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The Laplacian Eigenvalues and Invariants of Graphs
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Abstract. In this paper, we investigate some relations between the invariants (including vertex and edge
connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a
sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.

1. Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v1,---,v,} and edge set E(G) = {e1, - ,en}.
Denote by d(v;) the degree of vertex v;. If D(G) = diag(d,, u € V) is the diagonal matrix of vertex degrees of G
and A(G) is the 0 — 1 adjacency matrix of G, the matrix L(G) = D(G) — A(G) is called the Laplacian matrix of a
graph G Moreover, the eigenvalues of L(G) are called Laplacian eigenvalues of G. Furthermore, the Laplacian
eigenvalues of G are denoted by

0=09p<01< - <0p-1,

since L(G) is positive semi-definite. In recent years, the relations between invariants of a graph and its
Laplacian eigenvalues have been investigated extensively. For example, Alon in [1] established that there
are relations between an expander of a graph and its second smallest eigenvalue; Mohar in [13] presented
a necessary condition foe the existence of Hamiltonicity in a graph in terms of its Laplacian eigenvalues.
The reader is refereed to [3], [9] and [11] etc.

The purpose of this paper is to present some relations between some invariants of a graph and its
Laplacian eigenvalues. In Section 2, the relations between the vertex and edge connectivities of a graph and
its Laplacian eigenvalues are investigated. In Section 3, we present a sufficient condition for the existence
of Hamiantonicity in a graph involving its Laplacian eigenvalues. In last Section, the lower bounds for
forwarding indices of networks are obtained. Before finishing this section, we present a general discrepancy
inequality from Chung[4], which is very useful for later.

2010 Mathematics Subject Classification. Primary 05C50; Secondary 15A42

Keywords. Laplacian eigenvalue, Connectivity, Hamiltonicity, Forwarding index.

Received: 25 March 2013; Accepted: 13 September 2013

Communicated by Dragan Stevanovi¢

Research supported by National Natural Science Foundation of China (No:11271256) and Innovation Program of Shanghai
Municipal Education Commission (No0:14Z2Z016) and Specialized Research Fund for the Doctoral Program of Higher Education
(N0.20130073110075)

Email addresses: pry@jssvc.edu.cn (Rong-Ying Pan), yanjing@jstu.edu.cn (Jing Yan), xiaodong@sjtu.edu.cn (Xiao-Dong
Zhang)



R.-Y. Pan, ]. Yan, X.-D. Zhang / Filomat 28:2 (2014), 429-434 430

For a subset X of vertices in G, the volume vol(X) is defined by vol(X) = Y cx d», where d, is the degree
of v. For any two subsets X and Y of vertices in G, denote

X Y)={xy) :xe X yeYixyl € EG)

Theorem 1.1. [4] Let G be a simple graph with n vertices and average degree d = 1vol(G). If the Laplacian
eigenvalues o; of G satisfy |[d —o;| < O fori =1,2,--- ,n — 1, then for any two subsets X and Y of vertices in G, we
have

d 0
le(X,Y) = —IXIY] +dIX 0 Y] - vol(XNY)| < VIXI02 = XY = YD)

2. Connectivity

The vertex connectivity of a graph G is the minimum number of vertices that we need to delete to make
G is disconnected and denoted by x(G). Fiedler in [6] proved that if G is not the complete graph, then «x(G)
is at least the value of the second smallest Laplacian eigenvalue. In here, we present another bound for the
vertex connectivity of a graph.

Theorem 2.1. Let G be a simple graph of order n with the smallest degree 5 < 5 and average degree d. If the Laplacian
eigenvalues o; satisfies |d — o;| < O for i # 0, then

K(G) > 6—(2+ 2\/5)2%2.

Proof. Letc=2+2V3.1f0 > 8, there is nothing to show. We assume that 6 < 2.

Suppose that there exists a subset S ¢ V(G) with |S| < 6 — @ such that the induced graph G[V \ S]
is disconnected. Denote by U the set of vertices of the smallest connected component of G[V \ 5] and
W = V\(SUU). Since the smallest degree of G is 9, |S| + |U| > 6, which implies |U| > %. Moreover,

[Wl=n-(U|+|S|) < ”2;‘3 < 2. Because U and W are disjoint for two subsets of G, by 1.1, we have

d 0
—Ulwl < - VIUIWI(r = U — W) < VIUIIW].
Hence
0*n> 6 n On _46n
<=2 <22
AWl ~dwld cd
since ¢ < ¢ < 1. By using Corollary 4 in [4], we have

duiqui-1, 20, U
< Ul - ).

Ul <

Rle(ld)| - >

Then

d
()] < 26|UI+E|UIZ

d46n
< -
< (26+nc 7 Uy

= 2+ %)GIUI.
Hence, by 0 < % andc=2+23,
le(U,S)| = o[Ul - 2le(U)]
> -+ ol

41
> (1-(@2+ Ez))5|U|

1 1
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On the other hand, by 1.1 and |S| < 6, |U]| > % and % < %, we have

d
le(U, S)| < E|U||S|+9\/|U||5|
s 5o
< (7+9F)|U|
1 1
= (§+E)5|U|-

It is a contradiction. Therefore the result holds. [J

Corollary 2.2. ([10]) Let G be a d—regular graph of order n with d < 4. Denote by A the second largest absolute
eigenvalue of A(G). Then

Proof. Since G is a d—regular graph, the eigenvalues of A(G) ared — oo, d — 01, -+ ,d — 0,-1. Hence A satisfies

|d — o] < A fori # 0. It follows from Theorem 2.1 that x(G) > d — w >d- 367"2. |

From [10], for a d—regular graph, the lower bound for x(G) in Corollary 2.2 is tight up to a constant
factor, which implies Theorem 2.1 is tight up to a constant factor.

It is known that the edge connectivity x’(G) of a graph G is the minimum number of edges that
need to delete to make disconnected. In [7], Goldsmith and Entringer gave a sufficient condition for

edge connectivity equal to the smallest degree. In here, we present also a sufficient condition for edge
connectivity equal to the smallest degree in terms of its Laplacian eigenvalues.

Theorem 2.3. Let G be a graph of order n with average degree d and the smallest degree 6. If the Laplacian eigenvalues
satisfy 2 < 01 < 0y—1 < 2d =2, then ’'(G) = 0.

Proof. Let U be a subset of vertices of G with [U]| < .
If 1 < |U| £ 6, then for every vertex u € U, u is adjacent to at least 6 — |U| + 1 vertices in G \ U. Therefore,

le(U, G\ U)| > |UI(S — U] + 1) > 6.

If6<|Ul <3, let0=d-2. Since2 <01 <0y1<2d-2,|d -0y <0 fori#0. By Theorem 1.1,
d ]
lle(U, V\ U)| - ;IUIIV\ ujl < ;IUI(TI — [aj).

Thus,

e v\ ) = =2 d;e 2@25.

—— Ul — U = o(n = 0)

Hence there are always at least 6 edges between U and V' \ U. Therefore «’(G) = 6. O

3. Hamiltonicity and the chromatic number

In this section, we first give an upper bound for the independence number a(G), which is used to present
a sufficient condition for a graph to have a Hamilton cycle. Moreover, a lower bound for the chromatic
number of a graph is obtained. The independence number is the maximum cardinality of a set of vertices
of G no two of which are adjacent.

Lemma 3.1. Let G be a graph of order n with average d. If the Lapalcian eigenvalues satisfies |d — o;| < 0 fori # 0,
then
2n0 +4d

a(G) < -
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Proof. Let U be an independent set with the seize a(G). By Corollary 4 in [4], we have

duyqu - 1) ui
n

12le(LD)] - IUI( =)

210+d
Hence |U]| < ”fg . O

Lemma 3.2. [5] Let G be a graph. If the vertex connectivity of G is at least as large as its independence number, then
G is Hamiltonian.

Theorem 3.3. Let G be a graph of order n with average d and the smallest degree 0. If the Laplacian eigenvalues

satisfies |d — oi| < O fori # 0and 6 — (242 \/5)2 & > Zngd, then G is Hamiltonian.

Proof. By Theorem 2.1, G has at least 6 — (2 +2 V3 3% & vertex connected. On the other hand, by Lemma 3.1,

the independence number of G is at most 222t follows from Lemma 3.2 that G is Hamiltonian. [J

o,,lo

Theorem 3.4. Let G bea connected graph of order nwith the smallest degree 6. If o1 > *=—n, then G is Hamiltonian.

Proof. By a theorem in [6], k(G) > 1. On the other hand, by Corollary 3.3 in [15], the independence number
a(G) < %n. It follows from Lemma 3.2 that G is Hamiltonian. [J

The proper coloring of the vertices of G is an assignment of colors to the vertices in such a way that
adjacent vertices have distinct colors. The chromatic number, denoted by x(G), is the minimal number od
colors in a vertex coloring of G.

Theorem 3.5. Let G be a graph of order n with the smallest degree 6 > 1. Then

On-1

G)> —1
X( )_On—1_6

Moreover, if G is a d— reqular bipartite graph, or a complete r—partite graph K ;... s, then equality holds.

Proof. Let V1,V,,---,V, denote the color class of G. Denote by e the vector with all component equal to 1.
Let s; be the restriction vector of |V|e’co Vi; thatis, (s;); = |V,-|'ifj € Vi; (si)j = 0, otherwise. Thus S = (s1,---,sy)
is an n X y matrix and S'S = I,. Let B = STL(G)S = (b;j) and its eigenvalues yo < py < -+ < . By
eigenvalue interlacing, it is easy to see that pp = 0 and p,—1 < 0,-1. Moreover, b;; = ﬁ Yvev, dp 2 0. Hence

ox <trB= Mo+ Uy-1 < X = 1Doy-1,

which yields the desired inequality. If G is a d— regular graph, then y =2, 6 = d and 0,1 = 2d. So equality
holds. If G is a complete r—partite graph, then x =7, 6 = (r — 1)s and 0,1 = ;53s. Hence equality holds. [J

4. Forwarding indices of graphs

In this section, we discuss some relations between the Laplacian eigenvalues of a graph and its forward-
ing indices.

A routing R of a graph G of order n is a set of n(n — 1) paths specified for all ordered pairs u and v of
vertices of G. Denote &(G, R, v) by the number of paths of R going through v (where v is not an end vertex).
The vertex forwarding index of G is defined to be

&(G) = mln n}/e}x &(G,R,0).
Denote 71(G, R, €) by the number of paths of R going through edge e. The edge forwarding index of G is defined

to be
G G,R,
n(G) = m1n H}E?é d e).
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Let X be a proper subset of V. The vertex cut induced by X is N(X) = {y € V' \ X|{x, y} € E(G)}. Moreover,
denote X* by the complement of X | J N(X) in V. The vertex expanding index is defined by

N(X
¥(G) = min{ ||X”(X2|| I XCV1<|X|<n-1,X">1},

where the min on a void set of X is taken to be infinite.

Theorem 4.1. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfies |[d — o;| < 0
fori#0, then

2 _ 2
v(G) =

no?
Proof. Let U be a subset of G such that

IN(U)I +
G) = ,1<U<n-1, U =21
© = ey 1S U
Set W =V \ (U N(U)). By Theorem 1.1, we have

lectt, W~ S1uaiwit < 2 \[eiGe = TUpwIcn — T,

Hence
EUIW| < G2 (UL + INUD)D(IW] + IN(W))).
Then
NWI __INWI 2 -6
|aue] Ui — Wiy~ n6?
We complete the proof. O
Theorem 4.2. Let G be a graph of order n. If o1 < 1, then &(G) > ,/%
Proof. By Lemma 2.4 in [1], we have
2
c
>
=g
where c satisfies N

N =¢ for every |X| < 5 and X C U. Hence

40'1
<c< .
A

On the other hand, there exists a subset U such that y(G) = IN()

= - It follows from the definition of £(G) that
2)UIU*| = E(G)IN(U)], since there does not exist edges between U and U*. Hence

£G) > 2u)iu| _ 2 S 1-20¢

INW)I - y(G)

01
We finish the proof.

O

Lemma 4.3. Let G be a graph of order n with average degree d and let f(G) = min{ LCAALY]
the Laplacian eigenvalues satisfy |d — o;l|le@ for i # 0, then

Aol 1< Ul < n-1). If

ﬁ(G)sd+9

" .
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Proof. By the definition of 5(G), there exists a subset U such that f(G) = % On the other hand, by
Theorem 1.1, we have

lle(LL, V\ U)I - ZIUI(H - IUI)IZESIUI(Tl = |uj).
Hence (G) < %. O

Theorem 4.4. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfy |d — o;| < 0 for

i+ 0, then
2n

d+0’
Proof. It follows from Theorem 1 7(G)A(G) > 2 in [14] and Lemma 4.3 that the result holds. [

(G) >

Remark The lower bounds for £(G) and 7t(G) are tight up to a constant factor. For example, Let P, be a
path of order n. It is easy to see that £(P,) = 2(L31([51— 1), (G) = 2[5][5]; while 01 = 4sin? 75
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