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On coverings with special points and monodromy group a Weyl group
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Abstract. In this paper we study Hurwitz spaces parameterizing coverings with special points and with
monodromy group a Weyl group of type B;. We prove that such spaces are irreducible if k > 3d — 3. Here,
k denotes the number of local monodromies that are reflections relative to long roots.

1. Introduction

The study of irreducible components of Hurwitz spaces is a classic problem in algebraic geometry and
it is valuable in many applications. The Liiroth - Clebsch - Hurwitz theorem states the irreducibility of the
Hurwitz space of simple coverings of P! with n branch points (see [11]). This result was used by Severi in
order to prove the irreducibility of the moduli space of genus g curves (see [18] ). Today, there were many
generalizations of Liiroth-Clebsch - Hurwitz result. Let Y be a smooth, connected, projective complex
curve of genus g. Specifically, the irreducibility of Hurwitz spaces of coverings of Y with monodromy
group S; and with an arbitrary number of special points has been studied both when g = 0 and when
g > 0 (see [1, 9, 13-15, 19, 24, 27, 28]). We point out that, for example, Harris, Graber and Starr used
the result of [9] in order to prove the existence of sections of one-parameter family of complex rationally
connected varieties (see [10]). Hurwitz spaces of coverings whose monodromy group is a Weyl group
different from S; and their irreducible components were studied, for example, in [2, 20-23, 25, 26]. We note
that coverings with monodromy group a Weyl group appear in the study of spectral curves, integrable
systems and Prym - Tyurin varieties (see [6, 15, 16]). In fact, the Prym maps yield morphism from the
Hurwitz spaces of coverings with monodromy group contained in a Weyl group to Siegel modular varieties
which parameterize Abelian varieties. Thus, some property of these varieties can be studied by using these
Hurwitz spaces.

In this paper we continue the investigation of the irreducibility of Hurwitz spaces that parameterize
coverings with special fibers and with monodromy group a Weyl group of type B,. In particular, we work
with coverings that decompose into a sequence of type X =X’ LY where 7 is a degree two covering with
11 branch points and f is a degree d coverings with monodromy group S;. Moreover, f has n, branch
points, k of which are simple points and 1, — k of which are special points. Furthermore, f(D,) N Dy = 0
where D and Dy denote, respectively, the branch locus of 7 and f.
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We prove that, under the hypothesis k > 3d — 3, the corresponding Hurwitz spaces are irreducible both
when g = 0 and when g > 0 (see Theorems 5.5 and 5.6). In this way, we generalize the results obtained for
coverings as above but with one or two special fibers by the author in [20, 25]. Moreover, we extend the
results obtained in the case in which the monodromy group is all 5; by Kulikov in [14] and by the author
in [27] to coverings with monodromy group a Weyl group of type B,.

Conventions and Notations Here, two sequences of coverings, X; = X 4yand X, 2 X, 2,Y, are
equivalent if there exist two biholomorphic maps p : X; — X; and p’ : X] — X) such that p’om; =mo0p
and f, op’ = f;. We denote by [f o 1] the equivalence class containing f o 7. Moreover, we denote by # the
permutation h~'th and we denote by (t1, ..., t;) the subgroup of S; generated by the permutations ty, ..., f;.

2. Weyl groups of type B,

Let {e1, ..., &4} be the standard base of R? and let R be the root system {+¢;, +¢;+¢;:1<1,j<d}. The
Weyl group of type Bj is generated by the reflections s, with 1 < i < d, and by the reflections s,.;, with
1 <i<j<d(see[4]). We denote this group by W(B;). We recall that the reflection s,—.; exchanges ¢; with
¢j and —¢; with —¢, leaving fixed each ¢, with h # i, j. The reflection s, exchanges ¢; with —¢; and fixes all
the ¢, with h # i. Hence, identifying {+¢; : 1 <i < d} with {£]1,..., +d} by using the map +¢; — =+i, we can
define an injective homomorphism from W(B;) into Sy4 such that

Seime; = ({1 J)(—=i = ]), 5¢ = (i —1), Seive; = Se; Se; See; — (1 = J)(=1 )).
;= () ) (i—1) : Se—e; = (i = )(=i])

Let (Z»)? be the set of the functions from {1, ...,d} into Z, equipped with the sum operation. Let us denote
by W the homomorphism from S, in Aut((Z»)?) which assigns to t € S; the element W(t) € Aut((Z,)?) where

[W(t)a] (j) :==a(j') foreach ac (Zo)".
Let (Z,)?x*S; be the semidirect product of (Z;)? and S; through the homomorphism W. Given (a’; 1), (a”; t2) €

(Z2) x* S4, we put
(@; t)-(@"; t) == (@’ +W(t1)a"; t1 ).

Moreover, we use 1 i by denote the function of (Zg)d defined as
Ij()=1 and 1j(h)=0 foreach h#j
and we use z;; to denote the function of (Z,)* defined as
zif(i) = zij(j) =z and z;j(h)=0 foreach h#i,j andze€ Z,.
We notice that the homomorphism from W(B,) into (Z»)? x® S defined by
Sei—ej ™ ;@ ]))/ Se; ™ (:_li/' Zd)/ Sei+e; (L]; (1]))

is an isomorphism. In what follows, we will use this isomorphism in order to identify W(B,) by (Z»)? x* S;.
Definition 2.1. Let h be a positive integer. Let (c; &) be an element of W(By) satisfying the following: & is a h-cycle
of Sq and c is a function that sends to 0 all the indexes fixed by &. We call an such element positive h-cycle if c is
either zero or a function which sends to 1 an even number of indexes. We call it negative h-cycle if it is not positive.

We recall that two cycles (c; &) and (¢’; &) in W(B,) are disjoint if £ and & are disjoint. Furthermore, all
the elements in W(B,) can be expressed as a product of disjoint positive and negative cycles. The lengths

of such disjoint cycles together with their signs determine the signed cycle type of the elements of W(By).
Two elements of W(B,) are conjugate if and only if they have the same signed cycle type (see [5]).
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. W(B,)
3. Hurwitz spaces of type Hd,nl,k,qlgl,...,q,gf(Y)

Let X, X" and Y be smooth, connected, projective complex curves and let g be the genus of Y. Let
d, n1,ny, k be integers such that d > 3,n; > 0 and n, > k > 0. In this paper we are interested in degree 2d
coverings that decompose in a sequence of coverings, X X’ Y, satisfying the followings:

7t is a degree 2 covering with n; branch points and f is a degree d coverings, with monodromy group Sy
and with n, branch points, k of which are simple points and 7, — k of which are special points. Moreover,
f(Dr) N Dy = 0 where D, and Dy denote, respectively, the branch locus of 7 and f.

Let by be a point of Y and let D be a finite subset of Y such that by € Y — D. By Riemann’s existence
theorem (see [8], Proposition 1.2) there is a natural one-to-one correspondence between:

— the set of equivalence classes of degree 2d branched coverings of Y with branch locus D
and

— the set of equivalence classes of homomorphisms m : 711(Y — D, by) — Spq whose images are transitive subgroups
of Sa4, where two homomorphisms m and m’ are equivalent if there exists h € Sy such that m'([y]) = h™*m([y])h for
each [y] € my(Y — D, b).

From now on, we will denote by D and by m, respectively, the branch locus and the monodromy
homomorphism of f o 7. ‘
Lete!,... e be partitions of d such thate' = (¢}, ..., e;)and ¢ > --- > ¢;,. Letqy, ..., g, be positive integers
HWE)
dn kgiel,...qre
of sequences of coverings, f o m, defined as above such that g; among the special points of f have local

monodromy whose cycle type is given by the partition ¢/, fori = 1,...,r.

such that g1 + - -+ + g, = n, — k. Let us denote by (Y) the Hurwitz space of equivalence classes

Definition 3.1. Let G be an arbitrary group. An ordered sequence
(tll LR tn/ /\1/ ”1/ ceey /\gr [-’Lg) = (t/&rﬂ)

of elements in G is a Hurwitz system if t; # id for each i € {1,...,n} and t;---t, = [A, 1]+ [Ay, ugl. The
subgroup of G generated by t;, As, us withi = 1,...,nands = 1,...,g is called the monodromy group of the
Hurwitz system. Two Hurwitz systems (t, A, p) and (t', A, u") with elements in G are equivalent if there exsists h € G

such that t, = h'tih, AL = i Ash and p = h_‘lyshfor eachi=1,...,nands=1,...,9.

Remark 3.2. We notice that an order sequence (t1,...,t,) of elements in G, with t; # id for each i, is a Hurwitz
system if ty -+ t, = id.

Let (Y1, Vnj+mys @1, P1,---, a4, By) be a standard generating system for 7t1(Y — D, bg). The images via
mofy1,..., Vm+n, 1, P1, ...,y By determine an equivalence class of Hurwitz systems

[tll cecy tn1+n2; /\1/ [le cecy A’gl ‘ng]

with monodromy group W(By) satisfying the following conditions: k among the t, are elements of type
(zij; (i, j)), n1 are elements of type (1;;id) and g;, with i = 1,...,r, are product of s; positive disjoint cycles

whose lengths are given by the elements of the partition ¢'. Let us denote by Al g, the set of all
- M1,41€° -/ are’ g

equivalence classes of Hurwitz systems as above.
We notice that by Riemann’s existence theorem, we can identify the set of equivalence classes

[fom]e H"V G ; E,(Y) such that f o  has branch locus D with the set A?

d,ny kgiel,.... kni,qmel,...qe 9"

4. Braid moves

Let n be a positive integer. Let Y™ be the n-fold symmetric product of Y and A be the codimension
1 locus of Y™ consisting of non simple divisors. In this paper we are interested in the way in which the
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generators of the braid group 7;(Y™ — A, D) act on Hurwitz systems. So, we recall that such group is
generated by the elementary braids o; withi = 1,...,n — 1 and by the braids pj;, 7js with 1 < j < n and
1 <s < g(seel3,7,17]). Here, we denote by o, 0/ = (01,' )~! the pair of moves associated to o;. We call o, 0/
elementary moves. The moves o, o fix all the A;, all the us and all the t, with i # i,i + 1. They transform
(ti, tiy1) into
(ttiat;', t)  and  (tia, £ titie),

respectively (see [11]). We denote by p}s, p;; = (p;.s)’1 and by T;S, T;; = (T;.S)’l, respectively, the pair of moves
associated to p is and 7 js- We use the following result.

Proposition 4.1 ([12], Theorem 1. 8). Let (t1,...,ty; A1, 1, ..., Ay, tiy) be a Hurwitz system. Let ug = 1 and let
us = [A, - [As, us] for s=1,...,9. The following formulae hold:
(tr, o sty A pa, -, Ag, lhg) = (t;,...,t;;/li,y'l,...,/\;,y’g)
e For p!, where 1<i<n, 1<s<yg

t;. =t; foreach j#i, Aj=A; foreachl, yj =y foreach 1+s and

(ti, ts) = (t], pl) = (a7 "tiar, b7'71br )
where a; = (tl cee tl-,l)‘1u5,1)\5(u;1ug)(t,-+1 x l’n)_l and by = (fl cue t,-,l)‘lus,lAs.
e Fort;, where 1<i<n, 1<s<yg

t =t foreach j#i, Ay =A; foreach 1#s, uj =y foreachl and
(t;, As) = (#,A) = (cy ticr, dy tidy As)

where ¢y =ty -+ by (U3 g) s (Us) My - i and dy = i - b (U ) T s
e For p?’ where 1<i<n, 1<s5<yg

t:=t; foreach j#i, Aj=A foreachl, uj =y, foreach 1#s and

(i, is) = (F, ul) = (a5 tiaz, b3 tiba ps)
where ay = tisy -+ by ug) AT (soy) M - iy and by = iy e b (u ug)
e For ;! where 1<i<n, 1<s<g

t =t foreach j#i, Ay =A; foreach 1#s, yuj =y foreachl and
(ti, As) = (5,40 = (3 tica, ;87 da As)
where ¢y = (t1 - tis) M ugo1 WS ug) iy - 1) and dy = (b tia) Mg

Remark 4.2. The moves p.,, pi!, Ti. and T transform t; into an element belonging to the same conjugacy class.

Furthermore, we notice that when Ay = -+ = As = uy = -+ = us—1 = id, the braid move p’_ transforms

ps into 7'

144

1. transforms

Analogously when Ay = -+ = As_y = g = -++ = sy = id, the braid move t
As into tl_l/ls.

Definition 4.3. Two Hurwitz systems are said braid equivalent if one is obtained from the other by using a finite

sequence of braid moves al, p}s, T;.S, a’, p;;, T;; where 1<i<n-11<j<nand1 <s <g. Two ordered
sequences of permutations (t1, ..., t) and (t], ..., t;) are said braid equivalentif (¢, ..., t)is obtained from (t1, ..., 1)

by using a finite sequence of braid moves of type o', o'. We denote the braid equivalence by ~.
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5. Irreducibility of H"®? )

dn k,qiel,....q-e

In what follows, we write |e!| to denote Z 1(6 —1). Moreover, we associate to the partition ¢ ¢ the

following element in S; having cycle type given by ¢’
€ = (1,2,...,63)(63 + 1,...,23 +e§)~-(Ze’

Let € be the following permutation of S,

(el "‘6162‘"€2"'€y"‘€y)_1
where €;, with i = 1,...,r, appears g; times. Let &y, .. ,5,7 be dls]omt cycles of lengths hy, ..., h,, with
hi > hy > --- > hy, such that € = & ---&;. Let & = (l] l] ) where l] < l] for each b = 2,...,hj. In the

sequel, we denote by Z; the sequence of transpositions ((1]1, lé), (l] I £ PR (l] l] )) and by Z the concatenation
Z1,2s,..., 2,
For a convenience of the reader we recall the following results.

Lemma 5.1 ([19], Proposition 3). Let (t1,t2,...,t) be a sequence of permutations in Sy such that t, has cycle type
elandt,,... t are transpositions.
If 1-1+|et| > 2dthen (ti,t,...,t) is braid equivalent to

)ty E o H)

where t; has cycle type e t] are transpositions, t| t and

7 2/ M 4 4 l 1

(Bt ety = (Hye oty b ).

Lemma 5.2 ([12], Main Lemma 2.1). Let (t1,...,t; Ay, i, .-, Ag, fy) be a Hurwitz system of permutations in
Sq. Suppose that tit;yy = id. Let H be the subgroup of S; generated by {t1, ..., ti-1,tiva, ... tu, A1, i1, ..., Ay, lig).
Then for every h € H the given Hurwitz system is braid equivalent to

(tll . 1 1, tl 7 tl+1’ tl+2/ crcy tn/ Al/ Ml/ cecy Agl ‘ug)

Proposition 5.3 ([14], Theorem 2. 3). Let [t1,...,t,,] be an equivalence class of Hurwitz systems of permutations
in S4, with monodromy group Sg, satisfying the followings: k among the t; are transpositions and q; among the t; are
permutations whose cycle type is given by the partition ¢ of d, fori = 1,...,r. Ifk > 3d =3, [t, ..., ty,] is braid
equivalent to the class [, ..., F,,] where

h=...=f, =€, n=... =8, =€
with j=1,...,r = 1. Moreover the sequence (Fu,—k+1,...,Iy,) is equal to
Z,1,2),...,(1,2),(2,3),(2,3),...,(d-1,d),(d - 1,4d))
where (1,2) appears an even number of times.

Now, by using Proposition 5.3, we show that any two class in A? are braid equivalent.

kni,q1€t,...q.€",0

Proposition 5.4. If k > 3d — 3, each equivalence class in A¢ is braid equivalent to a class of the form:

kni,q1et,...qr€",0

[(Or {1)/ ceey (0/ {nz)/ (il; ld)/ ey (il; ld)]

where (b, ..., 1,,) is the sequence in Proposition 5.3.
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Proof. Let [t] € A} e 0" We act with elementary moves of type ¢; and move on the right all the

elements (1.;id). In this way, we have that [ ¢] is braid equivalent to a class of the form
[, (), (A id), .., (L. id)].

We notice that the equivalence class [t],...,t, ] satisfies all the hypothesis in Proposition 5.3, so it is braid
equivalent to the class [f1,...,Fs,]. Then, [¢] is braid equivalent to a class of type

[(*; i:l)l ey (*; fnz)/ (i*; ld)/ sy (i*; ld)]
Step 1. We show that [¢t] is braid equivalent to a class of the form
(5 B), ..., (5 E,), (Ty;id), ..., (Ta; id)].

Let i and j be two arbitrary indexes in {1, ...,d} such that i < jand j # i + 1. We notice that the sequence
((5Gi+1),x0i+1),...,5(G—1,7), & —1,))is braid equivalent to the sequence

(5 @) ) (G i+ 1), (5 i+ 1), (5 (=27 = 1)), (5 (= 2,7 = 1))

In fact, if the elements of the pair ((+; (j — 1, ), (+;(j — 1, j)) are at the places 1,1 + 1 and the elements of the
pair ((*; (i, i+ 1)), (+; (i,i+ 1)) are at the places [,/ + 1, in order to obtain the claim we can act with the sequence
of moves

’ ’ " 17 ’ ’ 7 " ’ ’ ’ 1
Op-1791rOh—2r -1/ 931 Op—2/ Opp—gr Op_3r++ 10141/ 0112/ 01 1 Opyq-
Now, we can bring the elements of the pair ((+; (i, j)), (+ (i, j))) to the places n, — 1 and n, by using the

/ ’ ’ ’ ’ /
sequence of moves 014170110140/ 0)p1s-+ 100 1,00 5.

This ensures that acting by suitable elementary moves on the sequence ((*; (1,2)), (;(1,2)),...,(+;(d -
1,d)), (+; (d — 1,d))) we can replace it with

((*; (1/ 2))/ (*; (1/ 2))/ sy (*; (M - 2/ Uu-= 1))/ (*; (1/[ - 2/ U-—= 1))/ (*; (Z/l, u+ 1))/
(*/' (Ll, U+ 1))/ ey (*; (d - 1/ d))/ (*; (d - 1/ d))/ (*; (1/ u))/ (*; (1/ M)))

where u is an arbitrary indexin {1,...,d}. Let (1,; id) be the element that occupies the place 11, + 1. Then, we
choose u = v and we act with o7, in order to replace (1,; id) with (11;id). Now, we move this element to the
last place. If the elements (+; (1, u + 1)), (+; (u, u + 1)) are in the places h + 2,1 + 3, then we use the moves

’ ’ ’ ’ ’ ’ /7 ’
013279117 91,-37Opy2 7+ =+ 7 Oy 2(d-1)42 7 O 11y —2(d-1)43 7 O —2(d-1)+3 * O y—2(d—~1)+2 7

7

7 /7 7 7 7 ’ ’
O11y-2(d=1)+4 * Oy ~2(d-1)+3 7 O11y—2(d—1)45 * Ony—2(d-1)+4 7=+ 7 Op—17 9 7 9jy 7 Oppq

in order to obtain again a sequence of the type
(5 (1,2),(+(1,2),..., ¢ @ =1u), (5 u=1,u),...,0@d-14d),d-1,4d)).
Now, we can proceed as above for all the elements of type (1.;id). In this way, we obtain the claim.
Step 2. By Step 1, [t] is braid equivalent to a class of the form
(bR, .., (5 Ey), (T id), (Tusid), . .., Ty id)].
Now we claim that [¢] is braid equivalent to a class of type
[O;F1), .., (0; Eymaga—1), (% Fnyma(@=1y+1), - - -, (% ,), (1 d), . . ., (13; id)].

Let i1, ia,...,i be the indexes which b; sends to 1. We suppose that i1 < i, < --- < i1 <i;. We notice that,
by Step 1, we can assume that the element at the place 1, + 1 1is (1;; id). In fact, in order to obtain the claim it
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is sufficient to choose u = 7;. By using elementary moves of type a;.’, we move (1;;id) to the place 2. We act

two times with the moves 0} and so we replace the pair ((b1; £), (1;; id)) with ((131 ;11), (1j41;id)) where by is
a function that sends to 1 the indexes iy, i, ...,i-1, iy — 1. Here, iy — 1 and i; + 1 are, respectively, the index
that precede and the index that follow i; in t1 Now, we move the element (1;_,; id) to the place n, + 1. By
Step 1, we can replace (1;,,; id) with (1y;id).

Since b; is a function which sends to 1 an even number of indexes (see Definition 2.1), acting as above,
after a finite number of steps, we can replace the element (El ; £1) with (0; 7).

We can proceed as done for (by; 1), also for all the elements of type (%; fj) withj=2,...,mp-2(d-1). In
this way, we obtain the claim.

iy17

Step 3. By Step 2, [t] is braid equivalent to the class
[(0/ E1)/ ey (0/ EHz*Z(dfl))/ (*/ (1/ 2))/ (*/ (1/ 2))/ ey (*/ (d - 1/ d))/ (*/ (d - 1/ d))/ (ill Id)/ ey (ill ld)]

Since 117 is even, one has
0;F1) -+ (0; Fupm2ia-1)) (% (1, 2))(%; (1, 2)) - - (% (d = 1, d)(+; (d = 1,d)) = (0; id).
From this it follows that the sequence ((+; (1,2)), (% (1,2)), ..., (+; (d — 1,d)), (+; (d — 1,d))) is equal to either
((0;(1,2)),(0;(1,2)),...,(0;(d = 1,d)),(0;(d — 1,4)))

or
((112; (1/ 2))/ (112; (1/ 2))/ ey (id—ld; (d - 1/ d))/ (id—ld; (d - 1/ d)))
In the first case, we have the claim. So, we analyze the second case. We use the moves o7, an s 0;2 2d-1)+3

in order to shift one element of type (1;;id) to the right of the pair ((112;(1,2)), (112, (1,2))). We use the
moves an (- 1)+2,a;’2 (d-1)+27 an—z(d 41 in order to replace the sequence ((112;(1,2)), (112;(1,2)), (13;id))
with ((0; (1, 2)), (112; (1, 2)), (12; id)).

By using the moves

/7 1’ ’ 7
O 1p—2(d=1)+3” Ony—2(d-1)+4” Oy —2(d-1)45’ O ny—2(d=1)+67 * * * 7 Oy On2+1

we replace
((12;id), (123;(2,3)), (123;(2,3)), - - ., Qe (d = 1, d)), (Lg-14; (d — 1, d)))
with
((0/ (2/ 3))/ (123; (2/ 3))/ ey (0/ (d - 1/ d))/ (‘Idfld/‘ (d - 1/ d))r (id; ld))

l/ 24
=171 Iy 2(@-1)+47 Ony-2(d-1)43" Inp-2(d-1)+2
way, we have that the above sequence is braid equivalent to

a” . In this

7, 2=2(d—1)+2

Now, we apply the sequence of moves o},

((0;(1,2)), (A1;id), (05(2,3)), (0;(2,3)), ..., (0;(d = 1,d)), (0; (d - 1,d))).

We obtain the claim by using the moves

7 7’

77 17
O, -2(d-1)+37 Oy—2(d-1)+47 * * * » Ori—17 Oy

O

The purpose of this paper is to show that the space H%Bi)qla ) M,(Y) is irreducible. We notice that such

space is smooth. So, if we prove that it is connected then we also prove that it is irreducible. Let

W(Ba4) (m+nz) _
o HYP) ()= YT
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be the map which assigns to each equivalence class [f o m] the branch locus of f o 7. The topology
W(B4)
Hd nm ;cqlel ..... qre"

m(Y+12) — A D) acts on A°

defined on (Y) is such that ¢ is a topological covering map (see [8]). Therefore the braid group

. The orbits of this action are in one-to-one correspondence with

kni,qel,...q0€,9
the connected components of H;N(Bd) ) (Y). So, if we prove that 7i;(Y"*™) — A, D) acts transitively on
oy kqie,...qee
A} . then we also prove that H W(Bs) . (Y) is connected. We notice that, in order to check the
n1qiel,...q.e,g dny kqiel,...qre"

tran51t1V1ty of this action, it is sufficient to prove that any class in A? is braid equivalent to a given

ket .. g
normal form. Hence, an immediate consequence of the previous proposition is the following theorem.
Theorem 5.5. If k > 3d — 3, then the Hurwitz space H W(B}‘()q]el e (PY) is irreducible.

From Prposition 5.4, it follows also the following result.

Theorem 5.6. Let Y be a smooth, connected, projective complex curve of genus > 1. If k > 3d — 3, then the Hurwitz

space H‘Z\[;Bi)qﬁl e () is irreducible.

Proof. In order to obtain the claim it is sufficient to prove that each equivalence class in AL et is
braid equivalente to a class of the form [t’; (0; id), (0; id), . . ., (0;id), (0; id)]. In fact, [t'] belongs to A?
and so the theorem follows by Proposition 5.4. Let [£; A, y] € A?

kni,q1€t,...q.¢",0

kni,qiel,...qe 9

Step 1. At first, we show that [t; A, u] is braid equivalent to a class of type [..., (1;;id),...; A, u] where i
is an arbitrary index in {1, ..., d}. a a

Using suitable elementary moves o/, we shift on the right the elements of the form (1.;id). We act with
elementary moves ¢/’ in order to bring to the first place an element of type (x;7), where 1) is a permutation

with cycle type given by the partition ¢! of d. Now, we move to the places 2, ...,k + 1 the elements of type
(zij; (i, j)). In this way, we have that our class is braid equivalent to

[Ell ey E1*!2/ (ihr ld)/ ey (:_l*/ ld)/ Al/ ulr ey Ag/ ‘ug]

where f; = (; t), Ak =(x /\}’c), Ur = (% yl’(), ty=nandt),..., k+1 are transpositions.
We observe that the condition k > 3d — 3 ensures that k + |e!| > 2d. So, by Lemma 5.1, we have that the

sequence of permutations (1,1}, ...,t,,) is braid equivalent to a sequence of type (7', t},...,t/,,) where ’
has cycle type ', t7,..., 1/  are transposmons, t/ =t/ and

(77,/ tg/ . k+1> = <T] t . 'rt},;,l)-

Now, we notice that (7', t7,..., t1,</+1' ot A U, g, yg) is the Hurwitz system of a degree d branched

covering of Y with monodromy group Sa. So, by Lemma 5.2, it is braid equivalent to a system of type
Coovve AL, AG, yg) where v is an arbitrary transposition of S;. From this, it follows that our class
is braid equivalent to a class of type

[..-,(*,'V),(*,'V),...,(ih;id),...;Al,yl,...,/\g,[.lg]-

Now, in order to obtain the claim it is sufficient to choose v = (i, ), to move one element of type (#;v) to the
place n; and to act with o7,

Step 2. Now, we claim that [£; A, ] is braid equivalent to a class of type [t’; (0;id), (0;id), . . ., (0;id), (0; id)].
Acting by suitable elementary moves o we have that our class is braid equivalent to

[tll . ‘rlz/( *; Zd)/ crc (i*/ ld)/ /\1/ ‘Llll cecy A’gl fug]

where t; = (5 £), Ax = (%A Band e = (% ).
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We notice that (f1, ..., fy,; AL Uy, /\;, y’g) is the Hurwitz system of a degree d > 3 covering of Y, with
monodromy group Sy and with n, branch points, k of which are simple points and 7, — k of which are special
points. Moreover, q; among of the special points have local monodromies with cycle type given by the
partition ¢’ of d. Since, under the condition k > 3d — 3, the Hurwitz space parameterizing coverings as above
is irreducible (see [27], Theorem 2), the Hurwitz system (1, ..., f4,; AL, /\;, y’y) is braid equivalent to a
system of type

(tr, ..., twy;id,id, ..., id, id).

Hence, [t; A, u] is braid equivalent to a class of the form

[flr sy {nzr (i*/ ld)/ e (lll,' Zd)/ (bll ld)/ ceey (ﬂg,' ld)/ (bgr ld)]

We notice that if a, = 0 and b, = 0 for each 1 < s, v < g we have the claim. So, let 2; # 0 and i be one of
the indexes that a; sends to 1.
By Step 1, [, ..., By, (1;id), .. .; (a1;id), (by; id), .. ., (ay;1d), (by; id)] is braid equivalent to the class

[..,(A;id),...;(ayid), (by;id), ..., (ag;id), (by; id)].

Acting with elementary moves 0;.’ we bring to the first place the element (1;;id) and then we use the move
71, to replace (ay; id) with (1;; id) (ay; id) where 1; + a1 is a function that sends i to 0.

So reasoning for all the indexes that a; sends to 1, after a finite number of steps, we obtain that our class
is braid equivalent to

[...;(0;id), (by;id), . ..., (ag; id), (by; id)].
Ifa; =0, by # 0 and b; sends i to 1, we again use elementary moves of type 0}’ to shift (1;;id) to the first

place. We act by the braid move p}; and so we transform (b;; id) into (1;;id) (by; id) where the function 1; + by
sends i to 0. Following this line for all the indexes that b; sent to 1, we can replace our class with

[...;(0;id), (0;id), ..., (a;id), (b,; id)].

We notice that if a; # 0 and a; = b; = 0, for each [ < s — 1, in order to obtain the claim one can reason

in the same way but this time applying the braid move 7.. Analogously if bs # 0, 4, = b; = 0, for each

I <s-1,and a; = 0 one can apply the braid move p;, to transform (by;id) into (0;id). O
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