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Abstract. In this paper, we determine the degree distance of G × Kr0 ,r1 ,...,rn−1 and G � Kr0 ,r1 ,...,rn−1 , where ×
and � denote the tensor product and strong product of graphs, respectively, and Kr0 , r1 , ..., rn−1 denotes the
complete multipartite graph with partite sets V0,V1, . . . ,Vn−1 where |V j| = r j, 0 ≤ j ≤ n − 1 and n ≥ 3.
Using the formulae obtained here, we have obtained the exact value of the degree distance of some classes
of graphs.

1. Introduction

In this paper, all graphs considered are simple, connected and finite. Let G = (V(G),E(G)) be a connected
graph of order n. For any u, v ∈ V(G), the distance between u and v in G, denoted by dG(u, v), is the length of
the shortest (u, v)-path in G. The degree of a vertex w ∈ V(G) is denoted by dG(w). For S ⊆ V(G), 〈S〉 denotes
the subgraph of G induced by S. For two subsets S, T ⊂ V(G), by dG(S,T), we mean the sum of the distances,
in G, from each vertex of S to every vertex of T, that is, dG(S,T) =

∑
u∈S, v∈T

dG(u, v). For S, T ⊆ V(G), let D(S,T),

denote the sum
∑

x∈S, y∈T
dG(x, y)[dG(x) + dG(y)]. Let Pn and Cn denote the path and the cycle on n vertices,

respectively. We call K3 a triangle. Notation and definitions which are not given here can be found in [1] or
[2].

A topological index is a numerical quantity related to a graph that is invariant under graph automorphisms.
A topological index related to distance is called a “distance-based topological index”. The Wiener index
W(G) is the first distance-based topological index defined as W(G) =

∑
{u,v}⊆V(G)

dG(u, v) = 1
2

∑
u,v∈V(G)

dG(u, v)

with the summation runs over all pairs of vertices of G. The topological indices and graph invariants based
on distances between vertices of a graph are widely used in mathematical chemistry[19]. The Wiener index
is one of the most used topological indices with high correlation with many physical and chemical indices
of molecular compounds. It is used in the study of paraffin boiling points [20].

There are some topological indices based on degrees such as the first and second Zagreb indices of
molecular graphs. The first and second kinds of Zagreb indices have been introduced more than 30 years
ago by Gutman and Trinajstić in [10] (see also [9]). The developement and uses of these indices can be
found in [11] and [14]. The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph G are
defined as M1(G) =

∑
uv∈E(G)

[dG(u) + dG(v)] =
∑

v∈V(G)
d2

G(v) and M2(G) =
∑

uv∈E(G)
[dG(u)dG(v)].
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The degree distance was introduced by Dobrynin and Kochetova [6] and Gutman [8] as a weighted
version of the Wiener index. The degree distance of G, denoted by DD(G),is defined as DD(G) =∑
{u,v}⊆V(G)

dG(u, v)[dG(u) + dG(v)] = 1
2

∑
u,v∈V(G)

dG(u, v)[dG(u) + dG(v)] with the summation runs over all pairs of

vertices of G. The degree distance is a structure descriptor based on molecular topology, of quantitative
relations between structure and activity. Its physico chemical applications range from the prediction
of boiling points to the calculation of velocity of ultrasound in organic materials. In [3], it has been
demonstrated that the Wiener index and the degree distance are closely mutually related for certain classes
of molecular graphs. In [18], Ioan Tomescu proved one of the conjectures and disproved the other, made
by Dobrynin and Kochetova [6] on the minimum and maximum values of the degree distance of a graph.

The tensor product of G1 and G2, denoted by G1 × G2, has the vertex set V(G1 × G2) = V(G1) × V(G2)
and the edge set E(G1 × G2) = {(u, x)(v, y) : uv ∈ E(G1) and xy ∈ E(G2)}. The cartesian product of the graphs
G1 and G2, denoted by G1 �G2, has the vertex set V(G1 �G2) = V(G1) × V(G2) and (u, x)(v, y) is an edge of
G1 �G2 if u = v and xy ∈ E(G2) or, uv ∈ E(G1) and x = y. The strong product of the graphs G1 and G2, denoted
by G1 � G2, is the graph with vertex set V(G1) × V(G2) and (u, x)(v, y) is an edge whenever (i) u = v and
xy ∈ E(G2) or, (ii) uv ∈ E(G1) and x = y or, (iii) uv ∈ E(G1) and xy ∈ E(G2). In fact, G1 �G2 = G1 ×G2 ⊕G1�G2,
where⊕ denotes the edge disjoint union of two graphs. The wreath product of the graphs G1 and G2, denoted
by G1 ◦ G2, is the graph with vertex set V(G1) × V(G2) and (u, x)(v, y) is an edge whenever (i) uv ∈ E(G1) or
(ii) u = v and xy ∈ E(G2).

In [16], the degree distance of the graphs G1�G2 and G1 ◦ G2, have been obtained.
In this paper, we obtain the degree distance of the tensor product G×Kr0, r1, ..., rn−1 and the strong product

G � Kr0, r1, ..., rn−1 , where Kr0, r1, ..., rn−1 is the complete n-partite graph with r =
n−1∑
j = 0

r j and n ≥ 3. In Kr0, r1, ..., rn−1 , if

r0 = r1 = . . . = rn−1 = s, then we denote Kr0, r1, ..., rn−1 by Kn(s). Using the formulae obtained here, we have
obtained the exact degree distance of some classes of graphs.

2. Degree Distance of the Tensor Product of Graphs

In this section, we compute the degree distance of G × Kr0, r1, ..., rn−1 .
Let G be a simple nontrivial connected graph with V(G) = {u0, u1, . . . , um−1}, m ≥ 2. In Kr0, r1, ..., rn−1 , let

r =
n−1∑
j = 0

r j and n ≥ 3. Let V0, V1, . . . ,Vn−1 be the partite sets of Kr0, r1, ...,rn−1 and let |V j| = r j, 0 ≤ j ≤ n − 1.

In the graph G × Kr0, r1, ..., rn−1 , let Zi j = ui × V j, ui ∈ V(G) and 0 ≤ j ≤ n − 1. We call Zi j, the (i, j)th block of

G × Kr0, r1, ..., rn−1 (do not be confused with the block of a graph.) Clearly Si =
n−1⋃
j = 0

Zi j is an independent set of

G×Kr0, r1, ..., rn−1 and V(G×Kr0, r1, ..., rn−1 ) =
m−1⋃
i = 0

Si. We call Si a layer of G×Kr0, r1, ..., rn−1 . Throughout the paper, we

denote Kr0, r1, ..., rn−1 by K and ε(K(r̂ j)) denote the number of edges in K \ V j.
It is clear that the degree of the vertex (x, y) ∈ G × K is dG×K(x, y) = dG(x)dK(y); very often we shall use

this fact for our computation.

Lemma 2.1. Let G be a nontrivial connected graph. Let Zi j and Zpq be two blocks in H = G × K. Then

(a) dH(Zi j,Ziq) =

2r j(r j − 1), if j = q,
2r jrq, if j , q,

(b) if uiup ∈ E(G),

dH(Zi j,Zpq) =


r jrq, if j , q,
2r2

j , if j = q and uiup lies on a triangle of G,

3r2
j , if j = q and uiup does not lie on a triangle of G,
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(c) if uiup < E(G),

dH(Zi j,Zpq) =

r jrqdG(ui,up), if j , q,
r2

j dG(ui,up), if j = q.

Proof. Let Zi j and Zpq be two blocks in H = G × K.
Proof of (a).
Suppose i = p, j = q. By the nature of the graph H and G , K1, any two vertices of Zi j are at distance 2.
There are r j(r j − 1) pairs of distinct vertices in Zi j and hence dH(Zi j,Zi j) = 2r j(r j − 1).
Suppose i = p, j , q. In H, distance between a vertex of Zi j and a vertex of Ziq is 2. There are r jrq such pairs
of vertices and hence dH(Zi j,Ziq) = 2r jrq.
Proof of (b). uiup ∈ E(G).
Suppose j , q. If uiup ∈ E(G), distance between a vertex of Zi j and a vertex of Zpq in H is 1. There are r jrq
such pairs of vertices and hence dH(Zi j,Zpq) = r jrq.
Suppose j = q and uiup lies on a triangle of G.
If uiup ∈ E(G) and uiup lies on a triangle of G, distance between a vertex of Zi j and a vertex of Zpj in H is 2.
There are r2

j such pairs of vertices and hence dH(Zi j,Zpj) = 2r2
j .

Suppose j = q and uiup does not lie on a triangle of G.
If uiup ∈ E(G) and uiup does not lie on a triangle of G, distance between a vertex of Zi j and a vertex of Zpj in
H is 3. There are r2

j such pairs of vertices and hence dH(Zi j,Zpj) = 3r2
j .

Proof of (c). uiup < E(G).
Suppose j , q.
If uiup < E(G), distance between ui and up in G is dG(ui,up) and hence the distance between a vertex of Zi j
and a vertex of Zpq in H is dG(ui,up). There are r jrq such pairs of vertice and hence dH(Zi j,Zpq) = r jrqdG(ui,up).
Suppose j = q.
As above, the distance between a vertex of Zi j and a vertex of Zpj in H is dG(ui,up). There are r2

j such pairs
of vertices and hence dH(Zi j,Zpj) = r2

j dG(ui,up).
From the definition of the tensor product, the following lemma follows.

Lemma 2.2. Let G be a nontrivial connected graph. Let (ui, v j) ∈ V(H) and let v j ∈ V j. Then the degree of (ui, v j) is
dH((ui, v j)) = dG(ui)dK(v j) = dG(ui)(r − r j).

Theorem 2.3. Let G be a nontrivial connected graph and let K = Kr0, r1, ..., rn−1 , n ≥ 3, denote the complete n-partite
graph. Let E1(resp.E2) denote the set of edges which lie (resp. do not lie) on a triangle of G. Then DD(G × K) ={
8(r − 1)ε(G) + 2rDD(G) + rM1(G) + rD0(G)

}
ε(K) −

{
M1(G) + D0(G)

} n−1∑
j = 0

r jε(K(r̂ j)), where r =
n−1∑
j = 0

r j, D0(G) =∑
uiup∈E2

[
dG(ui)+dG(up)

]
and DD(G) and M1(G) denote the degree distance and the first Zagreb index of G, and ε(K(r̂ j))

is the number of edges in K − V j.

Proof. Let H = G × Kr0, r1, ..., rn−1 = G × K. Then

DD(H) =
1
2

{ m−1∑
i = 0

n−1∑
j = 0

D(Zi j,Zi j) +

m−1∑
i = 0

n−1∑
j q = 0
j,q

D(Zi j,Ziq) +

n−1∑
j = 0

m−1∑
i p = 0
i, p

D(Zi j,Zpj) +

m−1∑
i p = 0
i, p

n−1∑
j q = 0
j,q

D(Zi j,Zpq)
}

=
1
2

[A1 + A2 + A3 + A4], (1)

where A1-A4 are the sums of the above terms, in order.

We shall calculate A1 to A4 of (1) separately.

First we compute A1 =
m−1∑
i = 0

n−1∑
j = 0

D(Zi j,Zi j). For this, first we calculate
n−1∑
j = 0

D(Zi j,Zi j). As G is connected and
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nontrivial, any pair of distinct vertices in Zi j are at distance 2; also there are r j(r j − 1) such pairs of vertices
and we have

n−1∑
j = 0

D(Zi j,Zi j) =

n−1∑
j = 0

2r j(r j − 1)
{
dG(ui)(r − r j) + dG(ui)(r − r j)

}
, by Lemmas 2.1 and 2.2,

= 4dG(ui)
n−1∑
j = 0

{
r2

j (r − r j) − r j(r − r j)
}

= 4dG(ui)
{ n−1∑

j = 0

r2
j (r − r j) −

(
r2
−

n−1∑
j = 0

r2
j

)}
, as r =

n−1∑
j = 0

r j,

= 4dG(ui)
{ n−1∑

j, q = 0
j,q

r2
j rq −

n−1∑
j, q = 0

j,q

r jrq

}
, as r − r j =

n−1∑
q = 0
q, j

rq and r2
−

n−1∑
j = 0

r2
j =

n−1∑
j, q = 0

j,q

r jrq. (2)

Now, by using (2), we have A1 = 8ε(G)
{ n−1∑

j, q = 0
j,q

r2
j rq −

n−1∑
j, q = 0

j,q

r jrq

}
. (3)

Next we compute A2 =
m−1∑
i = 0

n−1∑
j, q = 0

j,q

D(Zi j,Ziq). For this, first we calculate
n−1∑

j, q = 0
j,q

D(Zi j,Ziq). As there are r jrq pairs

of vertices with the first vertex in Zi j and the second vertex in Ziq, j , q and they are at distance 2 in H, we
have

n−1∑
j, q = 0

j,q

D(Zi j,Ziq) =

n−1∑
j, q = 0

j,q

2r jrq

{
dG(ui)(r − r j) + dG(ui)(r − rq)

}
, by Lemmas 2.1 and 2.2,

= 2dG(ui)
n−1∑

j, q = 0
j,q

r jrq

{
2r − r j − rq

}
= 4dG(ui)

{
r

n−1∑
j, q = 0

j,q

r jrq −

n−1∑
j, q = 0

j,q

r2
j rq

}
. (4)

Now, using (4), we get A2 = 8ε(G)
{
r

n−1∑
j q = 0
j,q

r jrq −

n−1∑
j, q = 0

j,q

r2
j rq

}
. (5)

Next we calculate A3 =
n−1∑
j = 0

m−1∑
i, p = 0
i, p

D(Zi j,Zpj). For this, first we obtain
m−1∑

i, p = 0
i, p

D(Zi j,Zpj).

Let E1 = {uv ∈ E(G)|uv is on a K3 of G} and E2 = E(G) − E1 and hence |E1 ∪ E2| = ε(G).
m−1∑

i, p = 0
i, p

D(Zi j,Zpj) =

m−1∑
i, p = 0
i, p

uiup<E(G)

D(Zi j,Zpj) +

m−1∑
i, p = 0
i, p

uiup∈E(G)

D(Zi j,Zpj)

=

m−1∑
i, p = 0
i, p

uiup<E(G)

D(Zi j,Zpj) +

m−1∑
i, p = 0
i, p

uiup∈E1

D(Zi j,Zpj) +

m−1∑
i, p = 0
i, p

uiup∈E2

D(Zi j,Zpj)

=

m−1∑
i, p = 0
i, p

uiup<E(G)

dG(ui,up)r2
j

[
dG(ui)(r − r j) + dG(up)(r − r j)

]
+

m−1∑
i, p = 0
i, p

uiup∈E1

2r2
j

[
dG(ui)(r − r j)
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+ dG(up)(r − r j)
]

+

m−1∑
i, p = 0
i, p

uiup∈E2

3r2
j

[
dG(ui)(r − r j) + dG(up)(r − r j)

]
, by Lemmas 2.1 and 2.2,

= r2
j (r − r j)

{ m−1∑
i, p = 0
i, p

uiup<E(G)

dG(ui,up)
[
dG(ui) + dG(up)

]
+

m−1∑
i, p = 0
i, p

uiup∈E1

(
dG(ui,up) + 1

)[
dG(ui) + dG(up)

]

+

m−1∑
i, p = 0
i, p

uiup∈E2

(
dG(ui,up) + 2

)[
dG(ui) + dG(up)

]}
, since dG(ui,up) = 1,

= r2
j (r − r j)

{ m−1∑
i, p = 0
i, p

uiup<E(G)

dG(ui,up)[dG(ui) + dG(up)] +

m−1∑
i, p = 0
i, p

uiup∈E1

dG(ui,up)
[
dG(ui) + dG(up)]

+

m−1∑
i, p = 0
i, p

uiup∈E2

dG(ui,up)[dG(ui) + dG(up)]
}

+ r2
j (r − r j)

{ m−1∑
i p = 0
i, p

uiup∈E1

[
dG(ui) + dG(up)

]

+

m−1∑
i, p = 0
i, p

uiup∈E2

[
dG(ui) + dG(up)

]}
+ r2

j (r − r j)
m−1∑

i, p = 0
i, p

uiup∈E2

[
dG(ui) + dG(up)

]

=
(
2DD(G) + 2M1(G) + 2

∑
uiup∈E2

[
dG(ui) + dG(up)

])
r2

j (r − r j). (6)

Using (6), we get A3 =
{
2DD(G) + 2M1(G) +

∑
uiup∈E2

[
dG(ui) + dG(up)

]} n−1∑
j, q = 0

j,q

r2
j rq. (7)

Finally, we calculate A4 =
m−1∑

i, p = 0
i, p

n−1∑
j, q = 0

j,q

D(Zi j,Zpq). For this, first we compute
n−1∑

j, q = 0
j,q

D(Zi j,Zpq). As there are r jrq

pairs of vertices of Zi j and Zpq with its first vertex in Zi j and the second vertex in Zpq at distance dG(ui,up),
we have,

n−1∑
j, q = 0

j,q

D(Zi j,Zpq) =

n−1∑
j, q = 0

j,q

dG(ui,up)r jrq

[
dG(ui)(r − r j) + dG(up)(r − rq)

]
, by Lemmas 2.1 and 2.2,

= rdG(ui,up)
[
dG(ui) + dG(up)

] n−1∑
j, q = 0

j,q

r jrq − dG(ui,up)
[
dG(ui) + dG(up)

] n−1∑
j, q = 0

j,q

r2
j rq. (8)

Using (8), we get A4 = 2DD(G)
{
r

n−1∑
j, q = 0

j,q

r jrq −

n−1∑
j, q = 0

j,q

r2
j rq

}
. (9)
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Using (3), (5), (7) and (9) in (1), we have

DD(H) = 4ε(G)
(
(r − 1)

n−1∑
j, q = 0

j,q

r jrq

)
+

(
M1(G) +

∑
uiup∈E2

[dG(ui) + dG(up)]
) n−1∑

j, q = 0
j,q

r2
j rq + rDD(G)

n−1∑
j, q = 0

j,q

r jrq

=
(
4(r − 1)ε(G) + rDD(G)

) n−1∑
j, q = 0

j,q

r jrq +
(
M1(G) +

∑
uiup∈E2

[dG(ui) + dG(up)]
)( r

2

n−1∑
j, q = 0

j,q

r jrq −
1
2

n−1∑
j, q, k= 0
j,q,k

r jrqrk

)
,

using the identity 2
n−1∑

j, q = 0
j,q

r2
j rq =

( n−1∑
j = 0

r j

)( n−1∑
j, q = 0

j,q

r jrq

)
−

n−1∑
j, q, k= 0
j,q,k

r jrqrk and r =

n−1∑
j = 0

r j,

=
{
8(r − 1)ε(G) + 2rDD(G) + rM1(G) + rD0(G)

}
ε(K) −

{
M1(G) + D0(G)

} n−1∑
j = 0

r jε(K(r̂ j)),

where D0(G) =
∑

uiup∈E2

[dG(ui) + dG(up)].

We use the following Remark in the next corollary.

Remark 2.4. The sum
n−1∑

j, q, k= 0
j,q,k

r jrqrk, when r0 = r1 = . . . = rn−1 = s, can be given as

n−1∑
j, q, k= 0
j,q,k

r jrqrk = 2
n−1∑
j = 0

r jε(K(r̂ j))

= 2r0ε(K − V0) + 2r1ε(K − V1) + · · · + 2rn−1ε(K − Vn−1)

= 2s
[
nε(K − V0)

]
, since K − V0 ' K − Vi, i = 1, 2, . . . ,n − 1

= n(n − 1)(n − 2)s3.

If r j = s, 0 ≤ j ≤ n − 1, in Theorem 2.3, we have the following corollary, using the Remark 2.4.

Corollary 2.5. Let G be a nontrivial connected graph with |V(G)| = m. Let E1 denote the set of edges of G which lie
on a triangle and E2 = E(G)− E1. Then DD(G×Kn(s)) = n(n− 1)s2

[
4ε(G)(ns− 1) + nsDD(G) + sM1(G) + sD0(G)

]
,

where n ≥ 3 and D0(G) =
∑

uiup∈E2

[dG(ui) + dG(up)], DD(G) and M1(G) denote the degree distance and the first Zagreb

index of G, respectively.

As Kn ' Kn(1), we have the following corollary.

Corollary 2.6. Let G be a nontrivial connected graph with |V(G)| = m. Let E1 denote the set of edges of G which lie
on a triangle and E2 = E(G) − E1. Then DD(G × Kn) = n(n − 1)

[
4ε(G)(n − 1) + nDD(G) + M1(G) + D0(G)

]
, where

n ≥ 3 and D0(G) =
∑

uiup∈E2

[dG(ui) + dG(up)] and DD(G) and M1(G) denote the degree distance and the first Zagreb

index of G, respectively.

A graph is chordal if every cycle of length at least 4 has a chord, that is, an edge joining a pair of
nonconsecutive vertices of a cycle of length at least 4. If G is a 2-edge connected chordal graph, then in the
above notation, E2 = ∅ and hence we have D0(G) = 0; consequently we have the following corollary.
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Corollary 2.7. Let G be a 2-edge connected chordal graph. Then DD(G × K) =
{
8(r − 1)ε(G) + 2rDD(G) +

rM1(G)
}
ε(K) −M1(G)

n−1∑
j = 0

r jε(K(r̂ j)), where DD(G) and M1(G) denote the degree distance and the first Zagreb index

of G, respectively.

In particular, if G = Km, m ≥ 3, then the exact value of DD(G × K) can be given as DD(Km × K) =

m(m − 1)
{[

3rm + r − 4
]
ε(K) − (m − 1)

n−1∑
j = 0

r jε(K(r̂ j))
}
. Further, if r0 = r1 = . . . = rn−1 = s, then DD(Km × Kn(s)) =

mn(m− 1)(n− 1)s2
{
s(mn + m + n− 1)− 2

}
and if s = 1, then DD(Km ×Kn) = mn(m− 1)(n− 1)

{
mn + m + n− 3

}
,

where n ≥ 3.
For a triangle free graph, in the above notation, E1 = ∅ and hence E2 = E(G); consequently, D0(G) =∑

uiup∈E(G)
[dG(ui) + dG(up)] = M1(G). Using this in Theorem 2.3 we get the following corollary.

Corollary 2.8. Let G be a nontrivial connected triangle free graph. Then DD(G × K) =
{
8(r − 1)ε(G) + 2rDD(G) +

2rM1(G)
}
ε(K) − 2M1(G)

n−1∑
j = 0

r jε(K(r̂ j)), where DD(G) and M1(G) denote the degree distance and the first Zagreb

index of G, respectively.

The following lemma is proved in [8].

Lemma 2.9. Let G be a tree on m vertices. Then DD(G) = 4W(G)−m(m−1), where W(G) is the Wiener index of G.

If G is a tree on m vertices, by Lemma 2.9, DD(G × K) =
{
2(m − 1)[4(r − 1) − rm] + 2r[4W(G) + M1(G)]

}
ε(K) −

2M1(G)
n−1∑
j = 0

r jε(K(r̂ j)), where W(G) and M1(G) denote the Wiener index and the first Zagreb index of G,

respectively.
If r j = s, 0 ≤ j ≤ n − 1, in Corollary 2.8, we have

Corollary 2.10. Let G be a nontrivial connected triangle free graph. Then DD(G × Kn(s)) = n(n − 1)s2
(
4ε(G)(ns −

1) + nsDD(G) + 2sM1(G)
)
, where n ≥ 3 and DD(G) and M1(G) denote the degree distance and the first Zagreb index

of G, respectively.

In particular, if G is a tree on m vertices, by Lemma 2.9, DD(G × Kn(s)) = n(n − 1)s2
{
(m − 1)

[
4ns − nsm −

4
]
+ 2s

[
2nW(G) + M1(G)

]}
, where W(G) and M1(G) denote the Wiener index and the first Zagreb index of G,

respectively.
If s = 1 in the Corollary 2.10, we have

Corollary 2.11. Let G be a nontrivial connected triangle free graph. Then DD(G × Kn) = n(n − 1)
[
4ε(G)(n − 1) +

nDD(G) + 2M1(G)
]
, where n ≥ 3 and M1(G) is the first Zagreb index of G.

In particular, if G is a tree on m vertices, by Lemma 2.9, DD(G × Kn) = n(n − 1)
{
(m − 1)

[
4n − nm − 4

]
+

2
[
2nW(G) + M1(G)

]}
, where W(G) and M1(G) denote the Wiener index and the first Zagreb index of G,

respectively. The following lemma is proved in [7].

Lemma 2.12. Let G be a connected graph with m vertices and diameter two. Then DD(G) = 4(m− 1)ε(G)−M1(G)
where M1(G) is the first Zagreb index of G.

Using Lemma 2.12 in Theorem 2.3, we have the following corollary.
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Corollary 2.13. Let G be a connected graph with m ≥ 2 vertices and diameter two. Let E1 denote the set of edges
which lie on a triangle and E2 = E(G)−E1. Then DD(G×K) =

{
8(rm− 1)ε(G)− rM1(G) + rD0(G)

}
ε(K)−

{
M1(G) +

D0(G)
} n−1∑

j = 0
r jε(K(r̂ j)), where D0(G) =

∑
uiup∈E2

[
dG(ui) + dG(up)

]
and M1(G) is the first Zagreb index of G.

For our future reference we quote the following Lemmas.

Lemma 2.14. ([17]). Let Pn and Cn denote the path and the cycle on n vertices, respectively.

1. For n ≥ 2, W(Pn) = 1
6 n(n2

− 1).

2. For n ≥ 3, W(Cn) =

 n3

8 , if n is even
n(n2
−1)

8 , if n is odd.

Lemma 2.15. ([7, 18]). Let Pn and Cn denote the path and the cycle on n vertices, respectively.

1. For n ≥ 2, DD(Pn) = 1
3 n(n − 1)(2n − 1).

2. For n ≥ 3, DD(Cn) =

 n3

2 , if n is even
n(n2
−1)

2 , if n is odd.

From [16], we have DD(Kn(s)) = n(n−1)(ns+s−2)s2 and DD(Qk) = 22k−1k2,where Qk, k ≥ 1 is the hypercube of
dimension k. It can be easily verified that DD(Kn) = n(n−1)2, and W(Kn) = 1

2 n(n−1) and W(Kn,n) = n(3n−2).
From [13], we have M1(Cn) = 4n, n ≥ 3, M1(Pn) = 4n − 6, n > 1, M1(P1) = 0 and M1(Kn) = n(n − 1)2. Also

from [13], we have M1(Qk) = 2kk2, k ≥ 1 and M1(Kr0, r1, ..., rn−1 ) =
( n−1∑

j = 0
r j

)3

+
( n−1∑

j = 0
r3

j

)
− 2

( n−1∑
j = 0

r j

)( n−1∑
j = 0

r2
j

)
. Using

Theorem 2.3, Lemmas 2.14 and 2.15, we obtain the exact degree distance of the following graphs.

1. For m ≥ 2, n ≥ 3, DD(Pm × Kn(s)) =
n(n − 1)s2

3

{
(m − 1)

[
12(ns − 1) + nsm(2m − 1)

]
+ 12s(2m − 3)

}
.

2. For m ≥ 2, n ≥ 3, DD(Pm × Kn) =
n(n − 1)

3

{
2nm3

− 3nm2 + 13mn + 12m − 12n − 24
}
.

3. For m ≥ 3, n ≥ 3,

DD(Cm × Kn(s)) =


mn(n − 1)s2

2

[
nsm2 + 8ns + 16s − 8

]
, if m is even,

mn(n − 1)s2

2

[
nsm2 + 7ns + 16s − 8

]
, if m is odd.

4. For m ≥ 3, n ≥ 3,

DD(Cm × Kn) =


mn(n − 1)

2

[
nm2 + 8n + 8

]
, if m is even,

mn(n − 1)
2

[
nm2 + 7n + 8

]
, if m is odd.

5. For m ≥ 2, n ≥ 3, DD(Km × Kn(s)) = mn(m − 1)(n − 1)s2
[
s(mn + m + n − 1) − 2

]
.

6. For m ≥ 2, n ≥ 3, DD(Km × Kn) = mn(m − 1)(n − 1)
[
mn + m + n − 3

]
.

7. For m ≥ 1, n ≥ 3, DD(Km,m × Kn(s)) = 2n(n − 1)m2s2
[
3mns + ms − 2

]
.

8. For m ≥ 1, n ≥ 3, DD(Km,m × Kn) = 2n(n − 1)m2
[
3mn + m − 2

]
.

9. For m ≥ 1, n ≥ 3, DD(Qm × Kn(s)) = 2mmn(n − 1)s2
[
2(ns − 1) + 2m−1smn + 2ms

]
.

10. For m ≥ 1, n ≥ 3, DD(Qm × Kn) = 2m+1mn(n − 1)
[
m + n − 1 + 2m−2mn

]
.
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3. Degree Distance of the Strong Product of Graphs

In this section, we compute the degree distance of G � Kr0, r1, ..., rn−1 .
Let V(G) = {u0,u1, . . . ,um−1}, m ≥ 2. Kr0, r1, ..., rn−1 , V j, Zi j, ε(K(r̂ j)) are as defined in the Section 2.
The proof of the following lemmas follow easily from the properties and structure of G�Kr0, r1, ..., rn−1 and

hence we give them without proof.

Lemma 3.1. Let G be a nontrivial connected graph. Let Zi j be the (i, j)th block in H = G � K. Then the degree of a
vertex (ui, v j) in Zi j in H is

dH((ui, v j)) = dG(ui) + (r − r j) + (r − r j)dG(ui).

Lemma 3.2. Let G be a nontrivial connected graph. Let H = G � K. Let Zi j and Zpq be as defined above. Then

(a) dH(Zi j,Ziq) =

2r j(r j − 1), if j = q,
r jrq, if j , q,

(b) if uiup ∈ E(G),

dH(Zi j,Zpq) =

(2r j − 1)r j, if j = q,
r jrq, if j , q,

(c) if uiup < E(G),

dH(Zi j,Zpq) =

r2
j dG(ui,up), if j = q,

r jrqdG(ui,up), if j , q.

Proof. Let Zi j and Zpq be two blocks in H = G � K.
Proof of (a).
Suppose i = p, j = q. By the nature of the graph H, any two vertices of Zi j are at distance 2. There are r j(r j−1)
pairs of distinct vertices in Zi j. Hence dH(Zi j,Zi j) = 2r j(r j − 1).
Suppose i = p, j , q. In H, distance between a vertex of Zi j and a vertex of Ziq is 1. There are r jrq such pairs
of vertices. Hence dH(Zi j,Ziq) = r jrq.
Proof of (b). uiup ∈ E(G).
Suppose j = q. If uiup ∈ E(G), distance in H, between a vertex of Zi j and its corresponding vertex in Zpj in H is
1 and for the rest of the (r j−1) vertices of Zpj in H is 2. Therefore the sum of the distances from a vertex of Zi j
to every vertex of Zpj in H is 2(r j − 1) + 1 = 2r j − 1. There are r j vertices in Zi j. Hence dH(Zi j,Zpj) = (2r j − 1)r j.
Suppose j , q. If uiup ∈ E(G), distance between a vertex of Zi j and a vertex of Zpq in H is 1. There are r jrq
such pairs of vertices and hence dH(Zi j,Zpq) = r jrq.
Proof of (c). uiup < E(G).
Suppose j = q. As uiup < E(G), the distance between a vertex of Zi j and a vertex of Zpj in H is dG(ui,up) ≥ 2.
There are r2

j such pairs of vertices and hence dH(Zi j,Zpj) = r2
j dG(ui,up).

Suppose j , q. If uiup < E(G), distance between ui and up in G is dG(ui,up) and hence the distance between a
vertex of Zi j and a vertex of Zpq in H is dG(ui,up). There are r jrq such pairs of vertices and hence dH(Zi j,Zpq) =
r jrqdG(ui,up).

Theorem 3.3. Let G be a nontrivial connected graph with |V(G)| = m and let Kr0, r1, ..., rn−1 , n ≥ 3, denote the complete
n-partite graph. Then DD(G � Kr0, r1, ..., rn−1 ) =

{
4ε(G) + DD(G) + M1(G)

}
r2
−

{
4ε(G) + M1(G)

}
r +

{
8(r − 2)ε(G) +

m(3r − 4) + (r − 4)M1(G) + 2rDD(G) + 4rW(G)
}
ε(K) −

{
m + 4ε(G) + M1(G)

} n−1∑
j = 0

r jε(K(r̂ j)), where r =
n−1∑
j = 0

r j and

DD(G), W(G) and M1(G) are the degree distance, the Wiener index and the first Zagreb index of G, respectively.

Proof. Let K = Kr0, r1, ..., rn−1 and let H = G � K.

DD(H) =
1
2

{ m−1∑
i = 0

n−1∑
j = 0

D(Zi j,Zi j) +

m−1∑
i = 0

n−1∑
j, q = 0

j,q

D(Zi j,Ziq) +

n−1∑
j = 0

m−1∑
i, p = 0
i, p

D(Zi j,Zpj) +

m−1∑
i, p = 0
i, p

n−1∑
j, q = 0

j,q

D(Zi j,Zpq)
}
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=
1
2

[A1 + A2 + A3 + A4], (10)

where A1-A4 are the sums of the above terms, in order.

We shall calculate A1 to A4 of (10) separately.

First we calculate A1 =
m−1∑
i = 0

n−1∑
j = 0

D(Zi j,Zi j). For this, first we compute
n−1∑
j = 0

D(Zi j,Zi j). Any pair of distinct

vertices in Zi j are at distance 2 and we can find r j(r j − 1) such pairs of vertices. Consequently, we have
n−1∑
j = 0

D(Zi j,Zi j) =

n−1∑
j = 0

2r j(r j − 1)
{
2
[
dG(ui) + (r − r j) + dG(ui)(r − r j)

]}
, by Lemmas 3.1 and 3.2,

= 4
{
dG(ui)

n−1∑
j = 0

r j(r j − 1) +
(
1 + dG(ui)

) n−1∑
j = 0

[
r2

j (r − r j) − r j(r − r j)
] }

= 4dG(ui)
n−1∑
j = 0

r j(r j − 1) + 4
(
1 + dG(ui)

){ n−1∑
j, q = 0

j,q

r2
j rq −

n−1∑
j, q = 0

j,q

r jrq

}
, as r − r j =

n−1∑
q = 0
q, j

rq. (11)

Using (11), we get

A1 = 8ε(G)
(
r(r − 1) −

n−1∑
j, q = 0

j,q

r jrq

)
+ 4

(
m + 2ε(G)

)[ n−1∑
j, q = 0

j,q

r2
j rq −

n−1∑
j, q = 0

j,q

r jrq

]
,

since
n−1∑
j = 0

r j = r and
n−1∑
j = 0

r2
j = r2

−

n−1∑
j, q = 0

j,q

r jrq

= 8ε(G)r(r − 1) −
(
16ε(G) + 4m

) n−1∑
j, q = 0

j,q

r jrq + 4
(
m + 2ε(G)

) n−1∑
j, q = 0

j,q

r2
j rq. (12)

Next we calculate A2 =
m−1∑
i = 0

n−1∑
j q = 0

j,q

D(Zi j,Ziq). For this, first we compute
n−1∑

j, q = 0
j,q

D(Zi j,Ziq). As there are r jrq pairs

of vertices with the first vertex in Zi j and the second vertex in Ziq and they are at distance 1 in H, we have
n−1∑

j q = 0
j,q

D(Zi j,Ziq) =

n−1∑
j q = 0

j,q

r jrq

{[
d(ui) + (r − r j) + d(ui)(r − r j)

]
+

[
d(ui) + (r − rq) + d(ui)(r − rq)

]}
,

since
〈
Zi j ∪ Ziq

〉
is a complete bipartite graph

= 2d(ui)
n−1∑

j q = 0
j,q

r jrq + 2r
(
d(ui) + 1

) n−1∑
j q = 0
j,q

r jrq − 2
(
d(ui) + 1

) n−1∑
j q = 0
j,q

r2
j rq

= 2
(
(r + 1)d(ui) + r

) n−1∑
j q = 0
j,q

r jrq − 2
(
d(ui) + 1

) n−1∑
j q = 0
j,q

r2
j rq. (13)

Using (13), we get A2 =
(
4(r + 1)ε(G) + 2rm

) n−1∑
j q = 0
j,q

r jrq − 2
(
2ε(G) + m

) n−1∑
j q = 0
j,q

r2
j rq. (14)
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Next we calculate A3 =
n−1∑
j = 0

m−1∑
i p = 0
i, p

D(Zi j,Zpj). For this, initially we compute
m−1∑

i p = 0
i, p

D(Zi j,Zpj). Since the sum

of the distances in H from each vertex of Zi j to every vertex of Zpj is (2r j − 1)r j, if uiup ∈ E(G) and the sum
of the distances in H from each vertex of Zi j to every vertex of Zpj is r2

j dG(ui,up), if uiup < E(G), we have

m−1∑
i p = 0
i, p

D(Zi j,Zpj) =

m−1∑
i p = 0
i, p

uiup∈E(G)

D(Zi j,Zpj) +

m−1∑
i p = 0
i, p

uiup<E(G)

D(Zi j,Zpj)

=

m−1∑
i p = 0
i, p

uiup∈E(G)

(2r j − 1)r j

{[
dG(ui) + (r − r j) + dG(ui)(r − r j)

]
+

[
dG(up) + (r − r j) + dG(up)(r − r j)

]}

+

m−1∑
i p = 0
i, p

uiup<E(G)

r2
j dG(ui,up)

{[
dG(ui) + (r − r j) + dG(ui)(r − r j)

]
+

[
dG(up) + (r − r j) + dG(up)(r − r j)

]}
,

by Lemmas 3.1 and 3.2,

=

m−1∑
i p = 0
i, p

uiup∈E(G)

([
1 + dG(ui,up)

]
r j − 1

)
r j

{[
dG(ui) + dG(up)

]
+ 2(r − r j) +

[
dG(ui) + dG(up)

]
(r − r j)

}

+

m−1∑
i p = 0
i, p

uiup<E(G)

r2
j dG(ui,up)

{[
dG(ui) + dG(up)

]
+ 2(r − r j) +

[
dG(ui) + dG(up)

]
(r − r j)

}
,

since 2 = dG(ui,up) + 1, when uiup ∈ E(G)

= 2M1(G)
(
r2

j − r j

)[
1 + (r − r j)

]
+

(
r2

j + r2
j (r − r j)

)( m−1∑
i p = 0
i, p

uiup∈E(G)

dG(ui,up)
[
dG(ui) + dG(up)

]

+

m−1∑
i p = 0
i, p

uiup<E(G)

dG(ui,up)
[
dG(ui) + dG(up)

])
+ 2r2

j (r − r j)
( m−1∑

i p = 0
i, p

uiup∈E(G)

dG(ui,up) +

m−1∑
i p = 0
i, p

uiup<E(G)

dG(ui,up)
)

+ 4
[
r2

j (r − r j) − r j(r − r j)
]
ε(G), since M1(G) =

∑
uiup∈E(G)

[
dG(ui) + dG(up)

]
,

= 2
[
r2

j − r j + r2
j (r − r j) − r j(r − r j)

]
M1(G) + 2

[
r2

j + r2
j (r − r j)

]
DD(G)

+ 4r2
j (r − r j)W(G) + 4

[
r2

j (r − r j) − r j(r − r j)
]
ε(G). (15)

Using (15), we get

A3 = 2
( n−1∑

j = 0

r2
j − r +

n−1∑
j q = 0
j,q

r2
j rq −

n−1∑
j q = 0
j,q

r jrq

)
M1(G) + 2

( n−1∑
j = 0

r2
j +

n−1∑
j q = 0
j,q

r2
j rq

)
DD(G) + 4

n−1∑
j q = 0
j,q

r2
j rqW(G)
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+ 4
( n−1∑

j q = 0
j,q

r2
j rq −

n−1∑
j, q = 0

j,q

r jrq

)
ε(G), as r =

n−1∑
j = 0

r j and r − r j =

n−1∑
q = 0
j,q

rq

= 2r2
(
DD(G) + M1(G)

)
− 2rM1(G) + 2

(
M1(G) + DD(G) + 2W(G) + 2ε(G)

) n−1∑
j q = 0
j,q

r2
j rq

− 2
(
DD(G) + 2M1(G) + 2ε(G)

) n−1∑
j q = 0
j,q

r jrq as
n−1∑
j = 0

r2
j = r2

−

n−1∑
j, q = 0

j,q

r jrq. (16)

Next we calculate A4 =
m−1∑
i p = 0
i, p

n−1∑
j q = 0

j,q

D(Zi j,Zpq). For this, initially we compute
n−1∑

j q = 0
j,q

D(Zi j,Zpq). Since the sum of

the distances in H from each vertex of Zi j to every vertex of Zpq is r jrqdG(ui,up), we have
n−1∑

j, q = 0
j,q

D(Zi j,Zpq) =

n−1∑
j, q = 0

j,q

r jrqdG(ui,up)
{[

dG(ui) + (r − r j) + (r − r j)dG(ui)
]

+
[
dG(up) + (r − rq)

+ (r − rq)dG(up)
]}
, by Lemmas 3.1 and 3.2,

= (1 + r)dG(ui,up)
[
dG(ui) + dG(up)

] n−1∑
j q = 0
j,q

r jrq + 2rdG(ui,up)
n−1∑

j q = 0
j,q

r jrq

− 2dG(ui,up)
n−1∑

j q = 0
j,q

r2
j rq − dG(ui,up)

[
dG(ui) + dG(up)

] n−1∑
j q = 0
j,q

r2
j rq. (17)

Using (17), we get

A4 =
{
(1 + r)

m−1∑
i, p = 0
i, p

dG(ui,up)
[
dG(ui) + dG(up)

]
+ 2r

m−1∑
i p = 0
i, p

dG(ui,up)
} n−1∑

j q = 0
j,q

r jrq −

{
2

m−1∑
i p = 0
i, p

dG(ui,up)

+

m−1∑
i, p = 0
i, p

dG(ui,up)
[
dG(ui) + dG(up)

]} n−1∑
j q = 0
j,q

r2
j rq

=
(
2(1 + r)DD(G) + 4rW(G)

) n−1∑
j q = 0
j,q

r jrq −

(
4W(G) + 2DD(G)

) n−1∑
j q = 0
j,q

r2
j rq. (18)

Using (12), (14), (16) and (18) in (10), we have

DD(H) =
{
4ε(G) + DD(G) + M1(G)

}
r2
−

{
4ε(G) + M1(G)

}
r +

{
2(r − 4)ε(G) + m(r − 2) − 2M1(G) + rDD(G)

+ 2rW(G)
} n−1∑

j, q = 0
j,q

r jrq +
{
m + 4ε(G) + M1(G)

} n−1∑
j, q = 0

j,q

r2
j rq

=
{
4ε(G) + DD(G) + M1(G)

}
r2
−

{
4ε(G) + M1(G)

}
r +

{
2(r − 4)ε(G) + m(r − 2) − 2M1(G) + rDD(G)
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+ 2rW(G)
} n−1∑

j, q = 0
j,q

r jrq +
{
m + 4ε(G) + M1(G)

}( r
2

n−1∑
j, q = 0

j,q

r jrq −
1
2

n−1∑
j, q, k= 0
j,q,k

r jrqrk

)
,

using the identity 2
n−1∑

j, q = 0
j,q

r2
j rq =

( n−1∑
j = 0

r j

)( n−1∑
j, q = 0

j,q

r jrq

)
−

n−1∑
j, q, k= 0
j,q,k

r jrqrk and r =

n−1∑
j = 0

r j,

=
{
4ε(G) + DD(G) + M1(G)

}
r2
−

{
4ε(G) + M1(G)

}
r +

{
8(r − 2)ε(G) + m(3r − 4)

+ (r − 4)M1(G) + 2rDD(G) + 4rW(G)
}
ε(K) −

{
m + 4ε(G) + M1(G)

} n−1∑
j = 0

r jε(K(r̂ j)),

where m denote the number of vertices of G.

If r j = s, 0 ≤ j ≤ n − 1, in Theorem 3.3, we have the following corollary.

Corollary 3.4. Let G be a nontrivial connected graph with |V(G)| = m. Then DD(G � Kn(s)) =
(
4ε(G) + DD(G) +

M1(G)
)
n2s2
−

(
4ε(G)+M1(G)

)
ns+

[
2
(
ns+2s−4

)
ε(G)+nsDD(G)+2nsW(G)+(s−2)M1(G)+m

(
ns+s−2

)]
n(n−1)s2,

where n ≥ 3 and DD(G), W(G) and M1(G) are the degree distance, the Wiener index and the first Zagreb index of G,
respectively.

In the above corollary, if s = 1, then we have the following corollary.

Corollary 3.5. Let G be a be a nontrivial connected graph with |V(G)| = m. Then DD(G�Kn) = n3DD(G)+2n2(n−
1)ε(G) + 2n2(n − 1)W(G) + mn(n − 1)2, where n ≥ 3 and DD(G) and W(G) are the degree distance and the Wiener
index of G, respectively.

From [4], we have W(Qk) = k4k−1, k ≥ 1. Using Theorem 3.3, Lemmas 2.14 and 2.15, we obtain the exact
degree distance of the following graphs.

1. For m ≥ 2, n ≥ 3, DD(Pm � Kn) =
m(m − 1)n2

3

{
3mn −m − 1

}
+ n(n − 1)

{
3mn − 2n −m

}
.

2. For m ≥ 3, n ≥ 3,

DD(Cm � Kn) =


mn(3n − 1)

4

[
n(m2 + 4) − 4

]
, if m is even,

mn(3n − 1)
4

[
n(m2 + 3) − 4

]
, if m is odd.

3. For m ≥ 1, n ≥ 3, DD(Km,m � Kn) = 2(3m − 2)m2n3 + 2mn(n − 1)
[
4mn − n − 1

]
.

4. For m ≥ 1, n ≥ 3, DD(Qm � Kn) = 22m−1n2
[
nm2 + m(n − 1)

]
+ 2mn(n − 1)

[
mn + n − 1

]
.
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[14] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb Indices 30 Years After, Croat. Chem. Acta 76 (2003) 113-124.
[15] K. Pattabiraman and P. Paulraja, On Some Topological Indices of the Tensor Products of Graphs, Discrete Appl. Math. 160 (2012)

267-279.
[16] P. Paulraja and V. Sheeba Agnes, Degree Distance of Product Graphs, Discrete Math. Algorithm. Appl. 06 (2014) 1450003 (19 pages).
[17] B. E. Sagan, Y. N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Int. J. Quant. Chem. 60 (1996) 959-969.
[18] I. Tomescu, Some Extremal Properties of the Degree Distance of a Graph, Discrete Appl. Math. 98(1999) 159-163.
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