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On the harmonic index of bicyclic conjugated molecular graphs
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Abstract. The harmonic index H(G) of a graph G is defined as the sum of weights 2
d(u)+d(v) of all edges uv of

G, where d(u) denotes the degree of a vertex u in G. In this paper, we first present a sharp lower bound on
the harmonic index of bicyclic conjugated molecular graphs (bicyclic graphs with perfect matching). Also
a sharp lower bound on the harmonic index of bicyclic graphs is given in terms of the order and given size
of matching.

1. Introduction

We first introduce some terminologies and notations of graphs. Undefined terminologies and notations
may refer to [1]. We only consider finite, undirected and simple graphs. Denote by Cn the cycle of n vertices.
Unicyclic graphs are connected graphs with n vertices and n edges. For a vertex x of a graph G, we denote
the neighborhood and the degree of x by N(x) and d(x), respectively. A pendant vertex is a vertex of degree
1. Denote by PV the set of pendant vertices of G. Let dG(x, y) denote the length of a shortest (x, y)-path in G.
We will use G − x to denote the graph that arises from G by deleting the vertex x ∈ V(G) together with its
incident edges. A subset M ⊆ E is called a matching in G if its elements are edges and no two are adjacent in
G. A matching M saturates a vertex v, and v is said to be M-saturated, if some edges of M is incident with
v. If every vertex of G is M-saturated, the matching M is perfect. A matching M is said to be an m-matching
(or a maximum matching), if |M| = m and for every matching M′

in G, |M′ | ≤ m.
The Randić index of an organic molecule whose molecular graph is G was introduced by the chemist

Milan Randić in 1975 [8] as

R(G) =
∑
uv

1√
d(u)d(v)

,

where d(u) and d(v) stand for the degrees of the vertices u and v, respectively, and the summation goes over
all edges uv of G. Recently, finding bounds for the Randić index of a given class of graphs, as well as related
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problem of finding the graphs with extremal Randić index, attracted the attention of many researchers, and
many results have been obtained (see recent books [4] and [6]).

In this paper, we consider another variant of the Randić index, named the harmonic index. For a graph
G, the harmonic index H(G) is defined (see [2]) as

H(G) =
∑

uv∈E(G)

2
d(u) + d(v)

.

In [3], the authors considered the relation between the harmonic index and the eigenvalues of graphs.
In [10], [11] and [12], the authors presented the minimum and maximum values of harmonic index on
simple connected graphs, trees, unicyclic graphs and bicyclic graphs respectively. In [5] and [9], the authors
established some relationships between harmonic index and several other topological indices, such as the
Zagreb index and the atom-bond connectivity index.

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus
one. The bicyclic graphs of order n without pendant vertex are characterized as follows:

Figure 1 Bicyclic graphs without pendant vertex and their harmonic indices.

Let n and m be positive integers with n ≥ 2m. Let Un,m be a graph with n vertices obtained from C3 by
attaching n− 2m+ 1 pendant edges and m− 2 paths of length 2 to one vertex of C3. Let Bn,m be a graph with
n vertices obtained from Y5 by attaching n− 2m+ 1 pendant edges and m− 3 paths of length 2 to the unique
vertex of degree four in Y5 (see Figure 2). Denote Un,m={G: G is a unicyclic graph with n vertices and an
m-matching}, Bn,m={G: G is a bicyclic graph with n vertices and an m-matching}.

Researchers are interested in the extremal graph theory for a type of graphs, i.e., the connected graphs
with perfect matchings. In this paper, we first present a sharp lower bound on the harmonic index of
bicyclic conjugated molecular graphs (bicyclic graphs with a perfect matching). Also a sharp lower bound
on the harmonic index of bicyclic graphs is given in terms of the order and given size of matching.

2. Some lemmas

Lemma 2.1. [7] Let G ∈ B2m,m. If PV , ϕ, then for any vertex u ∈ V(G), |N(u) ∩ PV| ≤ 1.

Lemma 2.2. [14] Let G ∈ B2m,m, m ≥ 3, and let T be a tree in G attached to a root r. If v ∈ V(T) is a vertex furthest
from the root r with dG(v, r) ≥ 2, then v is a pendant vertex and adjacent to a vertex u of degree 2.
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Lemma 2.3. [14] Let G ∈ Bn,m(n > 2m) and G has at least one pendant vertex. Then there is an m-matching M and
a pendant vertex v such that M does not saturate v.

Lemma 2.4. [13] Let x, y be positive integers with 1 ≤ x ≤ y − 1. Denote κ(x, y) = 2x+2
y+1 +

2(y−x−1)
y+2 . Then the

function κ(x − 1, y) − κ(x, y + 1) are monotonously increasing in x ≥ 1 and y ≥ 0, respectively.

3. Main Results

Let n and m be positive integers with n ≥ 2m. Let Un,m be a graph with n vertices obtained from C3 by
attaching n − 2m + 1 pendant edges and m − 2 paths of length 2 to one vertex of C3 (see Figure 2). Denote
φ(n,m) = 2(m−2)

3 + 2m
n−m+3 +

2(n−2m+1)
n−m+2 +

1
2 .

Theorem 3.1. [13] Let G ∈ U2m,m\{H6,H8} (m ≥ 2). Then

H(G) ≥ φ(2m,m),

with equality holds if and only if G � U2m,m (see Figure 2).

Theorem 3.2. [12] Among connected bicyclic graphs on n vertices, n ≥ 4, the graph of the type Bn and B′n have
maximum harmonic index, and H(Bn) = H(B′n) = n

2 − 1
15 (see Figure 1).

Denote ψ(n,m) = 2(n−2m+1)
n−m+3 +

2m+2
n−m+4 +

2m
3 − 1, where n and m are positive integers and n ≥ 2m.

Theorem 3.3. Let G ∈ B2m,m\{R8} (m ≥ 3). Then H(G) ≥ ψ(2m,m), with equality holds if and only if G � B2m,m
(see Figure 2).

Proof. First we note that if G � B2m,m, then H(G) = ψ(2m,m). We apply induction on m.
Now we prove that if G ∈ B2m,m\{R8}, then the result holds. If m = 3, ψ(6, 3) = 2.476, note that the total

17 graphs with their harmonic indices are listed in Figure 3. Thus the theorem holds for m = 3.
We now suppose that m ≥ 4 and proceed by induction on m.
If G has no pendant vertex, then G is one of the type of {B2m,B′2m,Y2m,Y′2m,Y

′′
2m}. It is easy to prove that

min{H(B2m),H(B′2m),H(Y2m),H(Y′2m),H(Y′′2m)} = H(Y2m) = m − 1
6 > ψ(2m,m). Hence, now we assume that G

has at least one pendant vertex.
By Lemmas 2.1 and 2.2, we only consider the following two cases.

Case 1. G has a pendant vertex v which is adjacent to a vertex w of degree 2.
In this case, there is a unique vertex u , v such that uw ∈ E(G). Denote d(u) = t and N(u) = {w, y1, . . . , yt−1},

then t ≥ 2. Since G is a bicyclic graph with a perfect matching, then t ≤ m+ 2. By Lemma 2.1, there exists at
most one vertex in {yi} (i = 1, 2, . . . , t − 1) has degree one, say i = 1, such that d(y1) ≥ 1, the degree of other
vertices are at least two. Let G′

= G − v − w. Then G′ ∈ B2m−2,m−1.
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If G′
� R8, then G ∈ {Gi|1 ≤ i ≤ 4}, where Gi(1 ≤ i ≤ 4) and their harmonic indices are illustrated in

Figure 4. By ψ(10, 5) = 3.917, it is easy to verify that B10,5 has the minimum harmonic indices among all
bicyclic graphs in {Gi|1 ≤ i ≤ 4} ∪ {B10,5}.
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Otherwise, if G′
� R8, by the induction hypothesis, then

H(G) = H(G
′
) +

2
3
+

2
t + 2

+

t−1∑
i=1

2
t + d(yi)

−
t−1∑
i=1

2
t + d(yi) − 1

≥ ψ(2m − 2,m − 1) +
2
3
+

2
t + 2

− 2
t(t + 1)

− 2(t − 2)
(t + 1)(t + 2)

= ψ(2m − 2,m − 1) +
2
3
+

4t − 4
t(t + 1)(t + 2)

.

Since 4t−4
t(t+1)(t+2) is strictly monotonously decreasing in t and t ≤ m + 2, we have

H(G) ≥ ψ(2m,m) +
2

m + 2
− 8

m + 3
+

6
m + 4

+
4m + 4

(m + 2)(m + 3)(m + 4)
= ψ(2m,m).

The equality H(G) = ψ(2m,m) holds if and only if equality holds throughout the above inequalities, that is
if and only if G′

� B2m−2,m−1, d(y1) = 1, d(yi) = 2 for i = 2, 3, . . . , t − 1 and t = m + 2. Thus G � B2m,m.
Case 2. G is one of the type of {Bs,B′s,Ys,Y′s,Y′′s } (4 ≤ s < 2m) attached by some pendant edges.

If there is no vertex of degree two, then G ∈ {Fi|1 ≤ i ≤ 7}, where Fi(1 ≤ i ≤ 7) is illustrated in Figure 5.
In F1, if m = 4, then H(F1) = 3.5 > ψ(8, 4) = 3.202. In F2, we have m ≥ 5 because G � R8. If m = 5, then
H(F2) = 4.026 > ψ(10, 5) = 3.917. In F3, if m = 5, then H(F3) = 4.333 > ψ(10, 5) = 3.917. In F4, if m = 6, then
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H(F4) = 4.86 > ψ(12, 6) = 4.622. In F5, if m = 5, then H(F5) = 4 > ψ(10, 5) = 3.917. In F6, if m = 5, then
H(F6) = 4.014 > ψ(10, 5) = 3.917. In F7, if m = 7, then H(F7) = 5.681 > ψ(14, 7) = 5.321. We can clearly see
that the harmonic index of each Fi(1 ≤ i ≤ 7) can be expressed by the form of H(Fi) = 5m

6 + ci, where ci is a
constant (1 ≤ i ≤ 7). By the induction hypothesis, then

H(Fi) =
5(m − 1)

6
+ ci +

5
6
≥ ψ(2m − 2,m − 1) +

5
6

= ψ(2m,m) +
2

m + 2
− 8

m + 3
+

6
m + 4

+
1
6

> ψ(2m,m) +
2

m + 3
− 2

m + 3
− 6

m + 3
+

6
m + 4

+
1
6

= ψ(2m,m) +
(m + 7

2 )2 − 145
4

6(m + 3)(m + 4)
> ψ(2m,m),

where the last inequality holds since m ≥ 4.

Otherwise, there is at least a vertex of degree two on G. We assume that d(u) = 2, v and w are the two
vertices adjacent to u.

Subcase 2.1. The vertex u is on one of the two cycles of G.

By the definition of matching, among the edges adjacent to u, there is a unique edge uw (or uv) which
not belong to the m-matching, without loss of generality, denote it by uw. Denote d(w) = t,N(w)\{u} =
{x1, x2, . . . , xt−1}. We have 2 ≤ t ≤ 5, 2 ≤ d(v) ≤ 5, d(xi) ≥ 1 (1 ≤ i ≤ t− 1). By Lemma 2.1, there is at most one
vertex in {x1, x2, . . . , xt−1} which is degree 1. Let G′

= G − uw. Obviously, we have G′ ∈ U2m,m. Since m ≥ 4,
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by Theorem 3.1, if G′
� H8, we have

H(G) = H(G
′
) +

2
2 + d(v)

− 2
1 + d(v)

+
2

t + 2
+

t−1∑
i=1

2
t + d(xi)

−
t−1∑
i=1

2
t + d(xi) − 1

= H(G
′
) − 2

(1 + d(v))(2 + d(v))
+

2
t + 2

−
t−1∑
i=1

2
(t + d(xi))(t + d(xi) − 1)

≥ H(G
′
) − 2

3 × 4
+

2
t + 2

− 2(t − 1)
t(t + 1)

≥ 2m
3
+

2m
m + 3

+
2

m + 2
− 1 +

t3 − t2 − 2t + 4
t(t + 1)(t + 2)

.

Since t3−t2−2t+4
t(t+1)(t+2) is strictly monotonously increasing in t and m ≥ 4, 2 ≤ t ≤ 5, we have

H(G) − ψ(2m,m) ≥ 2m
3
+

2m
m + 3

+
2

m + 2
− 1 +

1
6
− ψ(2m,m)

=
2

m + 2
− 8

m + 3
+

6
m + 4

+
1
6

>
(m + 7

2 )2 − 145
4

6(m + 3)(m + 4)
> 0.

If G′
� H8, then G ∈ {Qi|1 ≤ i ≤ 11} since G � R8, where Qi(1 ≤ i ≤ 11) are illustrated in Figure 6. Thus

H(Qi) > ψ(8, 4) = 3.202.
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Subcase 2.2. There is no vertex of degree two on the two cycles of G, it means that the vertex u is on the
path which join the two cycles.

In this subcase, there exists an edge vw which belongs to one of the two cycles of G such that d(v) =
3, d(w) = 3. Denote the other two vertices adjacent to v are v1, v2, the other two vertices adjacent to w are
w1,w2. Without loss of generality, we have d(v1) = 1, 3 ≤ d(v2) ≤ 4, d(w1) = 1, 3 ≤ d(w2) ≤ 4. Let G′

= G−vw.
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Obviously, we have G′ ∈ U2m,m(m ≥ 6). By Theorem 3.1, we have

H(G) − ψ(2m,m) = H(G
′
) − 2

(2 + d(v2))(3 + d(v2))
− 2

(2 + d(w2))(3 + d(w2))
− ψ(2m,m)

≥ 1
6
− 8

m + 3
+

2
m + 2

+
6

m + 4
− 2

5 × 6
− 2

5 × 6

=
2

m + 2
− 2

m + 3
− 6

m + 3
+

6
m + 4

+
1
30

>
m2 + 7m + 7

30(m + 3)(m + 4)
> 0.

Note that H(R8) = 3.193 < ψ(8, 4) = 3.202. Completing the proof.

Theorem 3.4. Let G ∈ Bn,m(n ≥ 2m,m ≥ 5). Then H(G) ≥ ψ(n,m), with equality holds if and only if G � Bn,m.

Proof. We apply induction on n. Suppose n = 2m. Then the theorem holds by Theorem 3.3. Now we
suppose that n > 2m and the result holds for smaller values of n.

If G has no pendant vertex, then clearly G is one of the type of {B2m+1,B′2m+1,Y2m+1,Y′2m+1,Y
′′
2m+1} because

G has an m-matching. It is easy to prove that min{H(B2m+1),H(B′2m+1),H(Y2m+1),H(Y′2m+1),H(Y′′2m+1)} =
H(Y2m+1) = m + 1

3 > ψ(2m + 1,m). So in the following proof, we assume that G has at least one pendant
vertex.

By Lemma 2.3, G has an m-matching M and a pendant vertex v such that M does not saturate v. Let
uv ∈ E(G) with d(u) = t. Denote N(u) ∩ PV = {v, x1, . . . , xr} and N(u)\PV = {y1, . . . , yt−r−1}. Then all d(yi) ≥ 2
(1 ≤ i ≤ t − r − 1). Let G′

= G − v. Then G′ ∈ Bn−1,m. We have

H(G) = H(G
′
) +

2r + 2
t + 1

− 2r
t
+

t−r−1∑
i=1

2
t + d(yi)

−
t−r−1∑

i=1

2
t + d(yi) − 1

≥ ψ(n − 1,m) +
2r + 2
t + 1

+
2(t − r − 1)

t + 2
− 2r

t
− 2(t − r − 1)

t + 1

= ψ(n,m) +
2(n − 2m)
n −m + 2

+
2m + 2

n −m + 3
− 2(n − 2m + 1)

n −m + 3
− 2m + 2

n −m + 4

+
2r + 2
t + 1

+
2(t − r − 1)

t + 2
− 2r

t
− 2(t − r − 1)

t + 1
= ψ(n,m) + [κ(n − 2m − 1,n −m + 1) − κ(n − 2m,n −m + 2)] − [κ(r − 1, t − 1) − κ(r, t)],

where κ(x, y) is defined in Lemma 2.4. Since the bicyclic graph G has an m-matching, n − m + 2 ≥ t and
n − 2m ≥ r. By Lemma 2.4 and t ≥ r + 1, we have

H(G) ≥ ψ(n,m) + [κ(r − 1,n −m + 1) − κ(r,n −m + 2)] − [κ(r − 1, t − 1) − κ(r, t)] ≥ ψ(n,m).

The equality H(G) = ψ(n,m) holds if and only if equality holds throughout the above inequalities, that
is if and only if G′

� Bn−1,m, d(y1) = . . . = d(yt−r−1) = 2, n −m + 2 = t and n − 2m = r. Thus G � Bn,m.
Note 1. If G ∈ B2m,m, by Theorem 3.2, then H(G) ≤ m − 1

15 with equality if and only if G � B2m or B′2m.
Similarly, if G ∈ B2m+1,m, then H(G) ≤ m + 13

30 with equality if and only if G � B2m+1 or B′2m+1. As to
G ∈ Bn,m (n ≥ 2m+2), we do not know the sharp upper bound on the harmonic index of bicyclic conjugated
molecular graphs, this case maybe much more complicated.
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