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Abstract. In this paper we use transitivity property of the automorphism group of the bipartite Kneser
graph to calculate its Wiener, Szeged and PI indices.

1. Introduction

In this section we will use some of definitions and theorems in [1] and [2] to calculate the Wiener, the
Szeged and PI-index of graphs.

Definition 1 Let G be a group which acts on a set X. Let us denote the action of σ ∈ G on x ∈ X by xσ.
Then G is said to act transitively on X if for every x, y ∈ X there is σ ∈ G such that xσ = y.

Definition 2 Let G = (V,E) be a graph. An automorphism σ of G is a one-to-one mapping from V to V
which preserves adjacency, i. e. e = uv is an edge of G if and only if eσ := uσvσ is also an edge of G. The set
of all the automorphisms of the graph G is a group under the usual composition of mappings. This group
is denoted byAut(G) and is a subgroup of the symmetric group on X.

From definition 2 it is clear thatAut(G) acts on the set V of vertices of G. This action induces an action
on the set E of edges of G. In fact if e = uv is an edge of G and σ ∈ Aut(G) then eσ = uσvσ is an edge of G and
this is a well-defined actionAut(G) on E.

Definition 3 Let G = (V,E) be a graph. G is called vertex-transitive if Aut(G) acts transitively on the
set X of vertices of G. IfAut(G) acts transitively on the set E of edges of G,then G called an edge-transitive
graph.

The proofs of the following theorems can be found in [1] and here we state them without proofs.
Theorem 1 Let G = (V,E) be a simple vertex-transitive graph and let v ∈ V be a fixed vertex of G. Then

W(G) = (1/2) |V| d(v),

where

d(v) =
∑
x∈V

d(v, x).
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Theorem 2 Let G = (V,E) be a simple edge-transitive graph and let e = uv be a fixed edge of G. Then
the Szeged index of G is as follows:

Sz(G) = |E|nu(e|G)nv(e|G).

Theorem 3 Let G = (V,E) be a simple edge-transitive graph and let e = uv be a fixed edge of G. Then
the PI-index of G is as follows:

PI(G) = |E|
(
neu(e|G) + nev(e|G)

)
.

2. Computing the Wiener, the Szeged and PI-index of the Bipartite Kneser Graph

Definition 4 For a positive integer k ≥ 2, let X be any set of cardinality n and V be the set of all k-subsets
and (n− k)-subsets of X which are denoted by Xk and Xn−k respectively. The bipartite Kneser graph Hn,k has
V as its vertex set, and vertices A,B are connected if and only if A ⊂ B or B ⊂ A. If n = 2k it is obvious that
we don’t have any edges, and Hn,k would be the null graph hence we assume n ≥ 2k + 1.

From the above fact we can show vertex and edge transitivity of the bipartite Kneser graph.
The complete bipartite graph on n vertices is the bipartite Kneser graph Hn,1. The bipartite Kneser graph
H2n−1,n−1 is known as the double odd graph 2On.

Therefore Hn,k has 2
(n

k
)

vertices, it is regular of degree
(n−k

k
)
. The number of edges of Hn,k is

(n−k
k
)(n

k
)
. If

σ is a permutation of Ω and A ⊆ Ω then Aσ is defined by: Aσ = {aσ|a ∈ A} which is again a subset of Ω of
cardinality |A|. Therefore each permutation of Ω induces a permutation on the set of vertices of Hn,k. If AB
is an edge of Hn,k then A and B are subset of Ω with cardinality k and n − k respectively, where A ⊂ B and
for any permutation σ of Ω we have Aσ

⊂ Bσ if and only if A ⊂ B, which proves that σ is an element of
Aut(Hn,k). Therefore we have proved the following theorem:

Theorem 4 The automorphism group of the bipartite Kneser graph Hn,k contains a subgroup isomorphic
to the symmetric group on n letters.

Lemma 1 The bipartite Kneser graph is both vertex and edge transitive.

Proof. Let Ω be a set of size n. Without loss of generality we may assume Ω = {1, 2, ...,n}. Let the
bipartite Kneser graph be defined on Ω. Consider two distinct vertices A and B of Hn,k. We may assume
A = {1, 2, ..., k}(or {1, 2, ...,n−k}), B = {1′, 2′, ..., k′}(or {1′, 2′, ..., (n−k)′}). Then we set Ω−A = {k+1, ...,n}(or {n−
k+1, ...,n} and Ω−B = {(k+1)′, ...,n′}(or {(n−k+1)′, ...,n′} and both are subsets of Ω. Thenπ : Ω→ Ω defined
by i→ i′ is an element of the symmetric group Sn which induces an element ofAut(Hn,k) and Aπ = B. This
proves that Hn,k is vertex-transitive. Now assume AB and CD are distinct edges of Hn,k. To prove edge-
transitivity of Hn,k it is enough to show that there is a permutation π on Ω such that Aπ = C and Bπ = D.
Without loss of generality we may assume that A = {1, 2, ..., k − 1, k}, B = {1, 2, ...,n − k}, C = {1′, 2′, ..., k′},
D = {1′, 2′, ..., , (n − k)′}. Then we set Ω − (A ∪ B) = {n − k + 1, ...,n} and Ω − (C ∪D) = {(n − k + 1)′, ...,n′} and
both are subsets Ω. Now the permutation π : Ω → Ω defined by i → i′ has the required property and the
lemma is proved.

Since in the case of n = 2k + 1, Hn,k is the double odd graph and in [13] we calculated the Wiener, Szeged
and PI indices of this graph, therefore here we will assume n ≥ 2k + 2.

Lemma 2 For a positive integer k ≥ 2, let n ≥ 3k, then for any two vertices like u and v in Hn,k we have:
d(u, v) ≤ 3

Proof. Let u, v be two distinct vertices in Hn,k. We consider two cases:
(1) u ⊂ v or v ⊂ u
In this case we have d(u, v) = 1.
(2) u * v and v * u.

Therefore |u ∩ v| = i where 0 ≤ i ≤ k − 1
Let Ω = {1, 2, ...,n} and u, v be two distinct subset of Ω. Without loss of generality we can assume u ∈ Xk.

Now we consider two cases for v.
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(a) v ∈ Xk. Without loss of generality we can assume u = {1, 2, ..., i, i+1, ..., k} and v = {1, 2, ..., i, k+1, ..., 2k−i}
such that 0 ≤ i ≤ k− 1. We consider c = {1, 2, ..., i, i + 1, ..., k, k + 1, ..., 2k− i, 2k− i + 1, ...,n− k}which is possible
because n ≥ 3k. Therefore ucv is a shortest path of length 2 from u to v.

(b) v ∈ Xn−k,without of generality we can assume u = {1, 2, ..., i, i + 1, ..., k} and v = {1, 2, ..., i, k + 1, ...,n− i}
such that 0 ≤ i ≤ k − 1. We consider c = {1, 2, ..., k, k + 1, ...,n − k} and d = {k + 1, ..., 2k} which is possible
because n ≥ 3k therefore ucdv is a shortest path of length 3 from u to v.

Remark 1 If A ∈ V and 2k + 2 ≤ n ≤ 3k − 1, then it is obvious that A have equal distance with vertices
like B such that k − (i + 1)(n − 2k) ≤ |A ∩ B| ≤ k − i(n − 2k) − 1, where 0 ≤ i ≤ m and m = [k/(n − 2k)].

Lemma 3 Let A ∈ Xk, B ∈ Xn−k and m = [k/(n− 2k)] such that k− (i + 1)(n− 2k) ≤ |A∩B| ≤ k− i(n− 2k)− 1
where 0 ≤ i ≤ m then d(A,B) = 2i + 3.

Proof. We use induction on i. If i = 0, then k − (n − 2k) ≤ |A ∩ B| ≤ k − 1 by Remark 1 it is enough
we assume |A ∩ B| = k − 1. Without loss of generality we can assume A = {1, 2, ..., k − 1, k} and B =
{1, 2, ..., k − 1, k + 1, ...,n − k + 1}. We consider c = {1, 2, ..., k, ...,n − k} and d = {1, 2, ..., k − 1, k + 1} hence AcdB
is a shortest path of length 3 from A to B. Therefore by induction we assume the lemma is true for i− 1 and
prove it for i − 1. Hence we assume A ∈ Xk, B ∈ Xn−k and k − (i + 1)(n − 2k) ≤ |A ∩ B| ≤ k − i(n − 2k) − 1.
By Remark 1 it is enough we assume |A ∩ B| = k − i(n − 2k) − 1. Without loss of generality we can assume
A = {1, 2, ..., k − i(n − 2k) − 1, ..., k} and B = {1, 2, ..., k − i(n − 2k) − 1, k + 1, ...,n − k + i(n − 2k) + 1} where
0 ≤ i ≤ m. We consider d = {1, 2, ..., k − i(n − 2k) − 1, k − i(n − 2k), k + 1, ...,n − k + i(n − 2k)} then we observe
that |A ∩ d| = k − i(n − 2k) and |B − d| = 1 therefore by induction hypothesis we have d(A, d) = 2i + 1 and by
the properties of bipartite graphs we have d(B, d) = 2 which is possible because 2 ≤ n− 2k ≤ k− 1, |B− d| = 1
and |B| = |d| = n − k hence d(A,B) = 2i + 3, therefore the lemma is proved.

The following tables are used in further results. Let 2k+2 ≤ n ≤ 3k−1 and m = [k/(n−2k)]. By definition
of the bipartite Kneser graph, Remark 1 and Lemma 3 we obtain results in Tables 1-3:

Table 1: Distance d(A,B) and corresponding|A ∩ B| for A ∈ Xk and B ∈ Xn−k.

d(A,B) 1 3 ... 3 5 ... 5 ... 2m+3 ... 2m+3
|A ∩ B| k k-1 ... k-(n-2k) k-(n-2k)-1 ... k-2(n-2k) ... k-m(n-2k)-1 ... 0

Table 2: Distance d(A,B) and corresponding|A ∩ B| for A ∈ Xk and B ∈ Xk.

d(A,B) 0 2 ... 2 4 ... 4 ... 2m+2 ... 2m+2
|A ∩ B| k k-1 ... k-(n-2k) k-(n-2k)-1 ... k-2(n-2k) ... k-m(n-2k)-1 ... 0

Table 3: Distance d(A,B) and corresponding|A ∩ B| for A,B ∈ Xn−k.

d(A,B) 0 2 ... 2 4 ... 4 ... 2m+2 ... 2m+2
|A ∩ B| n-k n-k-1 ... n-k-(n-2k) k-1 ... n-k-2(n-2k) ... n-k-m(n-2k)-1 ... n-2k

Theorem 5 For a positive integer k ≥ 2, let n ≥ 2k + 2 and m = [k/(n − 2k)]:
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(1) If n ≥ 3k then we have

W(Hn,k) =

(
n
k

)((
n − k

k

)
+ 2

((n
k

)
− 1

)
+ 3

((n
k

)
−

(
n − k

k

)))
,

(2) If 2k + 2 ≤ n ≤ 3k − 1, then we have

W(Hn,k) =

(
n
k

)(( m+1∑
i=1

2i
n−2k∑
j=1

(
k

k − (i − 1)(n − 2k) − j

)(
n − k

(i − 1)(n − 2k) + j

))
+

(( n − k
n − 2k

)
+

m+1∑
i=1

(2i + 1)
n−2k∑
j=1

(
k

k − j − (i − 1)(n − 2k)

)(
n − k

i(n − 2k) + j

)))
.

Proof. By Lemma 1, Hn,k is vertex-transitive and by Theorem 1 :

W(Hn,k) =

(
n
k

)
d(A)

where A is a fixed vertex of Hn,k and d(A) =
∑

B d(A,B), where B is a subset of Ω with cardinality k or n − k.
proof (1) Let u ∈ Xk. By Lemma 2 the number of vertices like v ∈ V such that d(u, v) = i, 0 ≤ i ≤ 3 is

calculated as follows:
if d(u, v) = 0, then the number of choices for v is 1, if d(u, v) = 1 then by properties of bipartite graphs we
must have v ∈ Xn−k, hence the number of choices for v is

(n−k
k
)
. If d(u, v) = 2 then we must have v ∈ Xk hence

the number of choices for v is
(n

k
)
− 1, because n ≥ 3k it is obvious that if d(u, v) = 3, then we have v ∈ Xn−k

hence the number of choices for v is
(n

k
)
−

(n−k
k
)

where
(n−k

k
)

is the number of vertices like w ∈ V such that
d(u,w) = 1 and

(n
k
)

is the number of vertices in Xn−k. Therefore we have

W(Hn,k) =

(
n
k

)((
n − k

k

)
+ 2

((n
k

)
− 1

)
+ 3

((n
k

)
−

(
n − k

k

)))
,

proof (2) Let u ∈ Xk. By Tables 1, 2, 3 the number of vertices like v ∈ V such that d(u, v) = i, 0 ≤ i ≤ 2m+3
is calculated as follows:
if d(u, v) = 0, then the number of choices for v is 1, if d(u, v) = 1 then by properties of bipartite graphs we
must have v ∈ Xn−k, hence the number of choices for v is

(n−k
k
)
. Now if d(u, v) is even then by Tables 2 the

number of choices for v is
(∑m+1

i=1
∑n−2k

j=1
( k

k−(i−1)(n−2k)− j
)( n−k

(i−1)(n−2k)+ j
))

and if d(u, v) is odd then by Table 1 the

number of choices for v is
(∑m+1

i=1
∑n−2k

j=1( k
k− j−(i−1)(n−2k)

)( n−k
i(n−2k)+ j

))
. Therefore we have

W(Hn,k) =

(
n
k

)(( m+1∑
i=1

2i
n−2k∑
j=1

(
k

k − (i − 1)(n − 2k) − j

)(
n − k

(i − 1)(n − 2k) + j

))
+

(( n − k
n − 2k

)
+

m+1∑
i=1

(2i + 1)
n−2k∑
j=1

(
k

k − j − (i − 1)(n − 2k)

)(
n − k

i(n − 2k) + j

)))
.



R. Mohammadyari, M. R. Darafsheh / Filomat 18:10 (2014), 1989–1996 1993

Lemma 4 Let e = uv ∈ E(Hn,k).
(a) If n ≥ 3k to calculate nu(e|Hn,k) it is enough to calculate vertices like z in V such that d(u, z) ≤ 2 and

d(u, z) < d(v, z),
(b) If 2k + 2 ≤ n ≤ 3k − 1, to calculate nu(e|Hn,k) it is enough to calculate vertices like z in V such that

d(u, z) ≤ 2m + 2 and d(u, z) < d(v, z) where m = [n/(n − 2k)].

Proof. For vertices like u, v, z such that uv ∈ E(Hn,k) we have 4 possibilities:
(1) If d(u, z) = 0, then z = u, therefore z ∈ Nu(e|Ok),
(2) If d(u, z) = 1, then by Lemma 2 and by properties of bipartite graphs we have d(v, z) = 0 or 2. Now if

d(v, z) = 0 then z < Nu(e|Ok) otherwise z ∈ Nu(e|Ok),
(3) If d(u, z) = 2, then by Lemma 2 and by properties of bipartite graphs we have d(v, z) = 1 or 3. Now if

d(v, z) = 1 then z < Nu(e|Ok) otherwise z ∈ Nu(e|Ok),
(4) If d(u, z) = 3, then by Lemma 2 and by properties of bipartite graphs we have d(v, z) = 0 or 2 then

z < Nu(e|Ok).
(b) For vertices like u, v, z such that uv ∈ E(Hn,k) we have:
(1) If d(u, z) = 0, then z = u, therefore z ∈ Nu(e|Ok),
(2) If d(u, z) = 1, then by Tables 1, 2, 3 we have d(v, z) = 0, 2, ..., 2m + 2 now if d(v, z) = 0 then z < Nu(e|Ok)

otherwise z ∈ Nu(e|Ok),
.
.
.
(2m+3) If d(u, z) = 2m+2, then by Tables 1, 2, 3 we have d(v, z) = 1, 3, ..., 2m+3 now if d(v, z) = 1, 3, ..., 2m+1

then z < Nu(e|Ok) otherwise z ∈ Nu(e|Ok),
(2m+4) If d(u, z) = 2m + 3, then by Tables 1, 2, 3 we have d(v, z) = 0, 2, ..., 2m + 2 then z < Nu(e|Ok).

Theorem 6 For a positive integer k ≥ 2 let n ≥ 2k + 2. The Szeged index of Hn,k is:
(1) If n ≥ 3k then we have

Sz(Hn,k) =

(
n
k

)(
n − k

k

)(
E0 + E1 + E2

)2

,

where E0 = 1, E1 =
(n−k

k
)
− 1 and E2 =

(n
k
)
− 1 − E1.

(2) If 2k + 2 ≤ n ≤ 3k − 1, then we have

Sz(Hn,k) =

(
n
k

)(
n − k

k

)( 2m+2∑
i=0

Fi

)2
.

where F0 = 1, F1 =
(n−k

k
)
− 1, and

Fi =


∑n−2k

j=1
( k

k− j−(i−1)(n−2k)
)( n−2k

n−2k+(i−1)(n−2k)+ j
)
− Fi−1 i f i ≥ 3 , i is odd ,

∑n−2k
j=1

( k
k− j−(i−1)(n−2k)

)( n−k
(i−1)(n−2k)+ j

)
− Fi−1 i f i ≥ 2 , i is even.

Proof. Since by Lemma 1, Hn,k is edge-transitive, we can use Theorem 2 to write

Sz(Hn,k) =

(
n
k

)(
n − k

k

)
nu(e|Hn,k)nv(e|Hn,k),

where e = uv is a fixed edge of Hn,k and u ∈ Xk, v ∈ Xn−k or conversely. Since Hn,k is a symmetric graph
therefore nu(e|Hn,k) = nv(e|Hn,k), hence

Sz(Hn,k) =

(
n
k

)(
n − k

k

)(
nu(e|Hn,k)

)2
.
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We proceed to calculate nu(e|Hn,k). We define Ei, 0 ≤ i ≤ 2 and Fi, 0 ≤ i ≤ 2m + 2 where m = [n/(n − 2k)], as
the number of vertices like x ∈ V such that d(u, x) = i and d(u, x) < d(v, x)

proof (1) By Lemma 4 and properties of bipartite graphs it is enough to calculate E0, E1 and E2. It is
obvious that E0 = 1 and E1 =

(n−k
k
)
− 1. E2 =

(n
k
)
− 1 − E1 because by assumption if we assume u = {1, ..., k}

then for other vertices like w ∈ Xk we have d(u,w) = 2, but for the number of these vertices like z ∈ V we
have d(v, z) = 1, therefore this number must be ommited. Then we have

Sz(Hn,k) =

(
n
k

)(
n − k

k

)(
E0 + E1 + E2

)2

,

where E0 = 1, E1 =
(n−k

k
)
− 1 and E2 =

(n
k
)
− 1 − E1.

proof (2) By Lemma 4 and properties of bipartite graphs it is enough to calculate Fi where 0 ≤ i ≤ 2m+2
where m = [n/(n − 2k)]. Without loss of generality we can assume u ∈ Xk and v ∈ Xn−k. By Table 1 we have
F0 = 1 because d(u, x) = 0 if and only if |u ∩ x| = k, F1 =

( n−k
n−2k

)
− F0 where by Table 1,

( n−k
n−2k

)
is the number

of choices for vertices like y ∈ V such that d(u, y) = 1 and F0 is the number of choices for vertices in V like
w such that d(w, v) = 0 so this number must be ommited, F2 =

∑n−2k
j=1

( k
k− j−(n−2k)

)( n−k
(n−2k)+ j

)
− F1 where by Table

2,
∑n−2k

j=1
( k

k− j−(n−2k)
)( n−k

(n−2k)+ j
)

is the number of choices for vertices like a ∈ V such that d(u, a) = 2 and F1 is the
number of vertices like r in V such that d(v, r) = 1 so this number must be ommited, hence by Lemma 4 we
must continue this method until F2m+2. Then we have

Fi =


∑n−2k

j=1
( k

k− j−(i−1)(n−2k)
)( n−2k

n−2k+(i−1)(n−2k)+ j
)
− Fi−1 i f i ≥ 3 , i is odd ,

∑n−2k
j=1

( k
k− j−(i−1)(n−2k)

)( n−k
(i−1)(n−2k)+ j

)
− Fi−1 i f i ≥ 2 , i is even.

Therefore we have

Sz(Hn,k) =

(
n
k

)(
n − k

k

)( 2m+2∑
i=0

Fi

)2
.

where F0 = 1, F1 =
(n−k

k
)
− 1, and

Fi =


∑n−2k

j=1
( k

k− j−(i−1)(n−2k)
)( n−2k

n−2k+(i−1)(n−2k)+ j
)
− Fi−1 i f i ≥ 3 , i is odd ,

∑n−2k
j=1

( k
k− j−(i−1)(n−2k)

)( n−k
(i−1)(n−2k)+ j

)
− Fi−1 i f i ≥ 2 , i is even.

Lemma 5 Let G be a connected graph, then we have

PI(G) = |E(G)|2 −
∑

e∈E(G)

N(e)

where e = uv is a fixed edge of G and N(e) is the number of edges equidistant from u and v.

Proof. By definition of PI(G) we have

PI(G) =
∑

e∈E(G)

(
neu(e|G) + nev(e|G)

)
Since E(G) = neu(e|G) + nev(e|G) + N(e), hence E(G) −N(e) = neu(e|G) + nev(e|G), and we have

PI(G) =
∑

e∈E(G)

(
|E(G) −N(e)

)
= |E(G)|2 −

∑
e∈E(G)

N(e).
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Theorem 7 For a positive integer k ≥ 2 let n ≥ 2k + 2. The PI-index of Hn,k is:
(1) If n ≥ 3k, then we have

PI(Hn,k) = 2
(
n
k

)(
n − k

k

)((n
k

)
− 1

)
,

(2) If 2k + 2 ≤ n ≤ 3k − 1 and m = [n/(n − 2k)], then we have

PI(Hn,k) =
((n

k

)(
n − k

k

))2

−

(
n
k

)(
n − k

k

)
(F0 + F2 + ... + F2m+2),

where F0 = 1, F1 =
( n−k

n−2k
)
− 1 and

Fi =


∑n−2k

j=1
( k

k− j−(i−1)(n−2k)
)( n−2k

n−2k+(i−1)(n−2k)+ j
)
− Fi−1 i f i ≥ 3 , i is odd ,

∑n−2k
j=1

( k
k− j−(i−1)(n−2k)

)( n−k
(i−1)(n−2k)+ j

)
− Fi−1 i f i ≥ 2 , i is even.

Proof. Since by Lemma 1, Hn,k is edge-transitive, we can use Theorem 3 to write

PI(Hn,k) =

(
n
k

)(
n − k

k

)(
neu(e|Hn,k) + nev(e|Hn,k)

)
,

where e = uv is a fixed edge of Hk and u ∈ Xk. Since Hn,k is a symmetric graph therefore neu(e|Hn,k) =
nev(e|Hn,k), hence

PI(Hn,k) = 2
(
n
k

)(
n − k

k

)
neu(e|Hn,k).

We proceed to calculate neu(e|Hn,k).
proof (1) By Lemma 4 and properties of bipartite graphs we define Si, i = 0, 1 to be the number of edges

like 1 in E such that d(u, 1) = i and d(u, 1) < d(v, 1). In fact the number of edges like f ∈ E such that d(u, f ) = 0
is equal to the number of vertices like m ∈ V such that d(u,m) = 1, d(u,m) < d(v,m) and also similar to proof

Theorem 6 we can define Si = Ei+1 where i = 0, 1. Therefore S0 =
(n−k

k
)
− 1 and S1 = E2 =

((n
k
)
− 1

)
− S0. Then

we have

PI(Hn,k) = 2
(
n
k

)(
n − k

k

)((n
k

)
− 1

)
,

proof (2) Since by Lemma 1, Hn,k is edge-transitive, we can use Theorem 3 and Lemma 5 to write

PI(Hn,k) =
((n

k

)(
n − k

k

))2

−

(
n
k

)(
n − k

k

)
N(e)

where e = uv is a fixed edge of Hn,k. First we calculate N(e). In fact it is obvious that by the properties of
bipartite graphs we must calculate the number of vertices like w in E(Hn,k) such that d(u,w) = d(v,w) = 2i,
0 ≤ i ≤ m + 1. Therefore we can define Fi, 0 ≤ i ≤ 2m + 2, in the same manner as in the proof of Theorem 6.
Then we have

F0 = 1, F1 =

(
k

k − 1

)
− F0 and

Fi =


∑n−2k

j=1
( k

k− j−(i−1)(n−2k)
)( n−2k

n−2k+(i−1)(n−2k)+ j
)
− Fi−1 i f i ≥ 3 , i is odd ,

∑n−2k
j=1

( k
k− j−(i−1)(n−2k)

)( n−k
(i−1)(n−2k)+ j

)
− Fi−1 i f i ≥ 2 , i is even.
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