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A Note on the System of Linear Recurrence Equations

Vladimir Baltié®

?Faculty of Organizational Sciences, University of Belgrade, Serbia

Abstract. We will find a solution to a system of 24 linear recurrence equations. Each equation is of the

form xy(n + 1) = xx(n) or Xpps1(n + 1) = xx(1) + xpa-1,,(1). This kind of system is connected with counting
restricted permutations.

1. Introduction

The study of restricted permutations has a long history. Probably the most well known example is
derangement problem or “le Probleme des Rencontres” (see [4]). “Today, most of the restricted permutations
considered in the literature deal with pattern avoidance. For an exhaustive survey of such studies, see [5].
For a related topic of pattern avoidance in compositions and words see [3] and in set partitions see [7].
Study of permutation patterns has applications in counting different combinatorial structures, computer
science, statistical mechanics and computational biology [5, Ch.2,3].

Another type of restricted permutations is a generalization of the derangement problem. Detailed
historical introduction to restricted permutations of this kind can be found in [1, 2]. Let p be a permutation
of the set N, = {1,2,...,n}. So, p(i) refers to the value taken by the function p when evaluated at a point
i. Mendelsohn, Lagrange, Lehmer, Tomescu and Stanley studied particular types of strongly restricted
permutations satisfying the condition |p(i) — i| < d, where d is 1, 2, or 3 (more information on their work can
be found in [1]). In [1] we pursue more general, asymmetric cases and we end up with asymmetric cases
with more forbidden positions.

In [1] we developed a technique for counting restricted permutations of IN,, satisfying the conditions
—k < p(i) — i < r (for arbitrary natural numbers k and r) and p(i) — i ¢ I (for some set I). For a given k, r and
I the technique produces a system of linear recurrence equations. When trying to determine the reduced
system in a particular case, we get the following system of linear recurrence equations:

xor(n+1) = xx(n) (+)
Y1 +1) = x(n) +  xpiry(n)

fork=0,1,...,2%1 -1,

Purpose of this note is to solve the system (*) (for other type of systems, we refer the reader to [6]).
Solution of a special case of (*) is given in Lemma 2.1, which is used to solve the general case of (*) in
Theorem 2.2.
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Now we will introduce some notations.
The number n < 2% in binary form is represented by 1, = (bs_1bs-2...b1bo)2, where b; € {0,1} and
d-1
n=yYy bs-2°
s=0

Binary operation @ is given by x® y = x + y (mod d).
For each position s, 0 < s < d — 1, let us introduce the function

1, as = bsgr
0, a; =1, bsear =0
7 b/ =
f@, b, t, s =0,bser =1,s<d—7r

t+1, a;=0,bsgr=1,8>d—r.

2. Main Results

Lemma 2.1.  Suppose we have a system of 2¢ linear recurrence equations which are of the form xy(n + 1) = xx(n)
and xgp1(n + 1) = x(n) + X014 (n) for k = 0,1,...,2%1 — 1, where 0 < a,b < 2% — 1 and for some a, x,(0) = 1,
while for all b # a, x,(0) = 0.

Thenforn=d-t+r,0<r <d-1,the following equality is true:

d-1
x(m) = [ £ b7).
s=0

Proof. Let us prove that this solution satisfies the initial conditions and the equations of the first type and
the second type of a given system.

1° the initial conditions

Forn=0=d-0+0wehavethatr=0,s0s®r=s®0=s.
If b = a for each position applies a5 = bs, therefore f;(a,4,0) = 1, which implies that

d-1
%,(0) = H 1=1.
s=0

If b # a, then there is a position s from where the binary forms a, and b, differ.
If a; = 1 and bs = 0, it immediately follows that f;(a,b,0) = 0.
If a; = 0 and bs = 1, as is true for s < d = d — r, we have that f;(a,0,0) =t = 0.
When b # a in both cases we get that f;(a, b, 0) = 0 for some s, which implies that x;(0) = 0.

2° xp(n + 1) = x,(n)
Let b = 2k, for k < 2471,

For binary forms

(k)2 = (bd—ll bd—Z/ ey bl, bo) and (Zk)z = (b:i—l’ b;I—Z’ ey bll' bé)

we have that (2k); is obtained from (k), with cyclic shift to the left by one position, i.e. b;eal = b,. Also, with
increasing n to n + 1 we have that the remainder of the division with d increases by 1 modulod, ie.r” = r®1.
Now we will prove the equality xoi(n + 1) = xx() by considering the following cases:

o Ifa, = bygy > a5 = begy = b =V = fia, k1) = fi(a, 2k, r®1) = 1.

(sor)®l sd(rel)

e Ifa, =1,bye, =0=>a,=1,0 = beg, = bgw)@l = b;ea(reel) = fi(a, k)= fs(a, 2k, r®1) = 0.
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e Ifa;=0,bsgy =1,s<d-r—-1=0a;=0,1=bsg, =1’ s<d—(rol)= fiakr) = fi(a,2krel) =t

sp(rel)”
o Ifa;=0,bser=1,s2d-r,r#d=-1=0a,=0,1=bser = bg,qy,52d - (r+1)

= fia k)= fi(@a,2kr®l)=t+1.

e Ifr=d-1,thenr®1 =0, and also previous equality holds, but with different reasoning:
ifa; =0, bsga-1)=1,52d—-(d-1)=1, f(a,kr)=t+1=0a,=0,1=beg =V’ =V _,s<d-0=d,

s®(rel) sd0”
then fi(a,2k,r®1) =t =t+1,becausen’ =n+1=d-t+(d—-1)+1=4d-(t +1) + 0 and again we get
that fs(a,k, 1) = fi(a,2k,r®1) =t + 1.

e Ifu, =0,bsg, =1,s=d—1r—-1=1=bg, = b;ea(raal) On the other hand we have that b’ o(rel) = =by =0,
since this is the last digit in the binary form of even number 2k. Thus, we get that this case is not
possible.

As in all cases, we get that f;(a,k, ) = fi(a, 2k, r 1), which entails that

d-1 d-1
xp(n) = Ilﬁmkr :I]fmakrenzx%m+1y
s=0 s=0
3° Xppp1 (1 + 1) = xp(n) + Xpi-1,4 (1)
Letb = 2k + 1, for k < 2471,
For binary forms (k)2 = (bg-1,b4-5,...,bp),

Q@7 4k = (U b b)), (k1) = (U, b, b))

it is true that b;_; = 0, b;_l =1,b; = b, =0 fors <d— 1, while (2k + 1), is obtained from (297! + k), with
cyclic shift to the left by one position, i.e. b, = by. The same as before we have that ¥’ = r & 1. Now we
will prove the equality Xox41 (1 + 1) = x%(1) + xp4-1,4(1) by considering the following cases:

o Ifa; =by, r#d~1= 0, = by = by, = b0 =V 00

= f.a,kr) = f(a,29 + k1) = fi(@, 2k + 1,r+1) = 1.

o Ifa;=1,byg, =0,r#d-1=a,=1,0 = by, = b, = bgse;r)@l bse;(@l)

= fia,k,r) = f(a,29 + k1) = fu(a, 2k + 1,7+ 1) = 0.

. Ifs:d—r—l,as:1,thenwehave
=1, bs@r =b;1=0= fs(ﬂ,k,?') =0;
=1,bg, =b/,=1= fs(a,Z”Z‘1 +k,r)=1;
=1,1 _b;ge, b' 1 =by= fa2k+1L,rel) =1

(s@r)®

e Ifa;=0,bsgy=1,s<d-r—-1=0a;=0,1=bg = bggw—b;@(@l s<d—-(rel)

= fia, k)= f(a,27 + k1) = fi(a,2k+ 1, r®1) =t

o Ifa, =0,bsg,=1,s>2d—r=0a;,=0,1=bgg, = bgér—bg®(r@l),szd—(r+l)

= fia k)= £a,27 + k1) = fi(a,2k+ L,rol) =t + 1.

eIfs=d-r—-1<d-r,a;, =0, then we have
as=0,bsgr =bi_1 =0= fi(a,k,r)=1;
a;=0,b, =b/ =1= fs(u,Zd‘1+k,r):t;

s =0,1 _b;gw =V =by,s<d-0=f@2k+1,r®l) =t =t+1, because n’ = n+1 =

(sdr)®l

d t+d-1)+1=d-(t+1)+0.
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Fors =d-r—landay_,_1 = 1weget fs(a,k, ) = 0 = xx(n) = 0, and since f;(a, 2414k, 1) = fs(a,2k+1, r@l) forall
positions s # d—r—1, wehave that X,i-1 (1) = Xpr41(n+1), which entails equality xpp1 (1+1) = x4 (1) + X001 14 (1).
Fors =d—-r—-1and a;_,-1 = 0 we get fs(a,k,7) =1, fs(a,Zd‘1 +kvr)=t, fs(a,2k+1,r&1) =t +1, while
fsla, k,r) = fi(a, 291 4 k) = fs(a,2k +1,r ®1) for all positions s # d — r — 1, and we have that

d-1 d-1
xXi(1) + Xoir 4 (1) H fila k) + H f(@, 27 + k)
s=0 s=0
frra@kn - T] f@kn+fia@2 7 +kn [ f@2+kn

0<s<d-1 0<s<d-1
s#td—r-1 std—r-1

- [I fazk+iren+t J] f@2k+1re1)

0<s<d-1 0<s<d-1
s#d—-r—-1 s#d—-r-1

1+1)- H fi@2k+1,r®1) = Hfs(a2k+1r691)—x2k+1(n+l)

0<s<d-1
s#td—-r-1

In both cases we get that xox 1 (1 + 1) = x¢(11) + xpa-1,4(n). O

We will illustrate this Theorem later, in Example 3.1. Now, we move on to the general case of the
system (*).

Theorem 2.2.  Suppose we have a system of 2% linear recurrence equations of the form xy(n + 1) = x(n) and
Xope1(n + 1) = xx(n) + xper4(n) for k = 0,1,...,2971 — 1, with initial conditions xo(0) = yo, x1(0) = v1, ...,
Xp4_1(0) = yoa_q, for arbitrary real numbers yo, y1, ..., Yai_q

Then forn=d-t+r,0<r<d-1,the following equality is true:

241 d-1
xp(n) = Z (yu . Hfs(a, b, r)]-
a=0 s=0

Proof. This result is a direct consequence of Lemma 2.1 and the basic properties of the system of linear
recurrence equations. [

3. Examples

Example 3.1.  We will now illustrate Lema 2.1, for the case d = 3 and a = 4. Then we have the system
Xo(n+1) = xo(n),  x1(n+1) = x0(1) + x4(n),
nn+1)=xm),  x3(n+1)=x(n)+x5(n),
xn+1)=x0m),  x5(n+1)=2x1)+x(n),
xe(n +1) = x3(n), x7(n + 1) = x3(n) + x7(n),
with initial conditions x4(0) = 1 and x,(0) = 0forb#4,0<b<29-1=7.
Solution. We will take case analysis on all values of b.

e For a = 4 and b = 0 binary form 0, = 000 has more zeros than binary form 4, = 100, so by the
Pigeonhole principle at least one position will be a; = 1 and bsg, = 0. Then for each n the equality
xo(n) = 0 is satisfied. These conclusions are valid whenever the binary form (b), has more zeros than

(a)!
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e Fora =4; =100 and b = 1, = 001 when r = 0 or r = 2 we will have a position s such that a; = 1 and
bser = 0 (for v = 0, i.e. when there is no movement, 2, = 1 and b, = 0; for r = 2, i.e. when moving to the
right by two positions, a, = 1 and bygy = by = 0). Then for n = 0 (mod 3) and n = 2 (mod 3) it is true
that xo(n) = 0.

When r = 1 we have that
ag = bo@l = bl =0 = fo(a,b, 1) = 1,
a = b1@1 = bz =0 = fl(a,b,l) =1,
ap = bz@l = b() =1 = fz(ﬂ, b,l) =1

and we have that x,(n) = x1(n) = fo(a,b,1) - f1(a,b,1)- fo(a,b,1)=1-1-1=1forn =1 (mod 3).
Thus, we have shown that:

0, n=3t
x1(n) =<1, n=3t+1
0, n=3t+2.

e Fora =4, =100 and b = 3, = 011 when r = 0 we have thata, = 1 and by = b, = 0).
Then for n = 0 (mod 3) it is true that x3(n) = 0.
When r = 1 we have that

ag=0, boer =b1=lands=0<3-1=d-r = fy(ab1)=t,
a1 =bigr =b2 =0 = filab1)=1,
ay=1, bpgr = by =1 = f2(a,b/1) =1

and we have that x,(n) = x3(n) = fo(a,b,1) - f1(a,b,1) - fr(a,b,1) =t-1-1=tforn =1 (mod 3).
When r = 2 we have that

ap :O/ bOGBZ = bZ =0 = fo(ﬂ,b,l) = 1/
a1 =0, bigp=bp=1lands=123-2=d-r = fi(abl)=1t+1,
ay =1, byg1 =by =1 = fala,b1)=1

and we have that x,(n) = x3(n) =1-(¢t+1)-1=t+1forn =2 (mod 3).
Thus, we have shown that:
0, n =3t
x3(n) = <{t, n=3t+1
t+1, n=3t+2.

e Fora=4,=100and b =7, = 111 whenr = 0we have x;(n) =t -t-1 =t> forn =1 (mod 3).
When r = 1 we have that x;(n) =t-t-1=t>forn =1 (mod 3).
When r = 2 we have thatx;(n) =t- (t+1)- 1 =t(t+ 1) forn =2 (mod 3).
Thus, we have shown that:
£, n =3t
xy(n) = {2, n=3t+1
t(t+1), n=3t+2.

e Analogously we obtain:

0, n=3t 1, n=23t
xo(n) =40, n=3t+1 x4(n) =40, n=3t+1
1, n=3t+2, 0, n=3t+2,
t, n=23t t, n=23t
xs(n)=3t, n=3t+1 x¢(n) =40, n=3t+1

0, n=3t+2, t, n=3t+2.
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All these sequences can be found in [8]: x is A000004, x; is shifted A079978, x, and x4 are A079978, x3 is
A087509, x5 is shifted A087508, x¢ is shifted A087509, x7 is A008133. |

This particular example can be solved by using generating functions, such as in [6]. Although generating
functions and then Cramers method can be used to solve the system (+) in general, we think that results in
Lemma 2.1 and Theorem 2.2 are more straightforward.

The following discussion illustrates the connection between the system considered in the paper, and
restricted permutations from [1].

Let Cyui+1-4 denote the number of combinations where the smallest element is equal to md + 1 — g,
for g = 0,1,...,md, and can be obtained from the initial combination (» + 1,7 + 2,...,r + k + 1) using
techniques developed in [1] (those techniques count the number of permutations that satisfy p(i) —i € S and
S={-d,-d+1,...,md}\ {-d,0,md}). Then, C,4,1-, is equal to

241 291 d-1
Cmd+1—q = Z xb(Q) = Z Hfs(zd_l, b, V),
b=0 b=0 s=0

whereg=d-t+r.
Example 3.2.  Let usillustrate these considerations for the cased = 3andm = 2 (whenk =d = 3andr = md = 6).

Solution. Then we deal with the permutations that satisfy p() —i € S, S = {-3,-2,...,5,6} \ {-3,0,6} =
{-2,-1,1,2,3,4,5},ie. I = {-3,0,6} and r + 1 =1 = 7 -1 = {10,7,1}. The number of such permutations is
given in sequence A224810 at [8].
The set C consists of all combinations of the set Ny4,+1 = {1,2...,10}, with k+1 = 4 elements and containing
a number k + ¥+ 1 = 10. The set C has |C| = (g) = 84 elements, but most of them are not relevant to
the technique developed in [1], because they cannot be generated starting from the initial combination
(7,8,9,10).
In Example 3.1 we get the values of all sequences x; that occur in the previous theorem.

For g = 3t we have that

Cnari-g = xo(q) +x1(q) + x2(q) + x3(9) + x4(q) + x5(9) + x6(q) + x7(9)
0+0+0+0+1+t+t+1t2=(t+1)2

for g = 3t + 1 we have that
Condsieg=0+1+0+t+0+t+0+# = (t+1),
for g = 3t + 2 we have that
Cidr1-g=0+0+1+(t+1)+0+0+t+t(E+1) = (t+1)(t+2).

Thus, we find that for combinations starting with md + 1 — g the following equality is satisfied:

(t+1)?, g =3t
Cidsi—g = { (t+1)?, g=3t+1
t+1)(t+2), g=3t+2.

This sequence is A008133 at [8].
For g = 0 we have (0+1)? = 1 combination that begins with md + 1 —q = 7. This is the initial combination
(7,8,9,10).

For g = 1 we have (0 + 1)? = 1 combination that begins with 6: (6,7, 8, 10).
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For g = 2 we have (0 + 1) - (0 + 2) = 2 combinations starting with 5: (5,7,9,10), (5, 6,7, 10).
For g = 3 we have (1 + 1)? = 4 combinations starting with 4: (4,8,9,10), (4,6, 8,10), (4,5,9,10), (4,5, 6,10).
For g = 4 we have (1 + 1)? = 4 combinations starting with 3: (3,7, 8,10), (3,5,7,10), (3,4, 8,10), (3,4, 5, 10).
For g = 5 we have (1 + 1) - (1 + 2) = 6 combinations starting with 2: (2,7,9,10), (2,6,7,10), (2,4,9,10),
(2,4,6,10), (2,3,7,10), (2,3,4, 10).
For g = 6 we have (2 + 1)? = 9 combinations starting with 1: (1,8,9,10), (1,6, 8,10), (1,5,9,10), (1,5, 6, 10),
(1,3,8,10), (1,3,5,10), (1,2,9,10), (1,2,6,10), (1,2, 3, 10).

Altogether we have

1+142+4+4+6+9=27=(m+1)"

combinations which occur in the technique developed in [1]. We geta (m +1)? x (m+ 1) matrix as the matrix
of the reduced system of linear recurrence equations. Furthermore, the generating function corresponding
to the restricted permutations is a rational function P(z)/Q(z). Also, the denominator Q(z) is of degree less
than or equal to (m + 1), i.e. deg Q(z) < (m + 1)%, which is significantly less than |C| = (("H;)d), the total
number of combinations that occur in technique developed in [1].

In this particular case, we have that deg Q(z) = 24 < 27 = (m + 1)¢, because

1+ =24 =P 426077 — 78 59 D710 _ 712,13 _ ;15

A(z) = .
® 1—z+23-22% + 226 — 427 — 229 — 2210 — 4212 4 2713 — D715 4 4716 4 D718 4 D719 4 721 4 722 4 724

The denominator of A(z) is (z—1)(z% +z +1)(z% + 2 — 1)(z!® + 32" + 722 + 92° + 72° + 32% + 1) and the numerator
is2—(z+1)(Z2—z+ 1) (22 + 210+ 27 + 26 + 2° + z* — 223 + 1). Tt is significantly less than |C| = ((m:ril)d) = (g) = 84.
The sequence corresponding to A(z) is A224810 in [8]. ]
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