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Abstract. A new analogue of the Ostrowski inequality is introduced in three different cases for functions
in L'[a, b] and L*[a,b] spaces and its application is given for deriving error bounds of some quadrature
rules.

1. Introduction

Let LP[a,b] (1 < p < o0) denote the space of p-power integrable functions on the interval [a, b] with the

standard norm
b 1/p
£l = ( f || f(t)ll”dt) ,
a

and L*[a, b] the space of all essentially bounded functions on [a, b] with the norm

lfllo = ess sup |f(x)|.
x€la,b]

If h € L'[a,b] and g € L™[a, b], then the following inequality holds

b
f 1) ) dx | < 1 hl1 9 o

For two absolutely continuous functions f,g : [4,b] — R such that f,g, fg € L'[a,b], the Chebyshev
functional is defined by

T(f0) = i ) (F0 - & [ Fe dx) (90 - % [ gy dx

= ﬁ fab f(x) g(x) dx — (b—;a)z (fﬂbf(x) dx) (fub g(x) dx) .
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A well-known inequality in the literature, which is related to the Chebyshev functional, is the Ostrowski
inequality [15]. If f, g : [a,b] — R is a differentiable function with bounded derivative, then

(—ap+b-2P| |,
s( N )||f||oo, )

for all x € [a,b]. The above result has been extended for absolutely continuous functions and Lebesgue
p-norms of the derivative f” in [3,4] as follows: Let f : [4,b] — R be absolutely continuous on [a, b]. Then
for all x € [a,b] and :—7 + % =1 (p > 1) wehave

(=) +(=2)) e-atir i,
= @

(3 + 5 b= 2 1710

The constants 1/(p + 1)!/7 and 1/2 in (2) are respectively sharp in the sense that they cannot be replaced by
a smaller constant.

The inequalities (1), (2) can also be obtained, in a slightly different form, as particular cases of some
results established by Fink in [10] for n-time differentiable functions. For other Ostrowski type inequalities
concerning Lipschitzian type functions, see [5]. The cases of bounded variation functions and monotonic
functions have been studied in [6]. For various generalizations, refinements and related Ostrowski type
inequalities for functions of one or several variables one may refer to the monograph [7] and the references
therein. See also [1,8,11,15] and [13,14,16,19] in this regard. Moreover, the Ostrowski inequality has an
important role in numerical quadrature rules [9,12].

In this paper, we introduce a new analogue of the Ostrowski inequality in three different cases and apply
them for some quadrature rules. First of all, let us consider the following well-known kernel on [4, b]

b
‘f(x)—ﬁ | s

b
- [ soa

t—a te]ax],
K(x;t) = 3)
t—b te(xD]

After some computations, it can directly be concluded that

fblK(x;t)l dt =fx(t—a)dt—fb(t—b)dt=%((x—a)2+(b—x)2)l
nd

a

b b
f FOK@) dt = (b-a)f(x) - f f(x)dx. 4)

2. Main Results

Theorem 1. Let f : I — R, where 1 is an interval, be a function differentiable in the interior I° of 1, and let
[a,b] c I°. If a(x) < f'(x) < B(x) for any , B € Cla, b] and x € [a, b] then the following inequality holds

blTa(fax(t—a)a(t)dt+Lb(t—b)ﬁ(t)dt)s f - 2 [ feydt

< (fax(f—a)ﬁ(t)dt+f:(t—b)a(t)dt).
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Proof. By referring to the kernel (3) and identity (4) first we have
[T K@ (£ - “220) gt
= (b-a)f() - [ ftydt -1 ( [T K@) (@) + o) dt) ©)
= -0 f) - [ fodt -1 ([7 ¢ - @ + e di+ [ -8 @)+ po)dr)

Also, the given assumption a(x) < f'(x) < (x) implies that

£ - a(t) ; B(b) ‘ B ; at) .,
Therefore, from (6) and (7) one can conclude that
‘(b - ﬂ) f(x) — j;b f(t) dt — % (j;x (t — a) (a(t) + ﬁ(t)) dt + j;(b (t _ b) (a(t) N lB(t)) dt)'
= |fab1<(x; t) (ff(t) - w) dt| < fuh K () ﬁ(t);a(t) " o

=3 (M a0 @0 - a@ndt- [ @b @0 - aw) ).

By re-arranging (8), the main inequality (5) will be derived.

Theorem 1 is actually remarkable as it improves all previous results which made use of the Lebesgue
norms of f’(x)in (1) and (2). Moreover, a further advantage of this theorem is that necessary computations
in bounds (5) are just in terms of the pre-assigned functions a(f), 5(t) (not f*).

Special case 1. Suppose that f’(x) is bounded at two arbitrary linear functions, e.g. a(x) = a;x + ag # 0
and B(x) = B1x + fo # 0. In this case, the main inequality (5) takes the form

—a)? —b)? b
S ($- 0+ 255) - G2 (50 48)

< f0 - [ fae < 9)

—1\2 _bz b
G (Fo-o+ B3R) - G (Se-p+ ).

In [2], Dragomir obtained a special case of (5) for a(x) = ap # 0 and S(x) = o # 0 as follows

ao(x — a)? — Po(b — x)? 1 (" Bo(x — a)* — ap(b - x)?
20—2a) Sf(x)_mfa fibydt < 20—2a) ‘

which is exactly a special case of (9) for a; = p1 = 0.

Remark 1. Although a(x) < f’(x) < B(x) is a straightforward condition in theorem 1, sometimes one might
not be able to easily obtain both bounds of a(x) and f(x) for f’(x). In this case, we can make use of two
analogue theorems. The first one would be helpful when f’ is unbounded from above and the second one
would be helpful when f’ is unbounded from below.

Theorem 2. Let f : I — R, where Lis an interval, be a function differentiable in the interior I° of 1, and let [a, b] C I°.
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If a(x) < f'(x) for any a, B € Cla, b] and x € [a, D] then

o ([ = aa@d+ [ @ -ba@dt - maxix-a,b-x)(£6) - f@) - [ at)at))
< f) - 5= [V fdt < (10)

L (fax (t-a)ya(t)dt+ [ (¢t - b)a() dt + max{x — a,b - x} (f(b) ~ fa) - fgba(t)dt)).
Proof. Since

fah K(x; 1) (f'(8) — a(h)) dt
=(b-a)f(x) - fabf(t)dt— (fﬂbK(x;t) a(t)dt)

= (b—a)f(x)—fabf(t)dt— (fax(t—a)a(t)dt+f:(t—b)a(t)dt),

SO

’(b—a)f(x)—fabf(t)dt— (fax(t—a)a(t)dt+fxb(t—b)a(t)dt)'
= | [ Kot (7 - aw) dt| < [ 1K 0] () - at) d (1)

< max |K(x; 1) fub (f'(t) — a(t)) dt = max{x —a,b— x} (f(b) - f(a) - fgh a(t)dt) .

By re-arranging (11), inequality (10) will be derived.
Special case 2. If a(x) = ap # 0 then (10) becomes

ao (= %) — maxfx —a,b— 1) ({922 — ag) < £~ % [ f(tydt

Sao(x—%)+max{x—a,b—x}(%— ao).

Theorem 3. Let f : I — R, where Lis an interval, be a function differentiable in the interior I° of I, and let [a, b]  T°.
If f'(x) < B(x) for any o, p € Cla, b] and x € [a, b] then

L (fa" (t-a)pydt + [ (t = b) p(t) dt — max(x - a,b - x} (fabﬁ(t)dt — f(b) +f(a)))
< ) - % [ fbydt < (12)

L (fu" (t—a)pydt + [ (t - b) (t) dt + maxix —a,b - x] (ffﬁ(t)dt — f(b) +f(a))).
Proof. Since

S K @b (£~ o)) dt
= (b-a) f(x) - [ fltydt - (ffK(x,-t) ﬁ(t)dt)

= (b-a) f0) - [ fipydt - (fax(t—a)ﬁ(t)dt+fxb(t—b)ﬁ(t)dt),
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SO

|0-a) f@ - J) frde - ([ ¢ - porar+ [ ¢~ vy ey )|

p dt| < [ 1K @1 (B) - £/) dt (13)

< trg[% | K (x;1) | fab (B(t) = f/(t)) dt = max{x —a,b—x} (fabﬁ(t) dt — f(b) +f(a)) )

By re-arranging (13), inequality (12) will be derived.
Special case 3. If f(x) = fp # 0 then (12) becomes

ﬁo(x—%) max{x—a,b—x}(ﬁo—%)s f(x)—hlfﬂfubf(t)dt

<Bo (x - ‘”b) + max{x —a,b — x} (ﬁo - f(b)—f(a)) .

b—a

3. Applications in numerical quadrature rules

A general (n + 1)-point weighted quadrature formula is denoted by

b n
|0 s = Y o f0 + Rusa), (14
a k=0

where w(x) is a positive function on [a, b], {xk}k and {w;}"
and Ry.+1(f) is the corresponding error [18].

Let I, be the set of algebraic polynomials of degree at most d. The quadrature formula (14) has degree
of exactness d if for every p € II; we have R,41(p) = 0. In addition, if R,+1(p) # 0 for some Il;;q, formula
(14) has precise degree of exactness d. The convergence order of quadrature formula (14) depends on the
smoothness of the function f as well as on its degree of exactness. It is well known that for given n + 1
mutually different nodes {x:};_, we can always achieve a degree of exactness d = n by interpolating at these
nodes and integrating the interpolated polynomial instead of f. Namely, taking the node polynomial

W@ = [ ] @-x0,
k=0

by integrating the Lagrange interpolation formula

1o are respectively nodes and weight coefficients

f0) =Y fE LG %) + s (£5)
k=0

where

\Pn+1 (X)

L(x; x¢) = m

(k=0,1,..,n),

we obtain (14), with

o = f \yn+1(x) w(x dx (k = O, ]_,..., n)/
n+1(xk)

X — Xk
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and
b
Runi(f) = f Pt (50) () dx.

Note that for each f € II, we have 7,,.1(f; x) = 0 and therefore R,..1(f) = 0.

Quadrature formulae obtained in this way are known as interpolatory. If a quadrature is not of the
interpolatory type, i.e. if it does not follow the concept of the degree of exactness, then it would be a
nonstandard quadrature rule.

Usually the simplest interpolatory quadrature formula of type (14) with predetermined nodes {x;};_; €
[a,b] is called a weighted Newton-Cotes formula. For w(x) = 1 and the equidistant nodes {xk}Z:O ={a+ kh}Z:0
with h = (b — a)/n, the classical Newton-Cotes formula including the midpoint rule for n = 0 and w(x) = 1,
the trapezoidal rule for n = 1 and w(x) = 1 and so on are derived. In this section, we use theorems 1, 2 and

3 to obtain new error bounds for midpoint rule and six further nonstandard quadratures as follows

a+b

b
o [ fwd -0y,

b

h(f) - f F()dx = (b —a) f(a),
b

B(f) f F@)dx = (b - a) £0),
b —

wp: | f(t)dtebT”(—ﬂaHzf(#Hf(b)),
b —

[ w50 (o255 - ),
b

() f @) dx = (b - a) @f@)  fB))

b
B(f) - f F@)dx = (b—a) (~f@) +2£(1)) .

Corollary 1. If a(x) < f’(x) < B(x) for any x € [a,b] and «, B € C[a, b] then by replacing x = % € [a,b] in (5),
the error of midpoint rule I;(f) can be bounded as

a+b b

[ 7 t—a)yadt+ [, (t-Db)pt)dt < (b—a)f(%)—fﬂbf(t)dt

2

(15)
< [F-apwdt+ [2, (t-ba®d

For instance, if a(x) = a1x + ap # 0 and B(x) = f1x + fo # 0in (15) then
—a)? [ b-a ag+aay— bp; a b
ot (bt (g + o) + 2B < (5 - g) f(22E) — [ f(1)dt
< (b—4a)2 (b%”(al +ﬁ1) 4 ﬁ0+u,31—2(a0+b0(1)) ,
provided that a; t + ag < f'(t) < pit+ po Vi€ [a,bl.

Corollary 2. If a(x) < f'(x) < B(x) for any x € [4,0] and «, € Cla, b] then by replacing x = a € [a,b] in (5),
the error of nonstandard quadrature I,(f) can be bounded as

b b b
f (t—b)pH)dt < (b—a)f(a) - f f(t)dt < f (t - b) a(t) dt. (16)
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For instance, if a(x) = a;x + ap # 0 and p(x) = f1x + fo # 0 then

b
%(b—a)—ﬁ”%bﬁl)s (b—a)f(a)—fg fod<o-a?(2o-a

0(0+b0(1

(b—a)z(

provided that a; t + ag < f'(t) < p1t+ Po Vte|a,b].
Corollary 3. If a(x) < f'(x) < B(x) for any x € [4,b] and «, € Cla, b] then by replacing x = b € [a,b] in (5),
the error of nonstandard quadrature I3(f) can be bounded as

b b b
f (t—a)a()dt < (b—a)f(b)—f f(t)dtsf (t —a)p(t) dt. (17)
For instance, if a(x) = a1x + ap # 0 and (x) = f1x + fo # 0 then
b
(b—a)z(%(b—u)+a0+aal)s (b—a)f(b)—j; F(t)dt < (b a)? ﬁgl(za—a)ﬂ”z“ﬁl .

provided that ai t + ag < f'(t) < pi1t+ fo Vt € [a,b].
Corollary 4. If a(x) < f’(x) < B(x) for any x € [4,b] and «, € C[a, b] then by replacing x = b € [4,b] in (5),
the the error of nonstandard quadrature I4(f) can be bounded as

[F ¢ -ayadt+ [L ¢ -bya@dt+ 52 [ a)dt
< b (<fta) + 20+ f0) - [ F0 e < "

[ t—ap®at+ [ ¢ -b)poydt+ 5 [ poyar.

Proof. To prove (18) we need to use the results of both theorems 2 and 3 simultaneously such that by
replacing x = (a + b)/2 in (10) we first obtain

[% t-apamdt+ [2 ¢ -baydt+ 5 [ adt

(19)
< bt (=fla) + 26(2D) + FO)) - [ f(tydt,
provided that a(t) < f'(t) Vt € [a,b]. On the other hand, replacing x = (a + b)/2 in (12) gives
bt (= fla) +2£(352) + F0) - [ f(tydt <
(20)

axb b b
[ (t—a)ﬁ(t)dt+f% (t—b)ptydt + 5= [ B(t)dt,
provided that f'(t) < B(t) Vt € [a,b]. Now, combining two latter results (19) and (20) leads us to
inequality (18).

Corollary 5. If a(x) < f’(x) < B(x) for any x € [4,b] and «, 8 € Cla, b] then by replacing x = b € [a,b] in (5),
the the error of nonstandard quadrature I5(f) can be bounded as

[% -y ptydt+ (L ¢ —b)pydt - 552 [ peeydt
< B (fa) +2f(50) ~ FO) - [ ftydt < (21)

L¥ t=mamat+ [L ¢ -vamd -5 [ aar.
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Proof. The proof of (21) is similar to that of corollary 4 if one replaces x = (a + b)/2 in respectively (10) and
(12) and then combines them together.

Corollary 6. If a(x) < f’(x) < B(x) for any x € [a,b] and «, € C[a, b] then by replacing x = b € [4,b] in (5),
the the error of nonstandard quadrature Is(f) can be bounded as

b b b
f (t+a-2b)pH)dt < (b—a)(2f(a) - f(b)) — f fhdt < f (t+a - 2b) a(t)dt. (22)

Proof. Again, to prove (22) we need to use the results of both theorems 2 and 3 simultaneously such that
by replacing x = a in (10) we first obtain

b b
(b—a) (2f(a) - f(b)) - f f(hdt < f (t+a—2b)a(t)dt, (23)

provided that a(t) < f'(f) Vt € [a,b]. On the other hand, replacing x = a in (12) gives

b b
[ era-mpwa< e-aes@-so)- [ o, 1)

provided that f'(t) < f(t) Vt € [a, b]. Therefore, combining two latter results (23) and (24) yields (22).
Corollary 7. If a(x) < f’(x) < B(x) for any x € [a,b] and «, € C[a, b] then by replacing x = b € [4,b] in (5),
the the error of nonstandard quadrature I7(f) can be bounded as

b b b
f (t—2a+bya®)dt < (b—a)(—f(a) +2f (b)) - f fhydt < f (t—2a+b)p(t)dt. (25)

Proof. The proof of (25) is similar to that of corollary 6 if one replaces x = b in respectively (10) and (12) and
then combines them together.
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