, DIP = D < 1, £) = u(x, 1), Xp(x) >
= 1
< - t)4;(l<u(x 1), p(x)>|2+/\—Pl<z,¢,5(x,1),Xp(x)>|2+f0 ¢ "v‘z\/"_vsf;(s)ds)
< £ 204 (1 DI + T, DI? + A2).

Thus we get the following estimate

llu(., £) —u(, pll <

a-12 \/Ilu( DI + —IIut( DI + As.
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Step 2.

Let u¢, v be defined by (5) and (6) respectively. Then we have the following estimate

1°(, £) — u(., DIl < v/Cre V2T + 2.

Indeed, from (5) and (6) we get

- ~ 3 2
ZZ[[exprp B + expl Wﬂ](@;_ (Pp)}

IA

||u€('/ t) - ,06(., t)”z >
p=1

= exp{(\//\_p—ﬁ/\p)t}—exp \/_t
R e

€ 2 € 2
P
[((P Pp)” + (9, = 9p) ]

(gp gp)}

= exp{(4/A, — BAp)H +1
201 ) 5
p=1
- 1
where C1; = max(1, W)'
Using the inequality \//\_p —BAy < ﬁ, we have

1
Cale™ + 195~ ) + (75 ~ 9]
Cl(e‘*lfg +1)2¢%,

lu€(., £) = o°(., DI

IA

IA

Thus

105C, ) — 1€, Bl < VCr v (2e% + 2)e? = /C; V2e? + 2¢2k,

By combining the estimate in Step 1 with the result in Step 2 we obtain
10°C, &) —u(, DIl < IIU":( B) = u (Ol + s £) = ul, Dl
\/|| G DIP + —IIut( DIR + Ay + /C1 V2€2 + 262+

VG, DIR + e, DI? + Ap + /C1 V2€2 + 22k,

t)2

4k(1 - t)21 (D)
U
Remark 3.2. 1. If f =0, the estimate (8) becomes

ef) — G 2 ) 2 4 g2k
16,0~ Ol < o gy VliuC, DI + I, DIF + VCi V2e2 +2¢ (17)

Note here that the order of error (17) is the same with the one in paper [29] (See Theorem 2.3, page
483).
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2. Observing Estimate (17) we realize the method used in Theorem 1 have a limitation in estimating the
error for t = 1. This is disadvantage point of this estimate. Moreover, the condition of source function
f in Theorem 1 is difficult to check. To improve this limitation, we introduce the following Theorem
where a simple condition is used on the exact solution to dealing with the error for all t even with

t=1

Theorem 3.3. Let Ay be positive number such that ||Lu(., DI + IILut( HIZ < A2 5 for t € [0,1].

choose = (0 < k < 2), then we have

1
4kin(L)

105, 8) — u(., ]| € ——=— + /Cy V2€2 + 262k

4kIn(d) (
forevery t € [0, 1].

Proof. Combining (10) and (12) we get

<u(x,t) —u(x, t), X, >

[e\/_f (\/A_p—ﬁ/\p)t)[

M

p=1 2e \//\_pt 4

2 p

_i(ﬂ)<u(xt)X(x)>+L<u(xt)X(x)> X, (x)
= )

u(x, t), Xp(x) > +% < up(x, 1), Xp(x) >

] Xp(x)

Using the inequalities (@ + b)? < 2(a*> + b*) and 1 —e™™ <m, m > 0, we have

| < ulx, ) — us(x, £), Xp(x) > 2

1 1
< 2(1 - e—ﬁ}lpt)Z (l < u(xl t)/ Xp(x) > |2 + _| < Mt(x, t)/ Xp(x) > |2)
P

1
< PPALE (| < u(x, 1), Xp(x) > [* + A_,,l < ur(x, ), Xp(x) > |2).

Therefore, we obtain

(., £) = uc(, )P

Z | < u(x, B) = u(x, 1), Xp(x) >

< g Z 22 (| <u(x, ), Xp(x) > > + —| < up(x, £), Xp(x) > |2)
r=1
< 2 (Iut, DI + 5L, DIP).
1
Then it follows that

lu(., t) — us(., )|l < BAs.

. If we

(18)

(19)
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Using |[0¢(., £) — u€(., t)|| < VCi V2€2 + 2e27k, we get
u(, ) =GOl < ul, ) = o°C Ol + (., 1) —o°C D
5A2 + Gy V2€2 + 262k

+ /Cy V2€2 + 262K,

IA

4k ln( )
O

4. The Second Method.

For a is the parameter regularization, we have the second regularized solution as follows

L e VI S SRV ¥
e = Py (T
o F AN

VY A1)
t a\/)\_p+e_wt ¢ ’
N f £()s]| Xy (). (20)
0

2%

and
Wiy = Y[ DA V_t)<p€+(m_e_m)f
’ — 2 p 2\//\—][] p
PRVARCS)

+fa\/_+e ‘/—t
) 24,

Theorem 4.1. Let E be positive number such that ||Lu(., 1)|[> +|[us(., D> < E2. Ifwe choose a = €* (a < 1),
then

Fo(s)ds] X, (). 1)

IWEC, ) = u(, DIl < ‘rgf;E +2Cie!, (22)
=
_ 1
for every t € [0, 1] and where C; = max(1, ﬁ) .
Proof

First, we prove the following Lemma

Lemma 4.2. Let ¢, g € L%(0, 7). Then, we have

IWE(., t) = we(, b)]| < 2Cia te.
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Proof. We have

0 i}/_ﬁ_t\m— +€_\/A_pt
1+a AfA,e VP!
Wee, ) -l ) = Y — (95 — pp) | Xp(x)
p=1

VWt At
oo Vit €
T+aA/Ae NP
3

p=1

oVt

1+a \MPEW"

Since

> T+a A[Aye VP
Wi n—wrol < 2) f| (@ = @)

IA

w1l 1 2
22{( - (€0§‘(PP)}

p=1
oo T l+l 2
2 o a € _
+ p;( \/A_l)(gp gp)l

2C3a™? (||go€ — @l +llg° - gllz)
AC2a72€?,

IA

IA

where C1 = max(1, #).
Hence

IWe(., y) — w(, Yl < 2C1a'e.
Now, we return to the proof of Theorem 4. Since 0 < t < 1, we have

1 1
< .
a\/)\—p+e"/A_"t a\/)\—p+e"/A_”

It is not difficult to prove the following inequality

1 1
<
oz\//\—p+e_‘/A_” aln(%)

, a€(0,e).

N (g, — 9p) | Xp(x).

2099

(23)
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Inequalites (9) and (20) follow
u(x, t) — w(x, t)

\//\_,,t _ e Vit Wt _ e Vit
i[ ¢ 1+a\/ﬁewt ¢ 1+o¢\/}l_pew’
= +
= 7 9010 2\/A—p gp
VA=) _ eV
je a\/_+ \/_“f()d]X()
+ p S)ds p X).
2
J VAp
VIt _ eV
T eV

gk

- [ T L [evm Sfp<s>ds]X<x>

< «a e‘/_t
- Z \/f \/—t][ \/— \/— f \/_Sfp(s)dle (x). (24)
=1\ +e

Using (12), we get

=
]
—_

=

1 s
< ux, £), X, (x) > +\/—A_ < up(x, £), Xy () >= e Vo (% P/ N f -V fp(s)ds) (25)

4
It follows from (24) and (25) that

) 0 a+/Ap ( 1 ]
u(x, t) — w(x, t) = ———I<u(x 1), Xp(x) > +—— < u(x, 1), Xp(x) > | Xp(x).
pZ;l‘a\//\—p+e_ VAt ’ VA t ’ ’
Using inequality (23) yields
c 1
| < (e, ) = (e, 1), X, (0) > | < @(,/m <%, X0 > |+ < ), Xp(0) > 1)

Using the inequalities (2 + b)? < 242 + 2b?, we obtain

Mg

”M(., t) - we('/ t)“Z | u(x, t) - we(x/ t)/ Xp(x) > |2

r=1
< 22 1(1) [Apl < u(x, t),Xp(x) > |2 +]< Mt(x, t),Xp(X) > |2]
p=l a
< %[%nw(q DI + llu(., OIF].

Applying the triangle inequality and Lemma 5, we obtain
(., ) = WD < HluC, £) = wtC Dl + (L £) = WEC, Dl
V2G,

ln(a)

E+2Cia”
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Since a = €, we obtain

V2C;
ln(é)

(., ) — We(., )] < E +2Cie!™.

This completes the proof of Theorem 4. [J

5. Numerical Results

As proved above, the proposed two regularization methods are completely stable. In this
section, we give two examples to illustrate the behaviour of the proposed methods. Let us
consider the following problem

U + Uyy = f(x, 1), (x,t) € (0,71) x(0,1),
u(0,t) =u(m,t)=0, te(0,1),
(26)
ut(x, 0) = g(x)/ xXe (O/ 7'(),
u(x,0) = @(x), x € (0, 7).

In this case, the eigenvalues and eigenfunctions of Laplace operator are respectively given as
follows

Ap = pz, Xp(x) = \/gsinpx.

Lete > 0, ¢¢, g° are measured data such that

o =l <e, o = ol <
Two proposed regularized solutions of Eq.(26) can be expressed as follows

(o]

W, ) = ) () sin(px), 27)
p=1
where
e N P 9 LT e .
uy () =Ey (t)(7’7+ﬁ)+e—w(7’g—ﬁ) t o fo fo (pr (t,s)—ep<s-f>) f(&,s)sin(p&)d&ds,

(28)
herein € > 0, and i = 1, 2 corresponding to ith method, i.e.,
e First method:

E;re(t) = P-rPt p;fe(t, s) = ePt=s7h).,

e Second method:

1 ePs

EX(t) = ———,
y ) pa + e Pt

F25(t,5) = ———.
p (E:) pa +ePt
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The aim of this numerical work is to observe the following error

5(t) = |ju< (-, ) -

for t € [0,1], as € tends to zero. Applying Parseval’s identity to the latter formulae, we have

5(t) = J > i

p=1

i€

(29)

In order to estimate the right side of Eq.(28), without loss of generality, we consider a following
general integral

t i
I= f(; f(; G(x, s) sin(px)dxds, (30)

where ¢, p are given numbers. The above integrand which including sin(px) is strongly oscillated
as p increase (see e.g. [3]). Thus, we will here exploit an efficient method as mentioned in [2].
Put

h= 2 xe= (k=D k=12,.20+1, b

where 7 is a given integer number, Eq.(30) becomes
n X2k+1
1=y f f G(x, 5) sin(px)dxds (32)
k=1 X2k-1

We approximate G on [xpr_1, X2x+1] by the quadratic interpolation and rewrite the oscillating term
sin(px) as follows

oo ) o
G(x, S) ~ (E - E) G(sz_l,S) + (1 -r )G(sz, S) + (E + E) G(X2k+1, S), (33)
sin(px) = sin (pxyx) cos (phr) + cos (pxoy) sin (phr), (34)

where x = xy + hr, v € [-1,1], s € [0, t]. Hence, Expressions (32),(33) and (34) yield
noot
1= ) [ MiGater,s) + MG, ) + RiGlsen, 9 s (35)
0

where the paramesters Ly, My, R are of the following forms

/1 2 2 [1 1
Ly = (———)s1n9+—cost9 ag + —COS@——SlnG by,

6 062 62 | O 62
M, =4 [% sin @ — % cos 6] ar,

(1 2 [ 1 | .
Ry = (9 62)51n6+6 cos@ ak—»écose—ﬁsme_bk,
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with O = ph, ay = hsin (pxy) and by = h cos (pxy). So far, the integrals in the right side of (35) was
escaped from the oscillating factor sin(px), thus, will be estimated by Gauss-Legendre quadrature
method [38].

In this paper, the program is written by Fortran90 [5] language with double-precision real type
based on the IEEE Standard for floating-point number [6]. Due to the decay of Fourier series,
the right side of Eq.(27) should be rounded by truncating cancelable terms in Fourier series as p
becomes large, i.e., the series should be replaced by its Nth partial sum, where N is increased until
the following condition is satisfied

Jo—1

Z |u;<[€_].(t)| < € max |u;('€(t)
=0

1<k<N

7

and N > jo, where t € [0,1], € > 0 and jy is here chosen large enough (~ 10?). In order to
avoid underflow error occuring to exponent function e™* as 7 large (which is greater than 709),
we replace unexpected result (maybe NaN, see [6]) by a tiny possitive number (x 1073%); it also
means that we eliminate invalid numbers in the right side of (28). In order to control the error
of numerical integrating, we increase 7 in (31) and the number of abscissas of Gauss-Legendre
method until getting desired accuracy.

Example 1.. Take u(x,t) = x(rt — x)e™™* as the exact solution of the problem (26). Replacing u into
(26) yields

flx,t)=e™ <x3(n —x) — 2% + 4tx + Tui(tx — 2) — 2) . (36)

The measured datas are given

P°(x) =x(m—x) +e€ \/g sinx, (37)

g(x) = X*(m—x)+e \/gcos X, (38)

where € > 0 denotes the error level, we can verify that

o = = [ls - gll = e

In this example, we choose the regularization parameters of the 1st and 2nd method are
B = m (i.e. k = 1) and & = €29 (i.e. a = 0.9), respectively.

The error estimation 6Y€(f) and 6%¢(t) ate = 107 (i = 1,6), t = ( j—=1)/10(j = 1,11) are provided
in Table 1 and Table 2. By comparison, we observe that the convergence rate of the 2nd method is
better than the first.

Morever, to illustrate more clearly the stability as well as the speed of convergence of the each
method, Figure 1 which verifies what is presented by Tables 1 and 2 is given below. It includes
two section cut, at t = 1 and 0.5, with e = 107%,1072 and 1073.
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[t ] e=10" | e=107 | e=10" e=10" | e=10" | e=10"°
0.0 | 1.00003E-01 | 1.00021E-02 | 1.00092E-03 | 1.00262E-04 | 1.00399E-05 | 1.01465E-06
0.1 | 1.19282E-01 | 2.59469E-02 | 1.45503E-02 | 1.07661E-02 | 8.62848E-03 | 7.20985E-03
0.2 | 1.35962E-01 | 4.09779E-02 | 2.59853E-02 | 1.96188E-02 | 1.58219E-02 | 1.32672E-02
0.3 | 1.48794E-01 | 5.33628E-02 | 3.56493E-02 | 2.72608E-02 | 2.21176E-02 | 1.86209E-02
0.4 | 1.58310E-01 | 6.36693E-02 | 4.40728E-02 | 3.40936E-02 | 2.78386E-02 | 2.35427E-02
0.5 | 1.65254E-01 | 7.23364E-02 | 5.15654E-02 | 4.03440E-02 | 3.31646E-02 | 2.81824E-02
0.6 | 1.70291E-01 | 7.96342E-02 | 5.82911E-02 | 4.61242E-02 | 3.81807E-02 | 3.26084E-02
0.7 | 1.73978E-01 | 8.57199E-02 | 6.43274E-02 | 5.14785E-02 | 4.29146E-02 | 3.68399E-02
0.8 | 1.76797E-01 | 9.06874E-02 | 6.97055E-02 | 5.64151E-02 | 4.73643E-02 | 4.08699E-02
0.9 | 1.79193E-01 | 9.45982E-02 | 7.44355E-02 | 6.09266E-02 | 5.15148E-02 | 4.46804E-02
1.0 | 1.81586E-01 | 9.74997E-02 | 7.85202E-02 | 6.50021E-02 | 5.53486E-02 | 4.82509E-02

Table 1: Example 1, first method, error 6'4(;) = Hul’f(tj) - u(t/-)H.

[ 4] e=10"] €=102] =107 e=10"] €=10°"] e=10"°
0.0 | 1.87132E-01 | 1.99644E-02 | 2.01084E-03 | 2.01312E-04 | 2.01513E-05 | 2.01928E-06
0.1 | 1.77903E-01 | 1.92356E-02 | 1.94246E-03 | 1.95625E-04 | 2.15202E-05 | 5.22828E-06
0.2 | 1.71001E-01 | 1.89103E-02 | 1.93955E-03 | 2.17208E-04 | 4.95520E-05 | 2.51458E-05
0.3 | 1.66404E-01 | 1.92172E-02 | 2.11939E-03 | 3.47587E-04 | 1.35076E-04 | 7.48558E-05
0.4 | 1.64034E-01 | 2.05085E-02 | 2.70238E-03 | 6.64758E-04 | 3.02585E-04 | 1.71522E-04
0.5 | 1.63676E-01 | 2.31238E-02 | 3.87542E-03 | 1.20832E-03 | 5.80238E-04 | 3.33328E-04
0.6 | 1.64973E-01 | 2.72078E-02 | 5.70916E-03 | 2.01935E-03 | 9.97673E-04 | 5.79174E-04
0.7 | 1.67493E-01 | 3.26513E-02 | 8.22071E-03 | 3.14136E-03 | 1.58466E-03 | 9.28425E-04
0.8 | 1.70816E-01 | 3.91713E-02 | 1.14078E-02 | 4.61428E-03 | 2.36983E-03 | 1.40049E-03
0.9 | 1.74634E-01 | 4.64178E-02 | 1.52443E-02 | 6.46810E-03 | 3.38002E-03 | 2.01435E-03
1.0 | 1.78771E-01 | 5.40370E-02 | 1.96846E-02 | 8.72410E-03 | 4.63658E-03 | 2.78686E-03

Table 2: Example 1, second method, error 6*(t;) = Huz,e(t],) - u(tj)”
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Figure 1: Example 1, graph of u*(-, ) and u(-, t), att = 1 and 0.5.
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Example 2.. The same to previous example, we take u(x,t) = ’% as the exact solution of the

problem (26). Source function f and measured data are given as follows

6tx? + 2mtx(tx® — 3) — 2 + 2(1t — x)x°

flx, ) = E1 17 , (39)
P°(x) =x(m—x)+e€ \/g sin 3x, (40)
Fx)=x(m—x)+e \/gcos 4x. (41)

Similarly as in Example 1, we here choose the regularization parameters of the 1st and 2nd
method are f = m and a = €%, respectively. Table 3 and Table 4, respectively, show the error
estimation 6%() and 6%¢(f) ate = 107 (i = 1,6), t = ( j—1)/10(j = 1,11). Furthermore, Figure 2 is
also given below to describe more clearly the graph of u!€, u?€ and u at two section cut t = 1 and
0.5. From these, we can state that the convergence of proposed methods are stable and the 2nd
method is more effective than the first.

| 4] e=10"] e=10%] €e=10°] e=10*] €e=10°] €e=10"°]
0.0 [ 1.00003E-01 | 1.00021E-02 | 1.00092E-03 | 1.00264E-04 [ 1.00638E-05 | 1.01465E-06
0.1 | 1.01314E-01 | 3.23198E-02 | 2.16587E-02 | 1.63924E-02 | 1.31566E-02 | 1.09833E-02
0.2 | 9.35319E-02 | 4.20283E-02 | 3.01196E-02 | 2.30705E-02 | 1.86014E-02 | 1.55709E-02
0.3 | 9.51640E-02 | 5.21332E-02 | 3.84276E-02 | 2.97034E-02 | 2.40706E-02 | 2.02171E-02
0.4 | 1.03748E-01 | 6.30133E-02 | 4.72873E-02 | 3.68670E-02 | 3.00327E-02 | 2.53153E-02
0.5 | 1.15296E-01 | 7.38959E-02 | 5.63595E-02 | 4.43236E-02 | 3.62997E-02 | 3.07100E-02
0.6 | 1.27396E-01 | 8.42162E-02 | 6.53165E-02 | 5.18302E-02 | 4.26763E-02 | 3.62385E-02
0.7 | 1.38951E-01 | 9.36420E-02 | 7.39345E-02 | 5.92161E-02 | 4.90229E-02 | 4.17833E-02
0.8 | 1.49585E-01 | 1.01990E-01 | 8.20686E-02 | 6.63685E-02 | 5.52453E-02 | 4.72632E-02
0.9 | 1.59288E-01 | 1.09168E-01 | 8.96244E-02 | 7.32140E-02 | 6.12801E-02 | 5.26225E-02
1.0 | 1.68240E-01 | 1.15147E-01 | 9.65380E-02 | 7.97052E-02 | 6.70853E-02 | 5.78228E-02

Table 3: Example 2, first method, error estimation 6'#(t;) = ”ue(t )= u(t]-)”
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[ ] e=10"] €=107] e=10"] €e=10"] €=10°"] €=10"°]
0.0 | 3.55477E-01 [ 3.98561E-02 | 4.03659E-03 | 4.04219E-04 | 4.04364E-05 | 4.04576E-06
0.1 | 1.75053E-01 | 2.00949E-02 | 2.04219E-03 | 2.04967E-04 | 2.11374E-05 | 4.30370E-06
0.2 [ 1.21079E-01 | 1.46422E-02 | 1.50833E-03 | 1.60976E-04 | 3.01266E-05 | 1.46989E-05
0.3 | 1.04816E-01 | 1.37371E-02 | 1.47318E-03 | 1.97685E-04 | 6.61859E-05 | 3.66514E-05
0.4 | 1.04438E-01 | 1.51570E-02 | 1.74455E-03 | 2.99857E-04 | 1.23390E-04 | 7.02401E-05
05 [ 1.11195E-01 | 1.82061E-02 | 2.30269E-03 | 4.59512E-04 | 2.02156E-04 | 1.16424E-04
0.6 | 1.21127E-01 | 2.27009E-02 | 3.23605E-03 | 6.87384E-04 | 3.05028E-04 | 1.76408E-04
0.7 | 1.32370E-01 | 2.85469E-02 | 4.71239E-03 | 1.02156E-03 | 4.37168E-04 | 2.51765E-04
0.8 | 1.43988E-01 | 3.55433E-02 | 6.91672E-03 | 1.54142E-03 | 6.11036E-04 | 3.44992E-04
0.9 | 1.55465E-01 | 4.33455E-02 | 9.97094E-03 | 2.36925E-03 | 8.55374E-04 | 4.61211E-04
1.0 [ 1.66484E-01 | 5.15379E-02 | 1.38961E-02 | 3.63190E-03 | 1.22679E-03 | 6.13544E-04

Table 4: Example 2, second method, error estimation 62'€(tj) = ||u€(tj) - u(t]-)”

6. Conclusion

We have considered two regularization problems for a Cauchy problem for elliptic equation
with inhomogeneous source, namely Problem (1). We also establish the error estimate of loga-
rithmic type for all t € [0, T] under assumptions of the exact solution. This work improves many
earlier results. In the future work, we will consider a generalized problem as follow

uy = Lu+ f(x,t,u(x, 1), (x,t) € QAx(0,1),
u(x,t) =0,t€(0,1),x € 9Q,

u(x,0) = @(x),x € Q

u(x,0) = g(x), x € Q.
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