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Abstract. By investigating appropriate classes of admissible functions, various Differential subordination
and superordination results for analytic functions in the open unit disk are obtained using Cho-Kwon-
Srivastava operator. As a consequence of these results, Sandwich-type results are also obtained.

1. Introduction and Motivations
Let 7#(U) be the class of functions analytic in
U:={zeC:lz| <1}
and .77’[a, n] be the subclass of .7 (U) consisting of functions of the form
f(z)=a+a2" +amz™ +...,

witha € C, 7 = 2[0,1] and 2Z = J[1,1]. Let 7, denote the class of all analytic functions of the form

flz)=2"+ i nZt (zeU)

k=p+1

)

and let w4 .= &.
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Let f and F be members of s#(U). The function f(z) is said to be subordinate to F(z), or F(z) is said to be
superordinate to f(z), if there exists a function w(z) analytic in U with

w(0) =0 and |w(z)] <1 (ze ),
such that f(z) = F(w(z)). In such a case we write f(z) < F(z). If F is univalent, then
f(z) < F(z) if and only if f(0) = F(0)
and f(U) c F(U).

For two functions f(z) given by (1) and g(z) = zF + Z biZ*, the Hadamard product(or convolution) of f
k=p+1
and g is defined by

(f+9@ =2+ ) abd = (g+ ). 2)
k=p+1
For a function f € .7, given by (1.1) and it follows from
Ih@0f@) =4, @62+ f2),z€ U
that for A > —pand 4,c € R\Z;

= (O)(A + Pk
A — P AL SN 2 p+k
I, (a,c) f(z) =2" + kEﬂ @ Ap+kZ

=2"Fi(c, A +p,a;2) * f(z) (z e U). 3)

where
zP

Ppa,c;2) = Py (a,c;2) = -

and .
a
¢pa,c;z) =2 + kz_; %z’”k.

From (3), we deduce that

2@, Of@) = A+ I @, f @) - AL, ) f () (4)
and

2@ +1,0f@) = all(@,0f@) - @-p)a+1,0f(). (5)
We also note that

Dp+1,10)f(x) = p fo @dt,

Lp,)f@) = Lp+1,1f()=f@),

Be D) = pr<2>,
20+ 21 @)
Bpfe = =
Rp+1L,1fG) = f%

L@a)f(z) = D" f(z),n e N, n > —p.
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The Ruscheweyh derivative D"*P~1 f(z) was introduced by Y. C. Kim et al. [11] and the operator
Ig(a, (A > —p,a,c € R\Z;) was recently introduced by Cho et al. [6], who investigated (among other
things) some inclusion relationships and properties of various subclasses of multivalent functions in <7,
(see, [3, 17, 18]) which were defined by means of the operator I;,‘(a, ). ForA =c=1anda =n+p,
the Cho-Kwon-Srivastava operator I;,‘ (a,¢) yields the Noor integral operator I;(n +p,1) =1,,(n > —p) of
(n + p — 1) the order, studied by Liu and Noor [9](see also the works of [4, 5, 15, 16]). The linear operator
I{‘(‘u +2,1) (A > =1, u > —2) was also recently introduced and studied by Choi et al. [8]. For relevant details
about further special cases of the Choi-Saigo-Srivastava operator I} (i +2, 1), the interested reader may refer
to the works by Cho et al. [6] and Choi et al.[8] (see also [2, 7, 10]). In an earlier investigation, a sequence
of results using differential subordination with convolution for the univalent case has been studied by
Shanmugam [19] while sharp coefficient estimates for a certain general class of spirallike functions by
means of differential subordination was studied by Xu et al. [25]. A systematic study of the subordination
and superordination using certain operators under the univalent case has also been studied by Shanmugam
et al. [20-23] and by sun et al. [24]. We observe that for these results, many of the investigations have not
yet been studied by using appropriate classes of admissible functions.

Motivated by the aforementioned works, we obtain certain differential subordination and superordina-
tion results for analytic functions in the open unit disk using Cho-Kwon-Srivastava operator by investigating
appropriate classes of admissible functions. Sandwich-type results are also obtained as a consequence of
the main results.

2. Preliminaries

To prove our results, we need the following definitions and theorems.
Denote by . the set of all functions g(z) that are analytic and injective on U\E(q), where

E(@) = {C€ U : limg(z) = oo},

and are such that ¢’(C) # 0 for C € JU\E(g). Further let the subclass of .# for which g(0) = a be denoted by
L), Z0) = % and Z(1) = 4.

Definition 2.1. [13, Definition 2.3a, p.27] Let Q) be a set in C,q € £ and n be a positive integer. The class of
admissible functions W,[Q, q] consists of those functions 1 : C> x U — C that satisfy the admissibility condition

Y(r,s,t;z) ¢ Q

whenever
r=q(C),s = kCq'(0),
and
t ' ()
?/Z{; +1} > k%{ 70 +1},
where z € U, C € JU\E(q) and k > n. We write W1[Q, q] as W[Q, q].

Mz +a
I ticular wh =M———, withM > 0and |a| <M, th
n particular when q(z) V1o Y and |a en

gU) =Up :={w : lw| < M},q(0) =a,E(q) =0and g€ Z.

In this case, we set V,,[QQ, M, a] := V,,[Q, q] and in the special case when the set Q = Wy, the class is simply denoted
by V,[M, a].
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Definition 2.2. [14, Definition 3, p.817] Let Q2 be a set in C, q(z) € [a, n] with q'(z) # 0. The class of admissible
functions W/,[Q, q] consists of those functions 1 : C> x U — C that satisfy the admissibility condition

Y(r,s,t;,C) € Q

whenever )
zq'(z
r=q),s="1=,

and

whereze U,CedUandm>n > 1.
In particular, we write W1[Q, q] as W'[Q, q].

Theorem 2.3. [13, Theorem 2.3b, p.28]
Let Y € W, [Q, q] with q(0) = a. If the analytic function

1

p(2) =a+a,z" + ayz2" + ..
satisfies
¥ (p), 27’ (@), 2% (2):2) € Q,
then
p(@) < q@).
o
Theorem 2.4. [14, Theorem 1, p.818]
Let Y € W, [Q), q] with q(0) = a. If the analytic function p(z) € £ (a) and
¥ (p@), 2’ (@), 2" (2);2)
is univalent in U, then )
Qc (¢ (p@), ' @),2p" (@)2) 2 € U}
implies
() < p(2).
o

3. Main Results

Definition 3.1. Let Q) be a set in C and q(z) € £ N [0, p]. The class of admissible functions ®;[C2, q] consists of
those functions ¢ : C*> x U — C that satisfy the admissibility condition

o(u,v,w;z) € Q

whenever KCa'(©) + Aa(©)
+
A+p)A+p+1Dw—=2AA+p)v+ AA-1u Cq"(C)
%{ (A+p)o—Au }Zk%{ 7'(0) +1}’

where z € U, C € JU\E(q) and k > p.
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Theorem 3.2. Let ¢ € O;[Q, q]. If f(2) € ), satisfies

{0 (B@,0f@), 1" @,0f@),1)**(a,0f@);z) 1 2€ U} c O

then
L(a,¢)f(2) < q(2).

Proof. Define the analytic function p(z) in U by

P() = (@, f(2).
In view of the relation

(A + P @, 0f () = 2(L)(@,0)f2) + ALy (@a,0)f(2)
this implies from (7) we get,

zp'(z) + Ap(2)
A+p)

Further computations show that,

1@, (2) =

22p" (2) + QA + 1)zp'(2) + A(A + Dp(z)
A+p)A+p+1) ’

10,0 () =

Define the transformations from C® to C by

s+ Ar = t+ QA+ 1)s+ AA + Dr
(A+p) A+p)A+p+1)

Let

L N s+Ar t+ QA+ 1)s+AA+ 1)r
¢(r,s,t,z)—(P(u,v,w,Z)—(;b(T’, /\+Pl (/\+p)(A+p+1) ,Z)

The proof shall make use of Theorem 2.3 Using equations (7), (9) and (10), from (12), we find

v (p(z),zp’(z), zzp" (2); z) =¢ (I;,‘(a, 0f(z2), I;}”(a, 0)f(2), I£+2(u, o) f(z); z) .

Hence (6) becomes
¥ (p@) 20’ @), 2p (2);2) € Q.

2013

(7)

©)

(10)

(11)

(12)

(13)

The proof is completed if it can be shown that the admissibility condition for ¢ € ®;[(), 4] is equivalent to

the admissibility condition for ¢ as given in Definition 2.1. Note that

_(A+p)A+p+Dw=2A(A +p)o+ AMA = Tu

t
-+1
sJr (A+po-Au

and hence ¢ € W,[Q, q]. By Theorem 2.3, p(z) < q(z) or
L(a,0)f(2) < q(2).
0

If Q # C is a simply connected domain, then QO = h(U) for some conformal mapping h(z) of U onto Q. In

this case the class ®;[#(U), 4] can be written as [k, g].
The following result is an immediate consequence of Theorem 3.2.
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Theorem 3.3. Let ¢ € Oi[h, ql. If f(2) € @, satisfies

qb(IQ (a,0f(2), I;}“(a, 0)f(2), IQ*Z (a,0)f(2);2) < h(z) (14)

then
L;(a,0)f(2) < q(2)-

[m]

Our next result is an extension of Theorem 3.3 to the class where the behavior of g(z) on JU is not known.

Corollary 3.4. Let Q c C and let q(z) be univalent in U, q(0) = 0. Let ¢ € D;[€Q,q,] for some p € (0,1) where
p(2) = q(p2). If f(2) € o, and

oIy (a,0)f(2), 1,7 (a,0) f(2), [)**(a, ) f(2);2) € Q,
then
I}(a,c) < q(2).
Proof. Theorem 3.2 gives I;,‘ (a,¢) < gp(2). The result is now deduced from q,(z) < g(z). O

Theorem 3.5. Let h(z) and q(z) be univalent in U, with q(0) = 0 and set q,(z) = q(pz) and h,(z) = h(pz). Let
¢ : € — C satisfy one of the following conditions:

1. ¢ € Ok, q,), for some p € (0,1) or
2. there exists pg € (0,1) such that ¢ € ®ylhy, q,] for all p € (po, 1).

If f(z) € 2, satisfies (14), then
I)@,0)f(2) < 9(2)-

Proof. The proof is similar to the proof of [13, Theorem 2.3d, p.30] and is therefore omitted. []
The next Theorem yields the best dominant of the differential subordination (14).

Theorem 3.6. Let h(z) be univalent in U. Let ¢ : C> x U — C. Suppose that the differential equation

2q'(2) + Aq(2) 2% (2) + QA + 1)z (2) + A(A + 1)q(2)
A+p 7 A+pA+p+1) ’

P49, z] = h(z) (15)

has a solution q(z) with (0) = 0 and satisfy one of the following conditions:

1. q(z) € L and ¢ € Oilh, q],
2. q(z) is univalent in U and ¢ € Oy[h, q,] for some p € (0,1) or
3. q(2) is univalent in U and there exists po € (0, 1) such that ¢ € ®i[h,, q,], for all p € (po, 1).
If f(z) € a2, satisfies (14) then
I)(@,0)f(2) < q(2)

and q(z) is the best dominant.

Proof. Following the same argument in [13, Theorem 2.3e, p.31]. We deduce that g(z) is a dominant from
Theorems 3.3 and 3.5. Since g(z) satisfies (15) it is also a solution of (14) and therefore g(z) will be dominated
by all dominants. Hence 4(z) is the best dominant. [

In the particular case g(z) = Mz, M > 0 and in view of the Definition 3.1, the class of admissible functions
@[Q), q], denoted by @;[Q), M] is described below.
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Definition 3.7. Let Q be aset in C and M > 0. The class of admissible functions ®;[CQ, M] consists of those functions
¢ : C® x U — C such that

T
whenever z € U,0 € R, % (Le_ie) > (k—1)kM for all real 6 and k > p.
Corollary 3.8. Let ¢ € @;[Q, M]. If f(z) € 7, satisfies

¢ (I}(a, 0 f(2), 11 (a,0) f(2), 1)@, 0) f(2);2) € O

then
II}(a,0)f(2)] < M.

In the special case Q) = q(U) = {w : [w| < M}, the class ®;[Q), M] is simply denoted by O1[M].

O
Corollary 3.9. Let ¢ € O;[M]. If f(z) € 7, satisfies
[0 (13, 0) @), 1110, £2), 120, ) f2);2)| < M,
then
L@, 0)f(2)] < M.
O

Remark 3.10. when Q = U,A =a—1(a > 0),p = 1 and M = 1, Corollary 3.8 reduces to [6, Theorem2, p.231].
When Q =U,A =1,p =1and M =1, Corollary 3.8 reduces to [1, Theorem 1, p. 477].

Corollary 3.11. If M > 0 and f(z) € <, satisfies

|(/\ +p)A +p+ DL, 0)f(2) = (A + P e, 0 f(2) = AA + DI (a, c)f(z)| <[@p-DA+pp-1]M
then
(@, 0)f(2)| < M. (17)
Proof. This follows from Corollary 3.8 by taking
o, v, w;z) =(A+p)A+p+1Dw—-(A+p)v—AA+Nu

and Q = h(U) where h(z) = [2p — 1)A + p(p — 1)] Mz, M > 0. To use Corollary 3.8, we need to show that
¢ € ®[[Q), M], that is the admissible condition (16) is satisfied. This follows since,

o k+A i L+ (@A + Dk + A(A + 1))Me™®
‘q’M M T G e D Z)’
IL+ (@A + Dk + A(A + 1)Me? — (k + A)Me'? — A(A + 1)Me'|
L + 2k — 1)AMe")|
(2k — 1)AM + Z(Le™'?)
2k = DAM + k(k = )M
[2p — DA +plp-DIM
wherez € U, 0 € R, % (Le) > k(k - 1)M and k > p.

Hence by Corollary 3.8, we deduce the required result. [

vV IV IV
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Definition 3.12. Let Q be a set in C and q(z) € £ N 4. The class of admissible functions ®p1[Q, q] consists of
those functions ¢ : C*> x U — C that satisfy the admissibility condition

o(u,v,w;z) € Q
whenever

_ _ kG (© + (A +p—1)q(0)
u=4q(),v= A

(A+p)[(/\+p+1)w—(2)\+2p—1)v+3(/\+p—1)u]} {Cq"(C) }
‘%{ A+po—(A+p—Du >k o T
where z € U, C € JU\E(q) and k > 1.

Theorem 3.13. Let ¢ € Op1[Q, q. If f(z) € 47, satisfies

Ma, o) f(z) IMYa,o)f(z) IM*a,c)f(z
{¢(p(piﬂ),p (_Jﬂ),p (_3ﬂ);%:zel%c:Q a8)
Z zP zP
then N @
INa,c)f(z
P
——a - <10
Proof. Define an analytic function p(z) in U by
Ma, o) f(z
z) = M_ (19)
zp-1
By making use of (8), we get,
L@@ _zp@) + (A +p-1pe) 0)
zp~1 A+p) '
Further computations show that,
[;*%(a,0)f(2) _ 220" @) + 20 +p)zp’'2) + A +p = 1)(A + p + Dp(2) 1)
zP~1 A+pA+p+1) '
Define the transformations from C° to C by
s+(A+p-1r t+2A+p)s+(A+p-1DA+p+r
Uu=ruv= ,W = . 22
) P +p+ D) 2
Let
s+A+p-Dr t+2A+p)s+(A+p-1)A+p+1)r )
r,s,tz) =du,v,w;z) =od|r, , ;2] 23
bt = ot wa) =0 G WA +p e *
The proof shall make use of Theorem 2.3 using equations (19), (20) and (21), from (23) we obtain
I@,0f(z) I;"(@,0f@) ;@ c0)f(2)
’ 2.7 . _ 4 4 4 .
'7[} (P(Z)r ZP (Z)/ zZ p (Z)/ Z) - (P ( Zp_l 7 Zp_l 7 Zp_l 7 Z) . (24)

Hence (18) becomes,
Y (P(Z)r zp'(2),2°p (z);z) €Q.
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The proof is completed if it can be shown that the admissibility condition for ¢ € ®;1[Q, q] is equivalent to
the admissibility condition for ¢ as given in Definition 2.1.

Note that,

_(A+plA+p+Dw—2A+2p—T)o+3(A+p—1u]

A+po—-—A+p-1u

d +1
s
and hence, ¢ € W[Q, g].
By Theorem 2.3, p(z) < q(z) or
Ma, o) f(z
If Q # C is simply connected domain, then Q) = h(U), for some conformal mapping h(z) of U onto Q. In
this case the class ®;1[h(U), g] can be written as @; 4[4, g].

In the particular case g(z) = Mz, M > 0, the class of admissible functions ®;;[€, q], denoted by ®;1[Q2, M].
The following result is an immediate consequence of Theorem 3.13. [

Theorem 3.14. Let ¢ € Ppq[h, q. If f(z) € <, satisfies

D0, 0f@) I*a,0f() [6,0fG)
14 14 4 .
e ,z]<h<z> (25)
fer Ia,0)f 2)
(@, 0f(z
—1 - <1@).
O

Definition 3.15. Let Q be a set in C and M > 0. The class of admissible functions ®p1[Q, M] consists of those
functions ¢ : C> X U — C such that

o kr(A+p=1) o L+RA+pk+A+p—1)(A+p+1)Me?
‘P(Me' Grp G+ rp+D) /

whenever z€e U,0 € R,

z) ¢ Q (26)

% (Le™) 2 (k - kM
¥ real 6 and k > 1.
Corollary 3.16. Let ¢ € @p1[Q, M]. If f(z) € 7, satisfies
[Ig(a, 0f@ L a,0)f(z) 1)@, 0f(2) 'z] cO

7t zr-1 ! zp-1

4

then X
Beofe|

zp-1

In the special case Q = q(U) = {w : |w| < M}, the class P;1[Q, M] is simply denoted by Pr1[M].

Corollary 3.17. Let ¢ € @ [M]. If f(z) € 7, satisfies
‘ (Ig(a, 0f@ I*Ya,0)f(2) I**a,0)f(2) .Z]

-t zp-1 zp-1

<M,

7

then
L}(a,0)f(2)

<
zp-1
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O

Remark 3.18. When Q =U,A =a—1(a > 0),p = 1 and M = 1. Corollary 3.16 reduces to [12, Theorem 2, p.231].
When Q =U,A =1,p =1and M =1, Corollary 3.16 reduces to [1, Theorem 1, p.477].

Corollary 3.19. If f(z) € 7, then

Mg, o) f(z Ma, o) f(z
Feof@| _ |heofe|
zp-1 zp-1
This follows from Corollary 3.17 by taking ¢(u, v, w;z) = v.
o
Corollary 3.20. If M > 0 and f(z) € <, satisfies
IM2(a,c)f(z) IM(a, o) f(z) IMa,0)f(2)
4 4 2 4
(/\+p)(A+p—1)Zp—_1+(A+ ZIJ——l_((A+p) —1)217—_1 <[3(/\+P)]M
then
IMa,0)f(z)
”ZT . 27)

Proof. This follows from Corollary 3.16 by taking
O(u,v,w;z) =(A+p)A+p-Dw+A+po-A+p-1)A+p+1u

and Q = h(U) where h(z) = 3(A + p)Mz, M > 0. To use Corollary 3.16, we need to show that ¢p € O;1[Q, M],
that is the admissible condition (26) is satisfied. This follows since

kt@Arp-1), o L+[2(A+p)k+(A+p—1)(A+p+1)]Mei9_z)|

0
¢(M€ TP : AP e pr1) '

IL+[2A+pk+A+p—-1)A+p+1DIMe? + (k+A+p—1)Me? — (A +p—1)(A +p + 1)Me”|
L+{2A +p)k + (k+ A +p — 1)} Me®®

> [2(A+pk+(k+p+A-1)]M+2[Le™|
> 20 +pk+(k+p+A—-1]M+k(k—1)M
> 3A+p)M,

wherez € U,0 € R, % (Le™) 2 k(k - )M and k > 1.
Hence by Corollary 3.16, we deduce the required result. [

Definition 3.21. Let Q be a set in C and q(z) € £ N . The class of admissible functions ®r2[€), glconsists of
those functions ¢ : C* x U — C that satisfy the admissibility condition

P(u,v,w;z) € Q

whenever

kCq'(C)
7@ |

g’ (Q) A+p+ DA +p+2Qutw+A+p+Duo—-A+p)A+p+3)ud —A+p+4u’ +4
k%{ q'(Q) +1}S%{ A+p+Duv—A+pu2—u }’

where € U, C € JU\E(q) and k > 1.

1+ (A +p)g)+

u=q0),0= (9 #0),

N
A+p+1)
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Theorem 3.22. Let ¢ € Op,[Q, q] and I;}(a, 0)f(z) # 0. If f(z) € 7, satisfies

A+1 /\+2 A+3
{(1 @,0f(2) [*a,0)f@) T} ch@>] GU}CQ, (28)

@,0f@) I @0f@) F”wdﬂ@

then
LY (a,0)f(2)

1@, 0f(@)
Proof. Define an analytic function p(z) in U by
L+ (a,0)f(2)
L;(a,0)f(2)
By making use of (8) and (29) we get,

L*@of@ 1
D+, 0)f(z)  (A+p+1)

<4(2).

p(z) = (29)

P'(Z)
p(2)

[ + (A +p)p(z) + (30)

Further computations show that

’ / 2
) (A+P)ZP (Z)+ Zz +zpiz)_ zpiz)
Zp(z)+(/\+p)p(z)+2+ p@) ) (77())

p(2) 1+ A +p)p) + 28

[P@of) 1
I*2a,0)f(z)  (A+p+2)

(81)

Define the transformations from C° to C by
1 S
= =— |1 —
w=no A+p+1) [ +(A+p)r+(r)]

«ﬂ

1 (A+p)s+(§)—(§) +
(A+P+2)l()+(“p)r+2+ 1+(A+p)r+(2)

(32)

Let

Y(r,s,t;2) = Pu, v, w; 2) (33)

1 1 s a+ps+()-()+ ()]
=q§{r,rp+1[l+(/\+p)r+( )] (/\+—p+2)l( ) A+pr+2+ 1+(A+p)r+(§) iz

The proof shall make use of Theorem 2.3.
Using equations (29), (30) and (31), from (33) we obtain

I@,0f() I0,0fG) 10, 0f ()
1@,0f@) ﬂ”ﬂCﬁ@)ﬂ“mcv@)]

¥ (p@),2'(2), 2" (2);2) = qb( (34)

Hence (28) becomes,
¥ (P(Z)r zp'(2),2°p (z);z) €Q.

The proof is completed if it can be shown that the admissibility condition for ¢ € ®;,[€), q] is equivalent to
the admissibility condition for ¢ as given in Definition 2.1.
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Note that,

CA+p+ DA +p+itw+ A +p+ Duo—(A+p)A+p+3)u —(A+p+4u +u
B A+p+Duv—A+pu?—-u

! +1
s
and hence y € W[, g]. By Theorem 2.3, p(z) < q(z) or

1@,0f(2)
P of@ 10

O

If QO # C is a simply connected domain, then Q = h(U), for some conformal mapping h(z) of U onto Q. In
this case the class ®;,[h(U), ] is written as @;,[h, g].

In the particular case g(z) = 1 + Mz, M > 0, the class of admissible functions ®;,[(), g] becomes the class
q)I,Z [Q/ M] .

Proceeding similarly as in the previous section, the following result is an immediate consequence of Theorem
3.22.

Theorem 3.23. Let ¢ € Ppo[h, ql. If f(z) € 7, satisfies

[, 0f() 1™a,0f@) 1,°@a0f@)
Ia,0f(2) " I™a,0f () 1}*@,0)f(2)

z] < h(z) (35)

then

oo
L <40k).
1@of@

O

The dual problem of differential subordination, that is, differential superordination of Cho-Kwon-
Srivastava operator is investigated in this section. For this purpose the class of admissible functions is
given in the following definition.

Definition 3.24. Let Q be a set in C and q(z) € [0, p] with zq'(z) # 0. The class of admissible functions ®;[Q, q]
consists of those functions ¢ : C> x U — C that satisfy the admissibility condition

P, v,w; C) € Q

whenever
T2+ Ag(z)
(A+p) 7
%{(/\ +p)A+p+Dw—2AA +p)v+ A(A - 1)u} 1 {zq”(z) 1}
(A +po—Au “m | g !

u=4q(z),v=

zeU,ledUand m=p.
Theorem 3.25. Let ¢ € Dj[Q, q]. If f(z) € <7, I;,\ (a,0)f(z) € £ and

¢ (1@, 0 f(2), 1)*)(a,0)f(2), I}*(a, ) f (2); 2)
is univalent in U, then
Q c {¢(1)a,0f(2), 1) (@,0)f(2), I)**(a, ) f(2);2) : z € U} (36)

implies

9(2) < 1)@, O 2).
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Proof. From (13) and (36), we have
Qc {z,b (p(z),zp’(z),zzp” (2); z) 1z € TU}.

From (11), we see that the admissibility condition for ¢ € ®/[Q), ] is equivalent to the admissibility condition
for ¢ as given in Definition 2.2. Hence ¢ € W;[€, q] and by Theorem 2.4, 4(z) < p(z) or

9(2) < 1)@, O 2).
O

If Q # Cis a simply connected domain, then Q = h(U) for some conformal mapping h(z) of U onto Q. In
this case the class ®;[1(U), q] can be written as @[k, q]. Proceeding similarly as in the previous section, the
following result is an immediate consequence of Theorem 3.25.

Theorem 3.26. Let q(z) € 5[0, p], h(z) is analytic on U and ¢ € Oj[h, q].If f(z) € %p,lg(a, c),
f(z) € Zand ¢ (I;,\ (a,0)f(z), I;‘”(a, c)f(z),IngZ(a, c)f(z);z) is univalent in U, then
h(z2) < ¢ (1)@, 0)f(2), 1"} (a,0)f(2), I}**(a, 0) f (2); 2) (37)
implies
q(z) < IQ(LI, o) f(2).
m|

Theorem 3.25 and Theorem 3.26 can only be used to obtain subordinants of differential superordination
of the form (36) and (37). The following theorem proves the existence of the best subordinant of (37) for
certain ¢.

Theorem 3.27. Let h(z) be analytic in U and ¢ : C> x U — C. Suppose that the differential equation

2q'(2) + Aq(2) 2% (2) + QA+ 1)zq'(2) + A(A + 1)g(2) | _
ol Lo A+ PO +p+ D ERC

has a solution q(z) € £. If p € Dilh,q], f(2) € %,I’/]\(ﬂ, 0)f(z) € L and
¢ (1@, 0 f(2), 1)* (@,0)f(2), I} "(a, ) f (2); 2)

(38)

is univalent in U, then
h(z) < 6 (10, ) f(2), 11,0 f2), I} *(a, 0 f (2); 2)
implies
q(z) < I)(a,0)f(2)

and q(z) is the best subordinant.
Proof. The proof is similar to the proof of Theorem 3.6 and is therefore omitted. [
Definition 3.28. Let Q be a set in C and q(z) € %4 with zq'(z) # 0. The class of admissible functions CD},1 [Q, 4]
consists of those functions ¢ : C> x U — C that satisfy the admissibility condition
P(u,v,w; C) € Q

whenever )
TE+ (A +p-1)46)

(A+p) '
[A+p+Dw—Q2A+2p—1)v+3(A +p —1)u] 1 (29" ()

< =% +1;,
A+po—-A+p-Tu m q'(z)

u=4q(z),v=

%{(/\+p)
wherez e U, € U and m > 1.
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Now we will give the dual result of Theorem 3.13 for differential superordination.

L@, 0)f(2)
Theorem 3.29. Let ¢ € ®},[Q,q]. I f(z) € <7, — € 2 and
, -

S zp-1 ’ zp-1

(12 (@,0f@) I, (a,0)f@) I,aco)f (Z)]

is univalent in U, then

I(@,0f(z) I@,0fz) ;@ 0f()
QC%(“;f?”Z;”,P;;f?%meu} (39)
implies
A
/) < L (a,c)f(z)'

zp-1

Proof. From (24) and (40), we have

Q c {Ype, (@), (2);2) 2 U},

From (22), we see that the admissibility condition for ¢ € @},[Q,q] is equivalent to the admissibility
condition for ¢ as given in Definition 2.2. Hence ¢ € W’'[Q, q] and by Theorem 2.4,

1a,0f(2)

12) < pla) or 4(2) < 5

O
If Q # Cis a simply connected domain, and Q = i(U) for some conformal mapping h(z) of U onto () and the

class <D}’1 [4(U), q] cam be written as @, [h, q]. Proceeding similarly as in the previous section, the following
result is an immediate consequence of Theorem 3.29.

Theorem 3.30. Let (z) € 5, h(z) is analytic on U and ¢ € @, [h, q]. If f(z) € o7,
L(a,0)f(2) € Z and

7

-1 zp-1 ! zp-1

($WAU@)$”WJU@)$“WMU@)4

is univalent in U, then

<o B0 B100160) 0 0fe) ) @
implies
O

Now, we will give the dual result of Theorem 3.22 for the differential superordination.
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Definition 3.31. Let Q be a set in C,q(z) # 0,zq'(z) # 0 and q(z) € 7. The class of admissible functions @;,[(Q, q]
consists of those functions ¢ : C> x U — C that satisfy the admissibility condition

¢(u,v,w; C) € Q

whenever

_ _ 1 zq'(2)
u= q(C),’U = (/\+—p+1) 1+ (/\ +p)q(Z) (Z)]

{(}L+p+1)(A+p+2)u2w+(A+p+1)uv—(/\+p)(A+p+3)u3—(A+p+4)u2+4} 1 {zq”(z) }
X < —Z——+1y,
A+p+Duv—A+pu?-u m q'(2)

wherez € U, € U and m > 1.

, I;*Y(a, o) f(2)
Theorem 3.32. Let ¢ € ®1,2[Q' 911 f@) €, W

I“l(a o) f(z) IAJr2 (@,0)f(z) IA+3(a c)f(z)
( IA(a o) f(z) IAJr1 (@a,0)f(z) I“z(a Ofz)’ )

€ A and

is univalent in U, then

[, 0f @) 1;*@,0f@) 1;"@o0f()
c rzelU (41)
( L@, 0f@) "Ia,0f@) [)@0f() )
implies
1M, 0 2)
" o

Proof. From (34) and (42), we have

Qc {IP(P(Z)/ zp’(2), Zzp” (2);2) :z € IU}.

From (33), we see that the admissibility condition for ¢ € @},[€,q] is equivalent to the admissibility
condition for i as given in Definition 2.2. Hence ¢ € W’[Q), q], and by Theorem 2.4, 4(z) < p(z) or

(@, £(2)
1< I of@

O

If QO # Cis a simply connected domain, then QO = h(U) for some conformal mapping k(z) of U onto Q. In
this case the class @} ,[1(U), q] can be written as @;,[h, q].
The following result is an immediate consequence of Theorem 3.32.

/\+1 )f(Z
b IA 0 f(2)

F1@af@ 120 0f@) [P60f6)
D@0f@  IMof@ 76of@

Theorem 3.33. Let h(z) be analytic in U and ¢ € @y,[h,q]. If f(2) € € A and
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is univalent in U, then

1@ 0f@) §769f 16056

"N eare Feofo e o @
implies
o e
V4 _—.
T e ofe
O

4. Further Corollaries and Observations

Combining Theorem 3.3 and Theorem 3.26, we obtain the following sandwich theorem.

Corollary 4.1. Let hyi(z) and q1(z) be analytic functions in U, hy(z) be univalent in U.q2(z) € £ with g1(0)
72(0) = 0 and ¢ € Oj[hy, g2]1 N [y, q1]. If f(2) € ,pr,lg(a, 0)f(z) € 00, pl N L and

¢ (I, 0 f(2), 1" (@, 0)f(2), I *(a, ©) f(2); 2) < ha(2),

implies

01(2) < 1)@, f(2) < 42(2).

Combining Theorem 3.14 and Theorem 3.30 we obtain the following sandwich theorem.

Corollary 4.2. Let hi(z) and q1(z) be analytic functions in U, I’lz(Z) be univalent function in U, qo(z) € £ with

)f( )
71(0) = 92(0) = 0 and ¢ € Dya[hy, 421 N O 1[I, 1] If f(2) € 7, = — € N L and

(1"(61 0f@) L, 0f(@) L(@,0)f() )

S zp-1 ! zp-1

is univalent in U, then

hl(z) < q:) (IF/’\(Q’ C)f(Z) Il/}+1(a, C)f(Z) I;}HZ(a’ C)f(Z)

-t zp-1 ! zp-1

;Z] < hy(2),

implies

I}(a,0)f(2)

71(z) < = < q2(2).
Combining Theorem 3.23 and Theorem 3.33, we obtain the following sandwich theorem.
Corollary 4.3. Let hi(z) and q1(z) be analytic functions in U, hy(z) be univalent function in U, q2(z) € 23 with

o o » I3Y(a, 0)f(2)
71(0) = q2(0) = L and ¢ € @pp[hy, g2] N Dy 5[, q1]. If f(2) ”’W

F1@af@ 120 0f@) [P6ofE)
D@0f@  IMof@ 76of@

€ A N 4,1 a,0)f(2) # 0 and
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is univalent in U, then

L*a,0f(2) I,%(a,0f(2) I;*(@,0)f(z)
L@,0f@ "LMa,of@ 6,0f@)

hi(z) < ¢ z) < hy(z),

implies

(0, 0f ()

T

< qZ(Z).

O
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