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Available at: http://www.pmf.ni.ac.rs/filomat

Approximation of Viscosity Zero Points of Accretive Operators in a
Banach Space

Sun Young Choa, Shin Min Kangb

aDepartment of Mathematics, Gyeongsang National University, Jinju 660-701, Korea
bDepartment of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Korea

Abstract. In this paper, zero points of m-accretive operators are investigated based on a viscosity iterative
algorithm with double computational errors. Strong convergence theorems for zero points of m-accretive
operators are established in a Banach space.

1. Introduction

Zero points of accretive operators have been investigated based on iterative algorithms recently. Interest
in accretive operators stems mainly from their firm connection with equations of evolution is an important
class of nonlinear operators. It is known that many physically significant problems can be modelled by
initial value problems of the form

x′(t) + Ax(t) = 0, x(0) = x0, (1.1)

where A is an accretive operator in an appropriate Banach space. Typical examples where such evolution
equations occur can be found in the heat, wave or Schrödinger equations. If x(t) is dependent of t, then
(1.1) is reduced to

Au = 0, (1.2)

whose solutions correspond to the equilibrium points of the system (1.1). Consequently, considerable
research efforts have been devoted, especially within the past 40 years or so, to methods for finding
approximate solutions of the equation (1.2). An early fundamental result in the theory of accretive operators,
due to Browder [1], states that the initial value problem (1.1) is solvable if A is locally Lipschitz and accretive
on E.

The organization of this paper is as follows. In Section 2, we provide some necessary preliminaries. In
Section 3, we study zero points of m-accretive operators based on a viscosity iterative algorithm. Strong
convergence theorems for zero points of m-accretive operators are established in a Banach space. It is
proved that the zero point is also a solution to some variational inequality.
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2. Preliminaries

In what follows, we always assume that E is a Banach space with the dual E∗. Let UE = {x ∈ E : ‖x‖ = 1}.
E is said to be smooth or said to be have a Gâteaux differentiable norm if the limit limt→0

‖x+ty‖−‖x‖
t exists for

each x, y ∈ UE. E is said to have a uniformly Gâteaux differentiable norm if for each y ∈ UE, the limit is attained
uniformly for all x ∈ UE. E is said to be uniformly smooth or said to have a uniformly Fréchet differentiable norm
if the limit is attained uniformly for x, y ∈ UE. Let C be a nonempty closed convex subset of a real Banach
space E and E∗ be the dual space of E. Let 〈·, ·〉 denote the pairing between E and E∗. The normalized duality
mapping J : E→ 2E∗ is defined by

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2}

for all x ∈ E. In the sequel, we use j to denote the single-valued normalized duality mapping. It is known
that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping J is single valued and
uniformly norm to weak∗ continuous on each bounded subset of E.

Recall that a closed convex subset C of a Banach space E is said to have normal structure if for each
bounded closed convex subset K of C which contains at least two points, there exists an element x of K
which is not a diametral point of K, i.e., sup{‖x − y‖ : y ∈ K} < d(K), where d(K) is the diameter of K. It is
well known that a closed convex subset of uniformly convex Banach space has the normal structure and a
compact convex subset of a Banach space has the normal structure; see [2] for more details.

Let T : C→ C be a mapping. In this paper, we use F(T) to denote the set of fixed points of T. Recall that
T is said to be contractive if there exits a constant α ∈ (0, 1) such that

‖Tx − Ty‖ ≤ α‖x − y‖, ∀x, y ∈ C.

For such a case, we also call T an α-contraction. T is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

T is said to be pseudocontractive if there exists some j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2, ∀x, y ∈ C.

Let D be a nonempty subset of C. Let Q : C→ D. Q is said to be contraction if Q2 = Q; sunny if for each
x ∈ C and t ∈ (0, 1), we have Q

(
tx+ (1− t)Qx

)
= Qx; sunny nonexpansive retractction if Q sunny, nonexpansive,

and contraction. K is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from C
onto D.

The following result, which was established in [3,4], describes a characterization of sunny nonexpansive
retractions on a smooth Banach space.

Let E be a smooth Banach space and C be a nonempty subset of E. Let Q : E → C be a retraction and j
be the normalized duality mapping on E. Then the following are equivalent:

(1) Q is sunny and nonexpansive;
(2) ‖Qx −Qy‖2 ≤ 〈x − y, j(Qx −Qy)〉, ∀x, y ∈ E;
(3) 〈x −Qx, j(y −Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.
Let I denote the identity operator on E. An operator A ⊂ E× E with domain D(A) = {z ∈ E : Az , ∅} and

range R(A) = ∪{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there exists
j(x1 − x2) ∈ J(x1 − x2) such that 〈y1 − y2, j(x1 − x2)〉 ≥ 0. An accretive operator A is said to be m-accretive if
R(I + rA) = E for all r > 0. In a real Hilbert space, an operator A is m-accretive if and only if A is maximal
monotone. In this paper, we use A−1(0) to denote the set of zero points of A.

For an accretive operator A, we can define a nonexpansive single-valued mapping Jr : R(I + rA)→ D(A)
by Jr = (I + rA)−1 for each r > 0, which is called the resolvent of A.

One of classical methods of studying the problem 0 ∈ Ax, where A ⊂ E × E is an accretive operator, is
the following:

x0 ∈ E, xn+1 = Jrn xn, ∀n ≥ 0,
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where Jrn = (I + rnA)−1 and {rn} is a sequence of positive real numbers.
The classical method was first proposed by Martinet [5] and generalized by Rockaffellar [6] and [7]. This

method and its dual version in the context of convex programming have been extensively studied; see, for
instance, [8-10] and the references therein. This method is known to yield as special cases decomposition
methods such as the method of partial inverses, the Douglas-Rachford splitting method, and the alternating
direction method of multipliers. Regularization methods recently have been investigated for treating zero
points of accretive operators; for [11-25] and the references therein. However, as pointed in [26], the ideal
form of the above method is often impractical since, in may cases, to solve the problem exactly is either
impossible or the same difficult as the original inclusion problem. Therefore, one of the most interesting
and important problems in the theory of accretive operators is to find an efficient iterative methods to
compute approximately zeros of A.

In this paper, zero points of m-accretive operators are investigated based on a viscosity iterative algorithm
with double computational errors. Strong convergence theorems for zero points of m-accretive operators
are established in a reflexive Banach space.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 [27] Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying

an+1 ≤ (1 − tn)an + bn + cn, ∀n ≥ 0,

where {tn} is a sequence in (0, 1). Assume that the following conditions are satisfied
(a)

∑
∞

n=0 tn = ∞ and bn = o(tn);
(b)

∑
∞

n=0 cn < ∞.
Then limn→∞ an = 0.

Lemma 2.2 [28] Let E be a Banach space, and A an m-accretive operator. For λ > 0, µ > 0, and x ∈ E, we have

Jλx = Jµ
(µ
λ

x +
(
1 −

µ

λ

)
Jλx

)
,

where Jλ = (I + λA)−1 and Jµ = (I + µA)−1.

Lemma 2.3 [29] Let {xn} and {yn} be bounded sequences in a Banach space E, and {βn} be a sequence in (0, 1) with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1 − βn)yn + βnxn, ∀n ≥ 1 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4 [30] Let E a real reflexive Banach space with the uniformly Gâteaux differentiable norm and the normal
structure, and C be a nonempty closed convex subset of E. Let S : C → C be a nonexpansive mapping with a fixed
point, and T : C → C be a fixed contraction with the coefficient α ∈ (0, 1). Let {xt} be a sequence generated by the
following xt = tTxt + (1− t)Sxt, where t ∈ (0, 1). Then {xt} converges strongly as t→ 0 to a fixed point x∗ of T, which
is the unique solution in F(T) to the following variational inequality 〈Tx∗ − x∗, j(x∗ − p)〉 ≥ 0, ∀p ∈ F(S).

3. Main Results

Now, we are in a position to state our main result.

Theorem 3.1. Let E be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and let A be an
m-accretive operators in E. Assume that C := D(A) is convex and has the normal structure. Let T : C→ C be a fixed
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α-contraction. Let {αn}, {βn}, {γn}, {αn
′
}, {βn

′
} and {γn

′
} be real number sequences in (0, 1). Let QC be the sunny

nonexpansive retraction from E onto C and {xn} be a sequence generated in the following manner: x0 ∈ C andyn = αn
′xn + βn

′ Jrn (xn + en+1) + γn
′QC( fn),

xn+1 = αnTxn + βnxn + γnyn, ∀n ≥ 0,

where {en} is a sequence in E, { fn} is a bounded sequence in E, {rn} is a positive real numbers sequence, and
Jrn = (I + rnA)−1. Assume that A−1(0) is not empty and the above control sequences satisfy the following restrictions:

(a) αn + βn + γn = αn
′ + β′n + γ′n = 1;

(b) limn→∞ αn = limn→∞ α′n = 0 and
∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d)

∑
∞

n=1 ‖en‖ < ∞ and
∑
∞

n=0 γ
′
n < ∞;

(e) limn→∞ |β′n − β
′

n+1| = 0;
(f) rn ≥ ε for each n ≥ 1 and limn→∞ |rn − rn+1| = 0.

Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following variational inequality

〈Tx̄ − x̄, j(p − x̄)〉 ≤ 0, ∀p ∈ A−1(0).

Proof. First, we prove that {xn} is bounded. Fixing p ∈ A−1(0), we see that

‖y0 − p‖ = ‖α0
′(x0 − p) + β0

′(Jr0 (x0 + e1) − p) + γ0
′(QC( f0) − p)‖

≤ α0
′
‖x0 − p‖ + β0

′
‖Jr0 (x0 + e1) − p‖ + γ0

′
‖QC( f0) − p‖

≤ (1 − γ′0)‖x0 − p‖ + ‖e1‖ + γ0
′
‖ f0 − p‖.

It follows that
‖x1 − p‖ ≤ α0‖Tx0 − p‖ + β0‖x0 − p‖ + γ0‖y0 − p‖

≤ α0α‖x0 − p‖ + α0‖Tp − p‖ + β0‖x0 − p‖ + γ0‖y0 − p‖
≤ α0α‖x0 − p‖ + α0‖Tp − p‖ + β0‖x0 − p‖ + (1 − γ′0)γ0‖x0 − p‖

+ ‖e1‖ + γ0γ
′

0‖ f0 − p‖

≤

(
1 − α0(1 − α)

)
‖x0 − p‖ + α0‖Tp − p‖ + ‖e1‖ + γ′0‖ f0 − p‖.

Put M1 = max{‖x0 − p‖, ‖Tp−p‖
1−α } < ∞. Next, we prove that

‖xn − p‖ ≤M1 +

n∑
i=1

‖ei‖ +

n−1∑
i=1

γ′i‖ fi‖. (3.1)

It is easy to see that (3.1) holds for n = 1. We assume that the result holds for some n. Notice that

‖yn − p‖ = ‖αn
′(xn − p) + βn

′(Jrn (xn + en+1) − p) + γn
′(QC( fn) − p)‖

≤ αn
′
‖xn − p‖ + βn

′
‖Jrn (xn + en+1) − p‖ + γn

′
‖QC( fn) − p‖

≤ (1 − γ′n)‖xn − p‖ + ‖en+1‖ + γn
′
‖ fn − p‖.

It follows that

‖xn+1 − p‖ ≤ αn‖Txn − p‖ + βn‖xn − p‖ + γn‖yn − p‖
≤ αnα‖xn − p‖ + αn‖Tp − p‖ + βn‖xn − p‖ + γn‖yn − p‖
≤ αnα‖xn − p‖ + αn‖Tp − p‖ + βn‖xn − p‖ + (1 − γ′n)γn‖xn − p‖

+ ‖en+1‖ + γnγ
′

n‖ fn − p‖

≤

(
1 − αn(1 − α)

)
‖xn − p‖ + αn‖Tp − p‖ + ‖en+1‖ + γ′n‖ fn − p‖

≤M1 +

n+1∑
i=1

‖ei‖ +

n∑
i=1

γ′i‖ fi‖.
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This yields that the sequence {xn} is bounded. Next, we show that

lim
n→∞
‖xn+1 − xn‖ = 0. (3.2)

It follows from Lemma 2.2 that

‖Jrn (xn + en+1) − Jrn+1 (xn+1 + en+2)‖

=
∥∥∥∥Jrn+1

( rn+1

rn
(xn + en+1) +

(
1 −

rn+1

rn

)
Jrn (xn + en+1)

)
− Jrn+1 (xn+1 + en+2)

∥∥∥∥
≤

∥∥∥∥ rn+1

rn

(
(xn + en+1) − (xn+1 + en+2)

)
+

(
1 −

rn+1

rn

)(
Jrn (xn + en+1) − (xn+1 + en+2)

)∥∥∥∥
=

∥∥∥∥((xn + en+1) − (xn+1 + en+2)
)

+
(
1 −

rn+1

rn

)(
Jrn (xn + en+1) − (xn + en+1)

)∥∥∥∥
≤ ‖xn − xn+1‖ + ‖en+1‖ + ‖en+2‖ +

M2

ε
|rn+1 − rn|,

(3.3)

where M2 is an appropriate constant such that

M2 ≥ sup
n≥1
{‖Jrn (xn + en+1) − (xn + en+1)‖}.

Notice that
yn+1 − yn

= α′n+1(xn+1 − xn) + xn(α′n+1 − α
′

n)

+ β′n+1

(
Jrn+1 (xn+1 + en+2) − Jrn (xn + en+1)

)
+ Jrn (xn + en+1)(β′n+1 − β

′

n)

+ γ′n+1(QC( fn+1) −QC( fn)) + QC( fn)(γ′n+1 − γ
′

n),

which yields that

‖yn+1 − yn‖

≤ α′n+1‖xn+1 − xn‖ + ‖xn‖|α
′

n+1 − α
′

n|

+ β′n+1‖Jrn+1 (xn+1 + en+2) − Jrn (xn + en+1)‖ + ‖Jrn (xn + en+1)‖|β′n+1 − β
′

n|

+ γ′n+1‖QC( fn+1) −QC( fn)‖ + ‖QC( fn)‖|γ′n+1 − γ
′

n|.

(3.4)

Substituting (3.3) into (3.4), we find that

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖xn‖|α
′

n+1 − α
′

n|

+ ‖en+1‖ + ‖en+2‖ +
M2

ε
|rn+1 − rn|

+ ‖Jrn (xn + en+1)‖|β′n+1 − β
′

n|

+ γ′n+1‖QC( fn+1) −QC( fn)‖ + ‖QC( fn)‖|γ′n+1 − γ
′

n|.

(3.5)

Put 1n =
xn+1−βnxn

1−βn
. That is,

xn+1 = (1 − βn)1n + βnxn, n ≥ 0. (3.6)

Now, we compute ‖1n+1 − 1n‖. Note that

1n+1 − 1n =
αn+1Txn+1 + γn+1yn+1

1 − βn+1
−
αnTxn + γnyn

1 − βn

=
αn+1

1 − βn+1
Txn+1 +

γn+1

1 − βn+1
yn+1 −

αn

1 − βn
Txn −

γn

1 − βn
yn

=
αn+1

1 − βn+1
(Txn+1 − yn+1) + yn+1 −

αn

1 − βn
(Txn − yn) − yn.
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This yields that

‖1n+1 − 1n‖ ≤
αn+1

1 − βn+1
‖Txn+1 − yn+1‖ + ‖yn+1 − yn‖ +

αn

1 − βn
‖Txn − yn‖. (3.7)

Substituting (3.5) into (3.7), we find that

‖1n+1 − 1n‖ − ‖xn+1 − xn‖

≤
αn+1

1 − βn+1
‖Txn+1 − yn+1‖ + ‖xn‖|α

′

n+1 − α
′

n|

+ ‖en+1‖ + ‖en+2‖ +
M2

ε
|rn+1 − rn| + ‖Jrn (xn + en+1)‖|β′n+1 − β

′

n|

+ γ′n+1‖QC( fn+1) −QC( fn)‖ + ‖QC( fn)‖|γ′n+1 − γ
′

n| +
αn

1 − βn
‖Txn − yn‖.

From the restrictions (b)-(f), we see that

lim sup
n→∞

(
‖1n+1 − 1n‖ − ‖xn − xn+1‖

)
≤ 0.

It follows from Lemma 2.3 that
lim
n→∞
‖1n − xn‖ = 0.

In view of (3.6), we have
xn+1 − xn = (1 − βn)(1n − xn).

Hence, we find that
lim
n→∞
‖xn+1 − xn‖ = 0. (3.8)

Notice that

yn − xn =
xn+1 − xn + αn

(
xn − f (xn)

)
γn

.

In view of the restrictions (b) and (c), we find from (3.8) that

lim
n→∞
‖yn − xn‖ = 0. (3.9)

Notice that
‖xn − Jrn (xn + en+1)‖
≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − Jrn (xn + en+1)‖
≤ ‖xn − xn+1‖ + αn‖ f (xn) − yn‖ + βn‖xn − yn‖ + ‖yn − Jrn (xn + en+1)‖
≤ ‖xn − xn+1‖ + αn‖ f (xn) − yn‖ + βn‖xn − yn‖

+ α′n‖xn − Jrn (xn + en+1)‖ + γ′n‖QC( fn) − Jrn (xn + en+1)‖.

In view of the restrictions (b) and (d), we find from (3.8) and (3.9) that

lim
n→∞
‖xn − Jrn (xn + en+1)‖ = 0. (3.10)

Notice that
‖xn − Jrn xn‖ ≤ ‖xn − Jrn (xn + en+1)‖ + ‖Jrn (xn + en+1) − Jrn xn‖

≤ ‖xn − Jrn (xn + en+1)‖ + ‖en+1‖.

Since
∑
∞

n=1 ‖en‖ < ∞, we see from (3.10) that

lim
n→∞
‖xn − Jrn xn‖ = 0.
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Take a fixed number r such that ε > r > 0. In view of Lemma 2.2, we obtain that

‖Jrn xn − Jrxn‖ = ‖Jr

( r
rn

xn + (1 −
r
rn

)Jrn xn

)
− Jrxn‖

≤ ‖(1 −
r
rn

)(Jrn xn − xn)‖

≤ ‖Jrn xn − xn‖.

(3.11)

Note that
‖xn − Jrxn‖ ≤ ‖xn − Jrn xn‖ + ‖Jrn xn − Jrxn‖

≤ 2‖xn − Jrn xn‖.

Using (3.11), we see that
lim
n→∞
‖xn − Jrxn‖ = 0. (3.12)

Next, we claim that lim sup
n→∞

〈x̄ − Tx̄, j(xn − x̄)〉 ≤ 0, where x̄ = limt→0 zt, and zt solves the fixed point

equation zt = tTzt + (1 − t)Jrzt, ∀t ∈ (0, 1), from which it follows that

‖zt − xn‖ = ‖(1 − t)(Jrzt − xn) + t(Tzt − xn)‖.

For any t ∈ (0, 1), we see that

‖zt − xn‖
2 = (1 − t)〈Jrzt − xn, j(zt − xn)〉 + t〈Tzt − xn, j(zt − xn)〉

= (1 − t)
(
〈Jrzt − Jrxn, j(zt − xn)〉 + 〈Jrxn − xn, j(zt − xn)〉

)
+ t〈Tzt − zt, j(zt − xn)〉 + t〈zt − xn, j(zt − xn)〉

≤ (1 − t)
(
‖zt − xn‖

2 + ‖Jrxn − xn‖‖zt − xn‖
)

+ t〈Tzt − zt, j(zt − xn)〉 + t‖zt − xn‖
2

≤ ‖zt − xn‖
2 + ‖Jrxn − xn‖‖zt − xn‖ + t〈Tzt − zt, j(zt − xn)〉.

It follows that
〈zt − Tzt, j(zt − xn)〉 ≤

1
t
‖Jrxn − xn‖‖zt − xn‖ ∀t ∈ (0, 1).

In view of (3.12), we see that
lim sup

n→∞
〈zt − Tzt, j(zt − xn)〉 ≤ 0. (3.13)

Since zt → x̄, as t→ 0 and the fact that j is strong to weak∗ uniformly continuous on bounded subsets of E,
we see that

|〈Tx̄ − x̄, j(xn − x̄)〉 − 〈zt − Tzt, j(zt − xn)〉|
≤ |〈Tx̄ − x̄, j(xn − x̄)〉 − 〈Tx̄ − x̄, j(xn − zt)〉|

+ |〈Tx̄ − x̄, j(xn − zt)〉 − 〈zt − Tzt, j(zt − xn)〉|
≤ |〈Tx̄ − x̄, j(xn − x̄) − j(xn − zt)〉| + |〈Tx̄ − x̄ + zt − Tzt, J(xn − zt)〉|
≤ ‖Tx̄ − x̄‖‖ j(xn − x̄) − j(xn − zt)‖ + ‖Tx̄ − x̄ + zt − Tzt‖‖xn − zt‖ → 0, as t→ 0.

Hence, for any ε > 0, there exists λ > 0 such that ∀t ∈ (0, λ) the following inequality holds

〈Tx̄ − x̄, j(xn − x̄)〉 ≤ 〈zt − Tzt, j(zt − xn)〉 + ε.

This implies that
lim sup

n→∞
〈Tx̄ − x̄, j(xn − x̄)〉 ≤ lim sup

n→∞
〈zt − Tzt, j(zt − xn)〉 + ε.
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Since ε is arbitrary and (3.13), we see that lim supn→∞〈Tx̄ − x̄, j(xn − x̄)〉 ≤ 0. This implies that

lim sup
n→∞

〈Tx̄ − x̄, j(xn+1 − x̄)〉 ≤ 0. (3.14)

Finally, we show that xn → x̄ as n→∞. Note that

‖yn − x̄‖ ≤ α′n‖xn − x̄‖ + β′n‖Jrn (xn + en+1) − x̄‖ + γ′n‖QC fn − x̄‖
≤ (α′n + β′n)‖xn − x̄‖ + ‖en+1‖ + γ′n‖ fn − x̄‖
≤ ‖xn − x̄‖ + ‖en+1‖ + γ′nM2,

(3.15)

where M2 = supn≥1 ‖ fn − x̄‖. Put δn = ‖en+1‖ + γ′nM2. In view of the restriction (d), we see that
∑
∞

n=1 δn < ∞.
Notice that

‖xn+1 − x̄‖2 ≤ αn〈Txn − x̄, j(xn+1 − x̄)〉 + βn‖xn − x̄‖‖xn+1 − x̄‖
+ γn‖yn − x̄‖‖xn+1 − x̄‖

≤ αn〈Txn − x̄, j(xn+1 − x̄)〉 +
βn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+
γn

2
(‖yn − x̄‖2 + ‖xn+1 − x̄‖2).

It follows from (3.15) that

‖xn+1 − x̄‖2 ≤ 2αn〈Txn − x̄, j(xn+1 − x̄)〉 + βn‖xn − x̄‖2 + γn‖yn − x̄‖2

≤ 2αn〈Txn − x̄, j(xn+1 − x̄)〉 + βn‖xn − x̄‖2 + γn‖xn − x̄‖2

+ γnδ
2
n + 2γnδn‖xn − x̄‖

≤ (1 − αn)‖xn − x̄‖2 + 2αn〈Txn − x̄, j(xn+1 − x̄)〉 + δnM3,

(3.16)

where M3 is an appropriate constant such that M3 ≥ supn≥0{δn + 2‖xn − x̄‖}. Let µn = max{〈Txn − x̄, j(xn+1 −

x̄)〉, 0}. Next, we show that limn→∞ µn = 0. Indeed, from (3.14), for any give ε > 0, there exists a positive
integer n1 such that

〈Txn − x̄, j(xn+1 − x̄)〉 < ε, ∀n ≥ n1.

This implies that 0 ≤ µn < ε, ∀n ≥ n1. Since ε > 0 is arbitrary, we see that limn→∞ µn = 0. It follows from
(3.16) that

‖xn+1 − x̄‖2 ≤ (1 − αn)‖xn − x̄‖2 + 2αnµn + δnM3.

Put an = ‖xn − x̄‖2, tn = αn, bn = 2αnµn and cn = δnM3 for every n ≥ 0. In view of Lemma 2.1, we find the
desired conclusion.

If the mapping T maps every point in C to a fixed element, then we have the following results.

Corollary 3.2. Let E be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and A be an
m-accretive operators in E. Assume that C := D(A) is convex and has the normal structure. Let {αn}, {βn}, {γn},
{αn
′
}, {βn

′
} and {γn

′
} be real number sequences in (0, 1). Let QC be the sunny nonexpansive retraction from E onto C

and {xn} be a sequence generated in the following manner:
x0 ∈ C,
yn = αn

′xn + βn
′ Jrn (xn + en+1) + γn

′QC( fn),
xn+1 = αnu + βnxn + γnyn, ∀n ≥ 0,

where u is a fixed element in C, {en} is a sequence in E, { fn} is a bounded sequence in E, {rn} is a positive real numbers
sequence, and Jrn = (I+rnA)−1. Assume that A−1(0) is not empty and the above control sequences satisfy the following
restrictions:

(a) αn + βn + γn = αn
′ + β′n + γ′n = 1;
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(b) limn→∞ αn = limn→∞ α′n = 0 and
∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d)

∑
∞

n=1 ‖en‖ < ∞ and
∑
∞

n=0 γ
′
n < ∞;

(e) limn→∞ |β′n − β
′

n+1| = 0;
(f) rn ≥ ε for each n ≥ 1 and limn→∞ |rn − rn+1| = 0.

Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following variational inequality

〈u −QA−1(0)u, j(p −QA−1(0)u)〉 ≤ 0, ∀p ∈ A−1(0).

If γ′n = 0, then Corollary 3.2 is reduced to the following.

Corollary 3.3. Let E be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and let A be
an m-accretive operators in E. Assume that C := D(A) is convex and has the normal structure. Let {αn}, {βn}, {γn},
{αn
′
}, and {βn

′
} be real number sequences in (0, 1). Let {xn} be a sequence generated in the following manner:

x0 ∈ C,
yn = αn

′xn + βn
′ Jrn (xn + en+1),

xn+1 = αnu + βnxn + γnyn, ∀n ≥ 0,

where u is a fixed element in C, {en} is a sequence in E, {rn} is a positive real numbers sequence, and Jrn = (I + rnA)−1.
Assume that A−1(0) is not empty and the above control sequences satisfy the following restrictions:

(a) αn + βn + γn = αn
′ + β′n = 1;

(b) limn→∞ αn = limn→∞ α′n = 0 and
∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d)

∑
∞

n=1 ‖en‖ < ∞;
(e) limn→∞ |β′n − β

′

n+1| = 0;
(f) rn ≥ ε for each n ≥ 1 and limn→∞ |rn − rn+1| = 0.

Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following variational inequality

〈u −QA−1(0)u, j(p −QA−1(0)u)〉 ≤ 0, ∀p ∈ A−1(0).
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