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Signed Total k-independence in Digraphs
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*Lehrstuhl II fiir Mathematik, RNTH-Aachen University, 52056 Aachen, Germany

Abstract. Let k > 2 be an integer. A function f : V(D) — {-1,1} defined on the vertex set V(D) of a digraph
D is a signed total k-independence function if }’ .cn-( f(x) < k =1 for each v € V(D), where N™(v) consists
of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is
defined by w(f) = Y. cy(p) f(x). The maximum of weights w(f), taken over all signed total k-independence
functions f on D, is the signed total k-independence number a¥ (D) of D.

In this work, we mainly present upper bounds on a¥,(D), as for example a,(D) < n —2[(A~ + 1 - k)/2]
and AY +2k—-6" -2

A+ +6* T
where 7 is the order, A~ the maximum indegree and A* and 6* are the maximum and minimum outdegree
of the digraph D. Some of our results imply well-known properties on the signed total 2-independence
number of graphs.

af(D) <

1. Terminology and Introduction

In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and arc set of a digraph
D are denoted by V(D) and A(D), respectively. The order n = n(D) of a digraph D is the number of its vertices.
If uv is an arc of D, then we write u — v, and we say that v is an out-neighbor of u and u is an in-neighbor of v.
For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by N~ (v) = N (v) and
N*(v) = Nj;(v), respectively. The numbers d;,(v) = d~(v) = IN~(v)|and d/;(v) = d*(v) = |[N*(v)| are the indegree
and outdegree of v, respectively. The minimum indegree, maximum indegree, minimum outdegree and maximum
outdegree of D are denoted by 6~ = 67(D), A~ = A™(D), 6* = 6"(D) and A* = A*(D), respectively. A digraph
D is called inreqular or r-inrveqular if 6~ (D) = A™(D) = r and outregular or r-outreqular if 6*(D) = A*(D) =r.
We say that D is reqular or r-reqular if it is r-inregular and r-outregular. If X € V(D) and v € V(D), then
E(X, ) is the set of arcs from X to v and E(v, X) the set of arcs from v to X. If X and Y are two disjoint vertex
sets of a digraph D, then E(X, Y) is the set of arcs from X to Y. The number of vertices of odd indegree and
even indegree are denoted by 7, and 7., respectively. If X C V(D) and f is a mapping from V(D) into some
set of numbers, then f(X) = }..cx f(x). For a vertex v in V(D), we denote f(N~(v)) by f[v] for notational
convenience. The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e of
G is replaced by two oppositely oriented arcs with the same ends as e.
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In this work, we initiate the concept of the signed total k-independence number of a digraph. For graphs
G and k = 2, this parameter was introduced by Wang and Shan [5] as a certain dual to the signed total
domination number. The signed total domination number was introduced by Zelinka [7]. A two-valued
function f : V(G) — {-1,1} is a signed total 2-independence function if f(N(v)) < 1 for each vertex v € V(G),
where N(v) is the neighborhood of the vertex v in the graph G. The sum f(V(G)) is called the weight w(f) of
f. The maximum of weights w(f), taken over all signed total 2-independence functions f on G, is called the
signed total 2-independence number of G, denoted by a2(G). The signed total 2-independence number is called
negative decision number by Wang [4], and its possible application in social networks was also presented.
This parameter has been studied in [4, 5] and [6]. Detailed information on domination and independence
can be found in the two books by Haynes, Hedetniemi and Slater [1, 2].

Let k > 2 be an integer. A two-valued function f : V(D) — {-1, 1} is a signed total k-independence function
if flv] < k-1 for every v € V(D). The weight of a signed total k-independence function f is defined by
w(f) = f(V(D)). The maximum of weights w(f), taken over all signed total k-independence functions f on
D, is called the signed total k-independence number of D, denoted by af,(D). A signed total k-independence
function of weight a’s‘t(D) is called a a’s‘t(D)-function. If k > n, then obviously “];t(D) = n. Therefore we assume
throughout this paper that k < n — 1. The signed total k-independence number only exists for digraphs
D with 67(D) > 1. The signed total 2-independence number of a digraph is a dual to the signed total
domination number in a certain sense. The signed total domination number for digraphs was introduced
by Sheikholeslami in [3].

Throughout this paper, if f is a af,(D)-function, then we let P and M denote the sets of those vertices
in D which assigned under f the values 1 and -1, respectively, and we let |P| = p and |[M| = m. Thus
w(f)=IP|-IM|=n—-2m=2p—n.

We mainly present upper bounds on a¥,(D). In addition, we prove some Nordhaus-Gaddum type in-
equalities. A lot of examples demonstrate the sharpness of the obtained bounds. Some of our results imply
well-known properties on the signed total 2-independence number of graphs given by Wang [4], Wang,
Shan [5] and Wang, Tong, Volkmann [6].

Since Nz_)(c)(v) = N¢(v) for each vertex v € V(G) = V(D(G)), the following useful observation is valid.

Proposition 1.1. Let k > 2 be an integer. If D(G) is the associated digraph of a graph G with 6(G) > 1, then we have
a5(D(G)) = ag(G).

2. Upper Bounds

Theorem 2.1. Ifk > 2 is an integer and D a digraph of order n > k + 1 with 6~ (D) = 1, then

2k—2—n§aft(D)$n—2{M]

2

Proof. Let w € V(D) be a vertex of maximum indegree d~(w) = A~ = A™(D), and let f be a oc’;t(D)—function.

The condition f[w] < k—1leads to |E(P, w)|—|E(M, w)| < k—1, and since wis a vertex of maximum indegree,
we have |E(P, w)|+|E(M, w)| = A~. Combining the last two inequalities, we deduce that 2|E(M, w)| > A™—k+1.
It follows that

_ 2|E(M,w)| JATH] -k
2 T2
and som > [(A™ + 1 —k)/2]. This yields the upper bound

m > |[E(M, w)|

a’s‘t(D)zn—ZmSn—Z{A-FTl_kw.
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For the lower bound define the function f : V(D) — {-1,1} by f(a1) = f(a2) = ... = f(a-1) = 1 for an
arbitrary set of k — 1 vertices A = {ay,ay,...,4-1} and f(x) = —1 for each vertex x € V(D) — A. Obviously, f
is a signed total k-independence function on D of weight 2k — 2 — 1 and thus of,(D) > 2k -2 - n. O

Let K}, be the complete digraph of order n. I n > 3, thenitis straightforward to verify that a”, ™ (K;) = n—4.
Thus the lower bound in Theorem 2.1 is sharp.

Example 2.2. Let k > 2 be an integer, and let Ky be the star with the center w of degree A > k and the leaves
V1,02, ...,0a. Now let D be the associated digraph of Ky a. Then A~(D) = Aand 6~(D) = 1.

Assume first that A — k is even. Define the function f : V(D) — {-1,1} by f(w) = f(v1) = f(v2) = ... =
f(O@+k—2)2) = L and f(x) = —1 otherwise. Then

A+k-2 A+2-k
flw] = == - 2= =

and f[x] =1 < k—1 for x # w. Therefore f is a signed total k-independence function on D with w(f) = k—1. Hence
Theorem 2.1 implies that

k-2

k—lsds‘t(D)Sn(D)—z{AJr—l_k}:k_l

2
and thus af,(D) =k — 1.

Assume second that A —k > 1 is odd. Define the function f : V(D) — {=1,1} by f(w) = f(v1) = f(vp) = ... =
f(@ark-1)2) = 1 and f(x) = —1 otherwise. Then

A+k-1 A+1-k
flw] = ——— - ——5—=k-1

and f[x] =1 < k-1 for x # w. Therefore f is a signed total k-independence function on D with w(f) = k. Hence
Theorem 2.1 implies that

k < k(D) < n(D) -2 >

A+1—k}:k

and thus of,(D) = k.
Example 2.2 demonstrates that the upper bound in Theorem 2.1 is sharp.

Corollary 2.3. ([6]) If G is a graph of order n without isolated vertices and maximum degree A, then a2(G) <
n—2[A/2].

Proof. Since A = A™(D(G)), it follows from Proposition 1.1 and Theorem 2.1 that

- -1
2(G) = 2(D(G)) <1 -2 {%} —n-2 PJ o
Corollary 2.4. Let k > 2 be an integer. If D is a digraph of order n > k + 1 with 6~(D) > 1, then a¥,(D) = n if and
only if A“(D) <k-1.

Proof. If A°(D) < k-1, then f : V(D) — {-1,1} with f(v) = 1 for each vertex v € V(D) is a signed total
k-independence function on D of weight n and thus a¥,(D) = n.

Conversely, assume that aft(D) = n. If we suppose that A7(D) > k, then Theorem 2.1 leads to the
contradiction n = a’s‘t(D) < n — 2. Therefore A™(D) < k — 1, and the proof is complete. O

Theorem 2.5. Let k > 2 be an even integer. If D is a digraph of order n > k + 1 with 67,6 > 1, then

d5(D) < min{n(N +k=2)+n, —|AD)| n(k—2-25")+n,+|AD)| } ‘

A ’ 5*
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Proof. Let V, and V, be the vertex sets of odd and even indegree, respectively. Now let f be a a¥,(D)-function.

The conditions f[v] < k — 1 and k even imply that f[v] <k — 2 for v € V,. It follows that

Y flol =) flol+ ) flo] < mylle = 1) + (1 = no)(k = 2) = nlk = 2) +n,

veV(D) veV, veV,
and thus
nk-2)+n, = Y. flol= Y d'@f() =
veV(D) veV(D)
veV(D) veM
= JAD)|-2) d*()=2) d*(®) - JAD)!
veM

It follows that

n(k —2) + n, > |A(D)| — 2(n — p)A*
as well as
n(k —2) + n, > 2pd* — |A(D)|

and so
2 < kn + 2nA* — |A(D)| + n, — 2n
A+

and

kn + |A(D)| + n, — 2n
< 5 .
Using (3) and (4), we obtain

2p

a4(D) =2p —n

and

ay(D)=2p—n
and the last two inequalities lead to the desired result. O
Corollary 2.6. Let k > 2 be an even integer. If D is a digraph of order n > k + 1 with 6,0~ > 1, then
n(A* + 2k — 6%t —4) + 2n,

k(D) <

Proof. According to (1) and (2), we have

2pA* <n2A* +k -2) - |AD)| + n,

and

2pd* < n(k — 2) + |A(D)| + n,.

Adding these two inequalities, we arrive at

2p

and this yields to the desired bound immediately. O

PMACESWAC
Z d+(v)—22d+(v)=22d+(v)— Z d* (v)

_ A +k=2) ~ |AD)] + 1,

_ nk=2-5%) +|AD)| + 7,

< 2n(A* + k —2) + 2n,

(4)
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Corollary 2.7. Ifk > 2 is an even integer and D an r-outreqular digraph of order n > k+ 1 withr > 1and 6~ > 1,

then
nk=2)+mn

ak (D) < -

st =
Corollary 2.8. Let k > 2 be an even integer and D an r-reqular digraph of order n > k + 1. If r > 2 is even, then

aymsfﬁfg.

In the case that k is odd, we obtain the next results analogously to the proofs of Theorem 2.5 and
Corollary 2.6.

Theorem 2.9. Let k > 3 be an odd integer. If D is a digraph of order n > k + 1 with 6*,6™ > 1, then

a5(D) < min {”(N +k—=2)—|AD)| +n, nk—-2-06% +|AD)| + ne} |

At ’ ot
Corollary 2.10. Let k > 3 be an odd integer. If D is a digraph of order n > k + 1 with 6%,6~ > 1, then

n(A* + 2k — 6% — 4) + 2n,

At + 0ot '
Corollary 2.11. Let k > 3 be an odd integer. If D is an r-outregular digraph of order n > k+1withr > 1and 6~ > 1,
then

af(D) <

n(k —2) + n,
-

Corollary 2.12. Let k > 3 be an odd integer and D an r-reqular digraph of order n > k + 1. If r > 1 is odd, then
n(k —2)

(D) <

ak(D) <
Example 2.13. Let uy, uy, ..., u, and v1,0y, . .., 0y be the partite sets of the complete bipartite digraph K; and let k
be an integer such that 2 < k < p.

Assume that k = 2t is even and p = 2s + 1 is odd. Define the function f : V(K ) — {=1,1} by f(u1) = f(uz) =
coo = flups) = f(v1) = f(02) = ... = f(v44s) = Land f(x) = =1 otherwise. Then f[x] =t+s—(s+1-t)=2t-1=
k —1 for each vertex x € V(K] ,). Therefore f is a signed total k-independence function on Ky , with w(f) = 2(k - 1).
Hence Corollary 2.7 implies that

P’

2p(k—2)+2
2&—1)3&&K%)§Jﬁ—:%i—£=2@—b
and thus “l;t(K;,p) = 2(k — 1) when k is even and p is odd.
Assume that k = 2t and p = 2s are even. Define f : V(K;,p) —= (=11} by f(u1) = f(uz) = ... = f(Utss-1) =
f() = f(v2) = ... = f(V45-1) = Land f(x) = =1 otherwise. Then f[x] =t+s-1—-(s+1—-t)=2t-2=k-2for

each vertex x € V(Kj, ). Therefore f is a signed total k-independence function on Kj, , with w(f) = 2(k — 2). Hence
Corollary 2.8 implies that

2p(k -2
2@—2)5agK%)siﬁg—lzzm—z)
and thus “’;t(K;,p) = 2(k — 2) when k and p are even.
Assume thatk = 2t +1and p = 2s+ 1areodd. Define f : V(K] ) = {=1,1} by f(u1) = f(u2) = ... = f(usss) =
f() = f(2) = ... = f(vs) = 1 and f(x) = —1 otherwise. Then f[x] =t+s—(s+1—-t)=2t-1=k—-2for

each vertex x € V(Kj, ). Therefore f is a signed total k-independence function on K, , with w(f) = 2(k — 2). Hence
Corollary 2.12 implies that
2p(k - 2)

2(k-2) < afy(K;, ) < =2(k-2)
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and thus a’s‘t(K;,p) = 2(k — 2) when k and p are odd.

Assume that k = 2t + 1 is odd and p = 2s is even. Define f : V(K} ) — {=1,1} by f(u1) = f(up) = ... =
furss) = f(v1) = f(v2) = ... = f(viss) = 1 and f(x) = =1 otherwise. Then flx] =t+s—(s—t) =2t =k -1 for
each vertex x € V(K}, ). Therefore f is a signed total k-independence function on K , with w(f) = 2(k — 1). Hence
Corollary 2.11 implies that

2p(k—2)+2p 3

2(k—1) < af(K;, ) < =2(k-1)

and thus a’s‘t(K;,p) = 2(k — 1) when k is odd and p is even.

Example 2.13 shows that Corollaries 2.7, 2.8, 2.11 and 2.12 and therefore Theorems 2.5 and 2.9 as well as
Corollaries 2.6 and 2.10 are sharp.

Corollary 2.14. ([5]) Let G be a graph of order n without isolated vertices, maximum degree A and minimum degree
0. If no(G) is the number of vertices of odd degree, then

n(A — 0) + 2ny(G)
A+6 '

a?t(G) <

Proof. Since 6 = 6"(D(G)), A = A*(D(G)), n = n(D(G)) and ng = ny(G), it follows from Corollary 2.6 and
Proposition 1.1 that

_ n(A*(D(G)) - 6*(D(G))) + 21y _ n(A = 6) + 2np(G)
e (o6 3 21(c R e S

Corollary 2.15. ([4, 5]) If G is an r-regular graph of order n with r > 1, then a(G) < n/r when r is odd and
a%(G) < 0 when r is even.

Theorem 2.16. k > 2 be an integer. If D is a digraph of order n > k + 1 and minimum indegree 6~ > k — 1, then

=)

Proof. Let f be a a¥,(D)-fuction. As f[x] < k — 1, we deduce that |[E(P, x)| — |[E(M, x)| < k — 1 for each vertex
x € V(D). It follows that

k(D) < % (A+ —2

6~ < d (%) = |E(P, x)| + |[E(M, x)| < 2|E(M, )| + k — 1

and so |[E(M, x)| = [(6~ + 1 — k)/2] for each vertex x € V(D). This leads to

0" +1-k
n {T} < Y EMI= ) EM 0+ Y EM )
xeV(D) xeM xeP
= Y IEG M)+ Y E@ Pl = ) d* () <mA*

xeM xeM xeM

and thus

I o-+1-k
SA| T2 |
It follows that

n O +1-k
a’s‘t(D):n—ZmSE(A+—2{TD. u]

Counting the arcs from P to M, we obtain the next theorem analogously to the proof of Theorem 2.16.
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Theorem 2.17. Let k > 2 be an integer. If D is a digraph of order n > k + 1 with 6,0~ > 1, then

A +k-1
a5 (D) < 5% (2 {%J - 5+).

Note that Theorems 2.16 and 2.17 also imply Corollaries 2.8 and 2.12 immediately.

Theorem 2.18. Let k > 2 be an integer and D a digraph of order n > k+1with 6~ > 1. If 6" - [(A~+k—-1)/2] > 0,
then
A~ +k-1
— |}

Proof. Let f bea a’s‘t(D)—function. The condition f[x] < k—1 implies that |E(P, x)| + 1 — k < |E(M, x)| for each vertex
x € P. It follows that

— _ _ 2
a’s‘t(D)Sn+k—2+é*—{A+Tk_1J— \/(k—2+6+—{A+Tk1J) +4n(6+—

A" >d (x) = |[E(P,x)| + |[E(M, x)| = 2|E(P,x)|+1—k
and so |[E(P, x)| < [(A™ + k —1)/2] for each x € P. Hence we deduce that

E@PD = Y @) <p {A+—HJ

2
xeP

and thus

R M) = Y80 - B > po° = p| S oo - | 222 ®)
xeP

Because of f[x] < k — 1, each vertex of M has most m + k — 2 in-neighbors in P. and so |[E(P,M)| < m(m + k — 2).
Using (5), we conclude that

m—no@+—viiglibquRNMSnmn+k—m

and therefore

oz [l 2

This leads to

1 . AT sk-1 1 TS et N VSRS B
N N T ey e

and we obtain the desired bound as follows

+ —
éig_iy_J@_z+y_ SRLE

3. Nordhaus-Gaddum Type Results

adfD)y=n-2m<n+k-2+6" -

The complement D of a digraph D is the digraph with vertex set V(D) such that for any two distinct

vertices u, v the arc uv belongs to D if and only if #v does not belong to D. As an application of Theorem 2.1
and Corollaries 2.4, 2.7, 2.8, 2.11 and 2.12, we shall prove some Nordhaus-Gaddum type results.
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Theorem 3.1. Let k > 2 be an integer. If D is a digraph of order n > k + 1 such that 5 (D), 6~ (D) = 1, then
a’s‘t(D) + a}s‘t(ﬁ) <n+2k-1
with equality only if D is inregular.

Proof. As A~(D) + A~(D) > n — 1, Theorem 2.1 implies that

af(D) + afy(D) < n—z{w“+n—2’rw“ ©
n—A(D)+k-1+n-A(D)+k-1
2n + 2k -2 - A~(D) — A~(D) .
< n+2k-1

and this is the desired Nordhaus-Gaddum bound. Let d;(u) = 6~ (D). If D is not inregular, then 6™(D) <
A~(D) and therefore

A(D)+A (D) = A (D)+ d-(u) = A™(D) + d5(u) + dp(u) - dp(u)
= AD)+n-1-dyu)=A"D)+n-1-06"(D) =2 n.
Using this inequality chain and (7), we obtain in the case that D is not inregular the better bound
ak(D) + a¥,(D) < n + 2k — 2. This completes the proof. O
For regular digraphs we shall improve the Nordhaus-Gaddum bound given in Theorem 3.1.

Theorem 3.2. Let k > 2 be an integer, and let D be an r-regular digraph of order n > k + 1 such that r > 1 and
n—r=1>11Ifr>xkorn—r—12k, then

a’s‘t(D) + a’;t(ﬁ) <n+2k-3.

Proof. Note that D is (n — r — 1)-regular.
Case 1. Assume that k > 2 is even.
Subcase 1.1. Assume that r and n — r — 1 are even. Then (6) implies that

akD)+akD)y<n—-(r+2-k+n—-(m-r-1+2-k) =n+2k-3.

Subcase 1.2. Assume that r > k and n — r — 1 > k. Furthermore, assume that r or n — r — 1 is odd, say r
is odd. Since k is even and r > k, we observe thatk +1 <r <n —k -1 and thus n > 2k + 2. Corollary 2.7
implies that

(D) +a4,(D) < n(k—l)(%+;)

n—r—1
1 1 1
= "(k_l)max{k 1+n—k—2’n—k—1+E}
1 1
< n(k—l)(n_k_1+%. ®)
Now we show that
(k—l)(;+l)< +2k-2 )
" k-1 k" '

Inequality (9) is equivalent to

nk? + n? + 2k > n + 2k° + 2kn. (10)
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Since n > 2k + 2, we deduce that
nk? + n? + 2k > 2k + 2)k? + n(2k + 2) + 2k = 2k> + 2k* + 2kn + 2n + 2k > 2k + 2kn + n.

Therefore (10) and so (9) are proved. The inequalities (8) and (9) show that a’S‘t(D) + a’s‘t(ﬁ) <n+2k-3in
that case.

Subcase 1.3. Assume thatr > kandn—-r—-1<k-lorr<k-landn-r-12k sayr > k and
n—r—1<k-1 Notethatn =(n—-r-1)+r+1<k-14+r+1=r+k

Subcase 1.3.1. Assume that r is even. It follows from Corollaries 2.4 and 2.8 that

nk=2) +n.

alsct(D) + als(t(ﬁ) < p

(11)
Since n < r + k and r > k, we observe that
nk-2)<@r+kk-2)=rk—-2)+k(k—=2) <r(k—2)+r(k—-1) = r(2k - 3).

Using this inequality chain and (11), we obtain

+n<n+2k-3.

O‘I;t(D) + “];t(ﬁ) < n(kr_ 2)

Subcase 1.3.2. Assume that r is odd. Since k is even, we see that » > k + 1. It follows from Corollaries 2.4
and 2.7 that

nk—-1)
7

ak (D) + a5 (D) < 1. (12)

Sincen <r+kandr >k + 1, we observe that
nk-1)<@+k)k-1)=rk-1)+k(k-1)<r(k—1)+r(k—1) = r(2k — 2).

Using this inequality chain and (12), we obtain

+n=n+2k-2

ag(D) + af(D) < @ +n< r2k-2)

and thus a’s‘t(D) + a’s‘t(ﬁ) <n+2k-3.

Case 2. Assume that k > 3 is odd.
Subcase 2.1. Assume that v and n — r — 1 are odd. Then (6) implies as in Subcase 1.1 that

ak (D) + af(D) < n + 2k - 3.

Subcase 2.2. Assume that r > k and n — r — 1 > k. Furthermore, assume that v or n — r — 1 is even, say r
is even. Since k is odd and r > k, we observe that k +1 < r <n —k — 1 and thus n > 2k + 2. Corollary 2.11
implies that

— 1 1
Oélsct(D) + Oélsct(D) < n(k — 1) (; + m)

Now we obtain a’s‘t(D) + a’s‘t(ﬁ) < n+ 2k — 3 as in Subcase 1.2.

Subcase 2.3. Assume thatr > kandn—-r—-1<k-lorr<k-landn-r-12>k sayr > k and
n—r—1<k—-1. Notethatn <r+k.

Subcase 2.3.1. Assume that r is odd. Then n(k — 2) < r(2k — 3), and it follows from Corollaries 2.4 and

2.12 that
n(k —2)

ak (D) + ak(D) < +n<n+2k—3.
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Subcase 2.3.2. Assume that r is even. Since k is odd, we see that r > k + 1. Then n(k — 1) < r(2k — 2), and
we deduce from from Corollaries 2.4 and 2.11 that

k=1 _r2k-2)
r

aﬁt(D)+a§t(5)ST+n +n=n+2k-2

and thus of,(D) + aX(D) < n +2k-3. O
Example 3.3. Let k > 3 be an odd integer, and let H be the graph of order n = 2k + 1 with vertex set
{w,z,u1,uz,...., U, 01,0, . .., Vp1}

such that w is adjacent to z,uy, uy, . .., ux, z is adjacent to v1,vy, ..., V-1, each vertex u; is adjacent to each vertex v;
forl1 <i<kand1l <j<k-1,uis adjacent to uj.q for eachi € {2,4, ...,k — 1} and u; is adjacent to z. Now let
D(H) be the associated digraph of H. It is evident that D(H) is (k + 1)-reqular and so D(H) is (k — 1)-regular. Define
f:V(DH)) = {-1,1} by f(w) = f(z) = =1 and f(x) =1 for x € V(D(H)) — {w, z}. Since every vertex x of D(H)
has at least one in-neighbor in {w, z}, we observe that f[x] < k —1 for each vertex x. Therefore f is a signed total
k-independence function on D(H) with w(f) = 2k — 3. Hence Corollary 2.11 leads to

n(k—l)J={(2k+1)(k—1)J={(2k_3)(k+1)+2 = 2k-3

_ k
2k 33a5t(D(H))S{ k1 k+1 k+1

and thus o (D(H)) = 2k — 3. Applying Corollary 2.4, we obtain
o’ (D(H)) + ! (D(H)) = n + 2k - 3.

Example 3.3 demonstrates that Theorem 3.2 is sharp, at least for k odd. If A(D) < k-1 and AD) <k-1,
then Corollary 2.4 implies that a,(D) + af(D) = 2n. The next example will show that in this case the
Nordhaus-Gaddum bound a’;t(D) + a’s‘t(ﬁ) < n+ 2k — 3 in Theorem 3.2 is not valid in general.

Example 3.4. Letk > 3 bean integer. If D is a (k— 1)-regular digraph of order n = 2(k—1), then D is (k — 2)-regular.
It follows from Corollary 2.4 that
ak(D) + k(D) = 2n = n + 2k - 2.
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