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Abstract. In this paper, we extend a recent Meir-Keeler type fixed point theorem of Suzuki (2008) to a pair
of maps on a metric space.

1. Introduction

The following important result due to Meir and Keeler [6] is a generalization of the classical Banach
contraction theorem.

Theorem 1.1. A selfmap S of a complete metric space (X, d) satisfying the condition:

for a given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,
ε ≤ d(x, y) < ε + δ implies d(Sx,Sy) < ε, (MK.1)

possesses a unique fixed point.

A map S satisfying the condition (MK.1) is popularly called Meir-Keeler contraction (see, for instance, [9]).
The elegant technique employed to prove Theorem 1.1 attracted several authors to work along these lines
and subsequently Theorem 1.1 was generalized and extended in various ways (see, for instance, Ćirić [1],
Jachymski [2], Kikkawa and Suzuki [3], Kuczma et al. [4], Lim [5], Park and Rhoades [7], Rhoades et al. [8],
Singh et al. [9], Suzuki [10] and references of [2] and [9]).
Entirely different and an ingenious approach to generalize Theorem 1.1 was adopted by Suzuki [10] to
obtain the following result.

Theorem 1.2. Let S be a selfmap of a complete metric space (X, d) such that

for each ε > 0, there exists a δ > 0 such that for all x, y ∈ X,
1
2

d(x,Sx) < d(x, y) and d(x, y) < ε + δ imply d(Sx, Sy) ≤ ε ; (S.1)

1
2

d(x,Sx) < d(x, y) implies d(Sx, Sy) < d(x, y). (S.2)
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Then S has a unique fixed point in X.

The purpose of this paper is to obtain an extension of Theorem 1.2 for a pair of maps on a metric space.

2. Main Result

Throughout the paper we denote by N the set of positive integers.

Theorem 2.1. Let X be a complete metric space and let S,T : X→ X. Assume that for each ε > 0, there exists δ > 0
such that for all x, y ∈ X,

1
2

min{d(x,Sx), d(y,Ty)} < d(x, y) and d(x, y) < ε + δ imply d(Sx,Ty) ≤ ε (1)

and

1
2

min{d(x,Sx), d(y,Ty)} < d(x, y) implies d(Sx,Ty) < d(x, y). (2)

Then there exists a unique element z ∈ X such that Sz = z = Tz, that is, z is the unique common fixed point of S
and T.

Proof. We assert that

(i) d(x,Sx) > 0 implies d(Sx,TSx) < d(x,Sx), x ∈ X, and
(ii) d(y,Ty) > 0 implies d(STy,Ty) < d(y,Ty), y ∈ X.

Evidently it is enough to prove (i). For any x ∈ X, if d(x,Sx) > 0 then

1
2

d(x,Sx) < d(x,Sx). (3)

Now if

d(x,Sx) < d(Sx,TSx) (4)

then by (2),

d(Sx,TSx) < d(x,Sx), a contradiction to (4).

So d(Sx,TSx) < d(x,Sx). If

d(Sx,TSx) = d(x,Sx) (5)

then by (2),

d(Sx,TSx) < d(x,Sx), a contradiction to (5).

Thus

d(Sx,TSx) < d(x,Sx) (6)

holds for all x ∈ X with Sx , x.
Pick u0 ∈ X. Construct a sequence {un} in X such that

u1 = Tu0, u2 = Su1, . . . , u2n+1 = Tu2n,u2n = Su2n−1, n ∈ N.
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If for any n, Su2n−1 = u2n−1, then u2n−1 is a fixed point of S. So we take Su2n−1 , u2n−1 for all n ∈ N. So by (i),

d(Su2n−1,TSu2n−1) < d(u2n−1,Su2n−1),

that is,

d(u2n,u2n+1) < d(u2n−1, u2n). (7)

If for any n, Tu2n = u2n, then u2n is a fixed point of T. So we take Tu2n , u2n for all n ∈ N. Therefore by (ii),

d(STu2n,Tu2n) < d(u2n,Tu2n),

that is,

d(u2n+2,u2n+1) < d(u2n, u2n+1). (8)

Hence by (7) and (8), we have for all n ∈ N,

d(un,un+1) < d(un−1,un). (9)

Since the sequence {d(un,un+1)} is strictly decreasing and bounded below by 0, {d(un,un+1)} converges to
some α ≥ 0. Assume α > 0. Since {d(un,un+1)} is strictly decreasing,

d(un,un+1) > α, n ∈ N. (10)

Now by (7),

1
2

d(u2n,u2n+1) < d(u2n−1,u2n),

that is

1
2

min{d(u2n−1,u2n), d(u2n,u2n+1)} < d(u2n−1,u2n),

that is

1
2

min{d(u2n−1,Su2n−1), d(u2n,Tu2n)} < d(u2n−1,u2n). (11)

By the definition of α, there exists 2n − 1 ∈ N such that

d(u2n−1,u2n) < α + δ. (12)

Then in view of (1), (11) and (12) yield d(u2n,u2n+1) ≤ α. This is a contradiction to (10). So our assumption
α > 0 is wrong. Hence α = 0, and we have proved that

lim
n→∞

d(un, un+1) = 0.

Now fix ε > 0. Then there exists

δ ∈ (0, ε) (i.e. δ > 0) (13)

such that by (1),

1
2

min{d(x,Sx), d(y,Ty)} < d(x, y) and d(x, y) < ε + δ imply d(Sx,Ty) ≤ ε.
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Since δ > 0 and lim
n→∞

d(un,un+1) = 0, there exists p ∈ N such that

d(un,un+1) < δ for all n ≥ p. (14)

Now we show by induction that

d(up,up+q) < ε + δ, q ∈ N. (15)

Notice that from (14), d(up,up+1) < δ.
Since ε > 0, we obtain d(up,up+1) < δ < ε + δ. Hence (15) holds for q = 1.
Now we consider the following two cases:

(a) d(up,up+q) ≤ ε, and
(b) d(up,up+q) > ε.

In the case (a), we have by triangle inequality,

d(up,up+q+1) ≤ d(up, up+q) + d(up+q,up+q+1)
≤ ε + d(up+q,up+q+1).

So by (14), d(up,up+q+1) < ε + δ.
Thus in the case (a), (15) holds for all q ∈ N.
In the case (b), we have

ε < d(up,up+q) < ε + δ. (16)

Combining (13) and (14), we have

d(up,up+1) < δ < ε. (17)

Combining (16) and (17), we obtain

d(up,up+1) < δ < ε < d(up,up+q). (18)

Clearly from (16), d(up, up+q) > 0. So

d(up,up+q) < 2d(up,up+q). (19)

Combining (18) and (19), we obtain

d(up,up+1) < 2d(up,up+q).

Therefore

1
2

min{d(up,up+1), d(up+q,up+q+1)} < d(up,up+q) and d(up,up+q) < ε + δ.

Hence by (1),

d(up+1, up+q+1) ≤ ε. (20)

Using (14) and (20) in the triangle inequality

d(up,up+q+1) ≤ d(up, up+1) + d(up+1,up+q+1),

we obtain

d(up,up+q+1) < δ + ε.
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Therefore by induction, (15) holds for every q ∈ N in case (b) as well, and we conclude that d(up,up+q) < ε+δ
for every q ∈ N. Consequently lim

n→∞
sup
q>n

d(un,uq) = 0.

Therefore {un} is a Cauchy sequence. Since X is complete, the sequence {un} has a limit in X. Call it z. Now
we show that z is a common fixed point of S and T.
Since u2n , Tu2n for all n ∈ N, the sequence {d(u2n,u2n+1)} is strictly decreasing.
If we assume that

d(u2n,u2n+1) ≥ 2d(u2n, z) and d(u2n+1,u2n+2) ≥ 2d(u2n+1, z)

holds for some n ∈ N, then we have

d(u2n,u2n+1) ≤ d(u2n, z) + d(z,u2n+1)

≤ d(u2n,u2n+1) + d(u2n+1,u2n+2)
2

that is, d(u2n,u2n+1) ≤ d(u2n+1,u2n+2), a contradiction.
So for any n ∈ N, either

(c) d(u2n,u2n+1) < 2d(u2n, z), or
(d) d(u2n+1,u2n+2) < 2d(u2n+1, z).

First we assume that (c) is true and consider the following two cases.

Case 1: If d(u2n,Tu2n) < d(z,Sz), then

1
2

min{d(u2n,Tu2n), d(z,Sz)} < 1
2

d(u2n,Tu2n) =
1
2

d(u2n,u2n+1) < d(u2n, z).

So by (2), d(Tu2n,Sz) < d(u2n, z), that is, d(u2n+1,Sz) < d(u2n, z).

Case 2: If d(z,Sz) < d(u2n,Tu2n), then

1
2

min{d(z,Sz), d(u2n,Tu2n)} < 1
2

d(z,Sz) <
1
2

d(u2n,Tu2n) < d(u2n, z).

So by (2), d(Tu2n,Sz) < d(u2n, z), that is, d(u2n+1,Sz) < d(u2n, z).
So in either of the two cases (1) and (2), we obtain

d(u2n+1,Sz) < d(u2n, z) holds for all n ∈ N.

Passing to the limit, this yields Sz = z. Analogously, Tz = z.
Now we suppose (d) is true. Proceeding as in case (c), one can show that z is fixed point of T, and z is a
fixed point of S as well.
Thus this is completely proved that z is common fixed point of S and T.
Now we prove the uniqueness of the common fixed point. Suppose y is another common fixed point of S
and T. Then

1
2

min{d(z,Sz), d(y,Ty)} = 0 < d(z, y) implies d(Sz,Ty) < d(z, y) .

That is, d(z, y) = d(Sz,Ty) < d(z, y).
This contradiction proves that y = z.

We remark that Suzuki-Meir-Keeler contraction S, viz. S satisfying (S.1) and (S.2) is obtained from the
conditions (1) and (2) with T = S. Hence we have the following.

Corollary 2.2. Theorem 1.2.
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