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Abstract. A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this
paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.

1. Introduction

A graph is arc-transitive if its automorphism group acts transitively on the set of its arcs. A graph is one-
regular if its automorphism group acts regularly on the set of its arcs. Not surprisingly arc-transitive graphs
- and one-regular graphs in particular - have received considerable attention over the years, the aim being to
obtain structural results and possibly a classification of such graphs of particular orders or satisfying certain
additional properties. Research in one-regular graphs is interesting for two reasons, the first being their
connection to regular maps, a lively area of research. Namely, the underlying graphs of chiral maps admit
one-regular group actions with a cyclic vertex stabilizers (see, for example, [8, 10–12]). Second, one may
argue that one-regular graphs are interesting in their own right if one’s goal is a description of arc-transitive
graphs. For some classes of Cayley graphs, for example, circulants, this has been achieved, whereas for
others, such as Cayley graphs of dihedral groups, all 2-arc-transitive graphs have been completely classified
[16], but arc-transitivity remains an open problem.

Clearly, a one-regular graph with no isolated vertices is connected, and it is of valency 2 if and only if it
is a cycle. The first example of a cubic one-regular graph was constructed by Frucht [21]. Further research
in cubic one-regular graphs has been part of a more general project dealing with the investigation of cubic
arc-transitive graphs (see [9, 15, 17–20, 31]). Tetravalent one-regular graphs have also received considerable
attention. In [4] tetravalent one-regular graphs of prime order were constructed, and in [30] an infinite
family of tetravalent one-regular Cayley graphs on alternating groups is given. Tetravalent one-regular
circulant graphs were classified in [41], and tetravalent one-regular Cayley graphs on abelian groups were
classified in [40]. Next, one may extract a classification of tetravalent one-regular Cayley graphs on dihedral
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groups from [26, 36, 38]. Let p and q be primes. Clearly every tetravalent one-regular graph of order p is
a circulant graph. Also, by [7, 32, 34, 37, 40, 41], every tetravalent one-regular graph of order pq or p2 is a
circulant graph. Furthermore, the classification of tetravalent one-regular graphs of order 2pq is given in
[43]. The aim of this paper is to classify tetravalent one-regular graphs of order 4p2, see Theorem 5.1. (For
more results on tetravalent arc-transitive graphs, see [22, 23, 27, 33].)

In the next section we gather various concepts that are needed in the analysis of tetravalent one-regular
graphs in Section 4 and in the proof of our main result in Section 5. In Section 3, we give examples of
tetravalent one-regular graphs of order 4p2, where p is a prime.

2. Preliminaries

For a finite, simple and undirected graph X, we use V(X), E(X), A(X) and Aut(X) to denote its vertex
set, its edge set, its arc-set and its full automorphism group, respectively. For u, v ∈ V(X), denote by uv the
edge incident to u and v in X. By Cn and Kn we denote the cycle of length n and the complete graph of order
n, respectively.

A subgroup G ≤ Aut(X) is said to be vertex-transitive, edge-transitive and arc-transitive provided it acts
transitively on the sets of vertices, edges and arcs of X, respectively. The graph X is said to be vertex-
transitive, edge-transitive, and arc-transitive if its automorphism group is vertex-transitive, edge-transitive
and arc-transitive, respectively. An arc-transitive graph is also called a symmetric graph. An arc-transitive
graph X is said to be one-regular if Aut(X) acts regularly on A(X). A subgroup G ≤ Aut(X) is said to be
k-arc-transitive if it acts transitively on the set of k-arcs, and it is said to be k-regular if it is k-arc-transitive
and the stabilizer of a k-arc in G is trivial.

For a finite group G and a subset S of G such that 1 < S and S = S−1, the Cayley graph Cay(G,S) on G
with respect to S is defined to have vertex set G and edge set {{1, s1} | 1 ∈ G, s ∈ S}. Given 1 ∈ G, define the
permutation R(1) on G by x 7→ x1, x ∈ G. The permutation group R(G) = {R(1) | 1 ∈ G} on G is called the
right regular representation of G. It is easy to see that R(G) is isomorphic to G, and it is a regular subgroup
of the automorphism group Aut(Cay(G,S)). Furthermore, the group Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a
subgroup of Aut(Cay(G,S)). Actually, Aut(G,S) is a subgroup of Aut(Cay(G,S))1, the stabilizer of the vertex
1 in Aut(Cay(G,S)). A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G, S)). Xu
[42, Proposition 1.5] proved that Cay(G, S) is normal if and only if Aut(Cay(G, S))1 = Aut(G,S).

Given a transitive group G acting on a set V, we say that a partition B of V is G-invariant if the elements
of G permute the parts, that is, blocks of B, setwise. If the trivial partitions {V} and {{v} : v ∈ V} are the only
G-invariant partitions of V, then G is said to be primitive, and is said to be imprimitive otherwise. In the
latter case we shall refer to a corresponding G-invariant partition as to an imprimitive block system of G.

2.1. Group theoretic results

Throughout this paper we denote byZn the cyclic group of order n as well as the ring of integers modulo
n, and by Z∗n the multiplicative group of units of Zn. For two groups M and N, N ≤ M means that N is a
subgroup of M and N < M means that N is a proper subgroup of M.

For a permutation group G on a set Ω and α ∈ Ω we let Gα denote the stabilizer of α in G, that is, the
subgroup of G fixing the element α ∈ Ω. The group G is said to be semiregular on Ω if Gα = 1 for every
α ∈ Ω, and it is said to be regular if it is both transitive and semiregular on Ω.

Below we gather various group-theoretic results that are needed in the subsequent sections of this paper.
The first one is about transitive abelian permutation groups.

Proposition 2.1. [35, Proposition 4.4] Every transitive abelian group G on a set Ω is regular.

For a subgroup H of a group G, let CG(H) be the centralizer of H in G, and let NG(H) be the normalizer
of H in G. Then CG(H) is normal in NG(H).
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Proposition 2.2. [25, Chapter I, Theorem 4.5] Let G be a group and H a subgroup of G. Then the quotient group
NG(H)/CG(H) is isomorphic to a subgroup of the automorphism group Aut(H) of H.

The following result can be extracted from [13, P.285, summary].

Proposition 2.3. [13] Let G = PSL(2, 7) and let A = PGL(2, 7). Then Sylow 2-subgroups of G and A are,
respectively, isomorphic to D8 and D16. Moreover, all involutions of G are conjugate, and G has no subgroup of order
14.

The following classical result is due to Wielandt [35, Theorems 3.4].

Proposition 2.4. [35] Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set
Ω. Let w ∈ Ω. If pm divides the length of the G-orbit containing ω, then pm also divides the length of the P-orbit
containing w.

2.2. Graph covers

A graph X̃ is called a covering of a graph X with projection p : X̃ → X if there is a surjection p : V(X̃) →
V(X) such that p|NX̃(ṽ) : NX̃(ṽ) → NX(v) is a bijection for any vertex v ∈ V(X) and ṽ ∈ p−1(v). The set
fibv = p−1(v) is a fibre of a vertex v ∈ V(X). The subgroup K of all those automorphisms of X̃ which fix each
of the fibres setwise is called the group of covering transformations. If the group of covering transformations
is regular on the fibres of X̃, we say that X̃ is a regular K-covering. We say that α ∈ Aut(X) lifts to an
automorphism of X̃ if there exists α̃ ∈ Aut(X̃), called the lift of α, such that α̃p = pα.

Let X be a graph and K a finite group. A K-voltage assignment of X is a function ϕ : A(X) → K with the
property that ϕ(a−1) = ϕ(a)−1 for each arc a ∈ A(X), where a−1 denotes the reverse arc of the arc a. The values
of ϕ are called voltages, and K is the voltage group. The graph X ×ϕ K derived from a voltage assignment
ϕ : A(X)→ K has vertex set V(X)×K and edges of the form (u, 1)(v, 1ϕ(a)) where a = (u, v) ∈ A(X) and 1 ∈ K.
Clearly, the derived graph X ×ϕ K is a covering of X with the first coordinate projection p : X ×ϕ K→ X. By
letting K act on V(X ×ϕ K) as (u, 1′)1 = (u, 11′), (u, 1′) ∈ V(X ×ϕ K), one obtains a semiregular subgroup of
Aut(X×ϕ K), showing that X×ϕ K can in fact be viewed as a K-covering. Conversely, each regular covering
X̃ of X with a covering transformation group K can be derived from a K-voltage assignment. Moreover,
Gross and Tucker [24] showed that every regular covering X̃ of a graph X can in fact be derived from a
T-reduced voltage assignment ϕwith respect to an arbitrary fixed spanning tree T of X. (Given a spanning
tree T of a graph X, a voltage assignment ϕ is said to be T-reduced if the voltages on the tree arcs are all equal
to the identity of K.) If X×ϕ K→ X is a connected K-covering derived from a T-reduced voltage assignment
ϕ then the problem whether an automorphism α of X lifts or not can be grasped in terms of voltages as
follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a natural
way. Given α ∈ Aut(X), we define a function α from the set of voltages on fundamental closed walks based
at a fixed vertex v ∈ V(X) to the voltage group K by (ϕ(C))α = ϕ(Cα), where C ranges over all fundamental
closed walks at v, and ϕ(C) and ϕ(Cα) are the voltages on C and Cα, respectively. Note that if K is abelian, α
does not depend on the choice of the base vertex, and the fundamental closed walks at v can be substituted
by the fundamental cycles generated by the cotree arcs of X. The next proposition is a special case of [30,
Theorem 4.2].

Proposition 2.5. [30] Let X ×ϕ K → X be a connected K-covering derived from a T-reduced voltage assignment ϕ.
Then, an automorphism α of X lifts if and only if α extends to an automorphism of K.

For more results on graph covers we refer the reader to [1, 2, 14, 28, 29].
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2.3. Tetravalent arc-transitive graphs

In this subsection we gather known results about tetravalent arc-transitive graphs that will be needed
in subsequent sections. The first two propositions can be deduced from [40, Theorem 3.5].

Proposition 2.6. [40] Let p be a prime, and G � Z2p2 × Z2 or G � Z4p × Zp. Then there exists a tetravalent
one-regular Cayley graph on G if and only if p − 1 is a multiple of 4. Moreover in each of these two cases exactly one
such graph exists.

Proposition 2.7. [40] Let p be a prime and G � Z2p ×Z2p. Then there is no tetravalent one-regular Cayley graph
on G.

Let X be a connected symmetric graph and let G ≤ Aut(X) be an arc-transitive subgroup of Aut(X).
For a normal subgroup N of G, the quotient graph XN of X relative to the set of orbits of N is defined as
the graph whose vertices are orbits of N on V(X) with two orbits being adjacent in XN if there is an edge
between these two orbits in X. The following proposition is a ‘reduction’ theorem which is deduced from
[22, Theorem 1.1].

Proposition 2.8. [22, Theorem 1.1] Let X be a tetravalent connected symmetric graph and let G ≤ Aut(X) be an
arc-transitive subgroup of Aut(X). Then for each normal subgroup N of G one of the following holds:

(1) N is transitive on V(X);
(2) X is bipartite and N acts transitively on each of the two bipartition sets;
(3) N has r ≥ 3 orbits on V(X), the quotient graph XN is a cycle of length r, and G induces the full automorphism

group D2r of XN;
(4) N has r ≥ 5 orbits on V(X), N acts semiregularly on V(X), the quotient graph XN is a tetravalent connected

G/N-symmetric graph and X is a regular cover of XN.

To state the next result we need to introduce three families of tetravalent graphs that were first defined
in [23]. First, let C±1(p; 4, 2) be the graph with vertex set Z2

p ×Z4, and adjacencies in C±1(p; 4, 2) satisfying
the following conditions: for i, j ∈ Zp and k ∈ Z4

(i, j, k) ∼
{

(i ± 1, j, k + 1) if k is even
(i, j ± 1, k + 1) if k is odd .

Second, for a prime p ≡ ±1(mod 8) and an element k ∈ Z∗p such that k2 ≡ 2 (mod p) the graph NC0
4p2 is

defined to have vertex set and edge set

V(NC0
4p2 ) = Z2

p ×Z4 = {(x, y, z) | x, y ∈ Zp, z ∈ Z4},
E(NC0

4p2 ) = {(x, y, 0)(x ± 1, y, 1) | x, y ∈ Zp} ∪ {(x, y, 1)(x, y ± 1, 2) | x, y ∈ Zp} ∪
{(x, y, 2)(x ∓ 1, y ± k, 3) | x, y ∈ Zp} ∪ {(x, y, 3)(x ∓ k, y ± 1, 0) | x, y ∈ Zp}.

And third, for a prime p, p ≡ 1(mod 8) or p ≡ 3(mod 8) and an element k ∈ Z∗p such that k2 ≡ −2 (mod p)
the graphNC1

4p2 is defined to have vertex set and edge set

V(NC1
4p2 ) = Z2

p ×Z4 = {(x, y, z) | x, y ∈ Zp, z ∈ Z4},
E(NC1

4p2 ) = {(x, y, 0)(x ± 1, y, 1) | x, y ∈ Zp} ∪ {(x, y, 1)(x, y ± 1, 2) | x, y ∈ Zp} ∪
{(x, y, 2)(x ± 1, y ± k, 3) | x, y ∈ Zp} ∪ {(x, y, 3)(x ± k, y ∓ 1, 0) | x, y ∈ Zp}.

The graphs NC0
4p2 and NC1

4p2 are extracted from [23, Lemma 8.4, Lemma 8.7]. We can now state the result
of Gardiner and Praeger [23, Theorem 1.2] about connected tetravalent graphs admitting arc-transitive
subgroups of automorphisms with normal elementary abelian p-groups N such that the corresponding
quotient graph XN is a cycle.
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Proposition 2.9. [23, Theorem 1.2] For an odd prime p let X be a connected, G-symmetric, tetravalent graph of
order 4p2, let N = Z2

p be a minimal normal subgroup of G with orbits of size p2, and let K be the kernel of the action of
G on V(XN). If XN = C4 and Kv = Z2 then X is isomorphic to one of the following graphs: C±1(p; 4, 2), NC0

4p2 and

NC1
4p2 .

In [23] it is proven that the three graphs in the above proposition all admit a one-regular subgroup of
automorphisms. In the following two lemmas we improve this result by showing that C±1(p; 4, 2) is not
one-regular whereasNC0

4p2 andNC1
4p2 are.

Lemma 2.10. Let p be a prime. Then C±1(p; 4, 2) is not one-regular.

Proof. First recall that the vertex set of X = C±1(p, 4, 2) is equal to V(X) = {(i, j, k) | i ∈ Zp, j ∈ Zp, k ∈ Z4} and
the edges are of the form

(i, j, 2l) ∼ (i ± 1, j, 2l + 1), where i, j ∈ Zp and l ∈ {0, 1}
(i, j, 2l − 1) ∼ (i, j ± 1, 2l), where i, j ∈ Zp and l ∈ {0, 1}.

Then the reader can check that a permutation α of V(X) defined by (i, j, k)α = (−i, j, k) maps edges to edges,
and hence α is an automorphism of X. Since α fixes the arc (0, 0, 1)(0, 1, 2) ∈ A(X) it follows that X is not
one-regular.

Lemma 2.11. Let p be a prime. ThenNC0
4p2 andNC1

4p2 are both one-regular graphs.

Proof. Let X ∈ {NC0
4p2 ,NC1

4p2 } and let X2 be the distance-2-graph of X, that is, V(X2) = V(X) with two
vertices being adjacent in X2 if and only if they are at distance 2 in X. Let

∆i = {(x, y, i) | x, y ∈ Zp}, i ∈ Z4.

Then for every i ∈ Z4 the subgraph X2[∆i] of X2 induced by the vertices in∆i is a 2-dimensional grid Cp×Cp,
whereas any edge uv in X2 with endvertices u ∈ ∆i and v ∈ ∆ j, where i , j, is contained in an induced
subgraph of X2 isomorphic to the complete graph K4. Moreover this induced subgraph isomorphic to K4
containing the edge uv is unique. Take four vertices u1,u2,u3,u4 ∈ ∆i such that the subgraph Y of X2 induced
on these four vertices is isomorphic to a 4-cycle C4. Then Y1 for any 1 ∈ Aut(X2) is an induced subgraph of
X2 isomorphic to C4. Since there is no set of four vertices containing vertices from different sets ∆i such that
the induced subgraph of X2 is isomorphic to C4 it follows that Y1 is a subgraph of X2[∆ j] for some j ∈ Z4.
This shows that the sets ∆i, i ∈ Z4, are blocks of imprimitivity for Aut(X). Therefore every automorphism
1 ∈ Aut(X) that fixes the vertices (0, 0, 0) and (1, 0, 1), and thus the arc (0, 0, 0), (1, 0, 1), also fixes the vertices
(2, 0, 0) and (−1, 0, 1). Now looking at the action of 1 on X2 we get that 1 fixes both ∆0 and ∆1 pointwise.
Since all the vertices in ∆1 are fixed by 1 and the induced bipartite subgraph X[∆1,∆2] is a disjoint union of
p 2p-cycles it follows that also ∆2 is fixed pointwise by 1. Using the same argument for X[∆0,∆3] one can
see that 1 also fixes the vertices in ∆3 and thus 1 = 1, which shows that X is one-regular.

To state the next result we need to introduce two additional families of tetravalent graphs that were
first defined in [23]. The graph C±1(p; 4p, 1) is defined to have the vertex set Zp × Z4p and the edge set
{(i, j)(i±1, j+1) | i ∈ Zp, j ∈ Z4p}. The graph C±ε(p; 4p, 1) is a graph with vertex setZp×Z4p with adjacencies
in C±ε(p; 4p, 1) satisfying the following conditions:

(i, j) ∼
{

(i ± ε, j + 1) if j is odd
(i ± 1, j + 1) if j is even ,

where i ∈ Zp, j ∈ Z4p and ε is an element of order 4 in Z∗p.
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Proposition 2.12. [23, Theorem 1.1] Let p be an odd prime and let X be a connected, G-symmetric, tetravalent
graph of order 4p2. Let N = Zp be a minimal normal subgroup of G with orbits of size p and let K denote the kernel of
the action of G on V(XN). If XN = C4p and Kv = Z2 then X is isomorphic either to C±1(p; 4p, 1) or to C±ε(p; 4p, 1).

We end this subsection with a result on tetravalent arc-transitive graphs of order 4p, where p is a
prime. In order to state the result, first recall that the lexicographic product X[Y] (sometimes also called the
wreath product) of two graphs X and Y has vertex set V(X) × V(Y), and two vertices (a,u) and (b, v) are
adjacent in X[Y] if ab ∈ E(X) or if a = b and uv ∈ E(Y). Second, following [44], for a prime p congruent
to 1 modulo 4, an element w of order 4 in Z∗p and the group G = ⟨a⟩ × ⟨b⟩ � Z2p × Z2, we use notation
CA0

4p = Cay(G, {a, a−1, aw2 b, a−w2 b}) and CA1
4p = Cay(G, {a, a−1, awb, a−wb}). For the definition of the graph

C(2, p, 2) stated in the sixth row of Table 1 see Section 4. Finally, by [44, Example 3.7], g28 = Cos(G,T,TaT) is
a coset graph of the group G = PGL(2, 7) with respect to a subgroup T isomorphic to A4 and an involution
a from the center of the normalizer of a Sylow 3-subgroup of T in G.

Proposition 2.13. [44, Theorem 4.1] Let s be a positive integer and let p be a prime. Then a connected tetravalent
graph of order 4p is s-arc-transitive if and only if it is isomorphic to one of the graphs listed in Table 1. Furthermore,
all graphs listed in Table 1 are pairwise non-isomorphic.

X s Aut(X) comments
K4,4 3 Z2 n (S4 × S4) p=2

C2p[2K1] 1 D4p n Z
2p
2 p > 2

CA0
4p 1 Z2

2 n (Z2p ×Z2), p ≡ 1(mod 4)
CA1

4p 1 Z4 n (Z2p ×Z2), p ≡ 1(mod 4)

C(2, p, 2) 1 D2p n Z
2p
2 p > 2

g28 3 PGL(2, 7) ×Z2 p = 7

Table 1: Tetravalent s-arc-transitive graphs of order 4p.

3. Examples

In this section, we give examples of tetravalent one-regular graphs of order 4p2, where p is a prime. In
this paper, the abbreviations CA and CN will mean a Cayley graph on abelian group and a Cayley graph
on non-abelian group, respectively.

Example 3.1. Introduced by Wilson [39] the bicycle wheels are defined in the following way. Given natural
numbers n, a, r and s, the graph X = BWn(a, r, s) is defined to be the graph of order 3n with vertex set
V(X) = {Ai,Bi,Ci | i ∈ Zn} and edge set

E(X) = {AiBi,BiAi+1,BiCi,CiBi+a,AiAi+r,CiCi+s | i ∈ Zn}.

With the help of computer software package MAGMA [3] one can see that BW12(5, 1, 5) is one-regular. In
addition, it is a Cayley graph Cay(G36,S) on the group G36 = ⟨a, b, c, d | a2 = b2 = c3 = d3 = 1 = [a, b] =
[a, c] = [b, c] = [c, d], d−1ad = b, d−1bd = ab⟩ with respect to the generating set S = {ad, (ad)−1, bdc, (bdc)−1}, and
Aut(CA2

36) � G36 o Z2
2.

Remark: The automorphism group of the graph BW12(5, 1, 5) has a non-normal Sylow 3-subgroup. Since,
by Theorem 5.1, the automorphism groups of the graphs CAi

4p2 , i ∈ {0, 1, 2}, given in Examples 3.3 and 3.4
and Lemma 3.6, all have normal Sylow p-subgroups, the graph BW12(5, 1, 5) is not isomorphic to any of
these graphs.
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Example 3.2. Given natural numbers k and m, and a 2 × 2 matrix M over Zn the 2-dimensional generalized
power spidergraph GPS2(k,n,M) is defined to be the graph with vertex set Zk × Zn × Zn, and edge set
{(i, x)(i + 1, x + ai), (i, x)(i + 1, x + bi) | i ∈ Zk, x ∈ Zn × Zn} where ai = (1, 0)Mi and bi = (−1, 0)Mi (see [39]).
With the use of MAGMA [3] one can see that GPS2(4, 3, (0 1) : (1 2)) is a one-regular graph. In addition, it
is not a Cayley graph and the stabilizer of a vertex in the automorphism group is isomorphic to Z4.

Example 3.3. Let p ≡ 1 (mod 4) be a prime and w an element of order 4 inZ∗p with 1 ≤ w ≤ p− 1. Let G0
4p2 =

⟨a⟩×⟨b⟩ � Z2p2×Z2. Then, by [40, Proposition 3.3(iv)], the Cayley graphCA0
4p2 = Cay(G0

4p2 , {a, a−1, awb, a−wb})
is a tetravalent one-regular graph. Furthermore, Aut(CA0

4p2 ) � (Z2p2 ×Z2) o Z2
2.

Example 3.4. Let p be an odd prime and G1
4p2 = ⟨a , b | a4p = bp = 1 , ab = ba⟩ � Z4p × Zp. Then, by [40,

Proposition 3.3], the Cayley graph CA1
4p2 = Cay(G1

4p2 , {ab, a−1b, ab−1, a−1b−1}) is a tetravalent one-regular

graph. Furthermore, Aut(CA1
4p2 ) � (Z4p ×Zp) o Z2

2. The graph DW(12, 3) of order 36 given in [39] is the
smallest example of such graphs.

For an odd prime p, the tetravalent graph C±1(p ; 4p, 1) is defined in the paragraph preceding Propo-
sition 2.12. In the following lemma we prove that C±1(p ; 4p, 1) is isomorphic to CA1

4p2 , and thus it is
one-regular in view of Example 3.4.

Lemma 3.5. Let p be an odd prime, let G1
4p2 = ⟨a , b | a4p = bp = 1 , ab = ba⟩ � Z4p × Zp, and let S =

{ab, a−1b, ab−1, a−1b−1}. Then C±1(p ; 4p, 1) � Cay(G1
4p2 ,S) = CA1

4p2 .

Proof. Recall that C±1(p ; 4p, 1) has vertex set Zp ×Z4p and edge set {(i, j)(i ± 1, j + 1) | i ∈ Zp, j ∈ Z4p}. The
map defined by (i, j) 7→ a jbi is an isomorphism from C±1(p ; 4p, 1) to the Cayley graph CA1

4p2 . We leave the
details to the reader.

Let p ≡ 1 (mod 4) be a prime and let ε ∈ Zp be such that ε2 ≡ −1 (mod p). The following lemma shows
that C±ε(p ; 4p, 1) is a Cayley graph.

Lemma 3.6. Let p ≡ 1 (mod 4) be a prime, let ε ∈ Zp be such that ε2 ≡ −1 (mod p), let G2
4p2 = ⟨a, b | a4p = bp =

1, a−1ba = bε⟩, and let S = {ab, a−1bε, ab−1, a−1b−ε}. Then CN2
4p2 = Cay(G2

4p2 ,S) is a symmetric graph isomorphic to
C±ε(p ; 4p, 1).

Proof. Recall that the graph C±ε(p ; 4p, 1) has vertex set Zp ×Z4p with adjacencies defined as follows:

(i, j) ∼
{

(i ± ε, j + 1) if j is odd
(i ± 1, j + 1) if j is even

where i ∈ Zp and j ∈ Z4p.
Let G = G2

4p2 and X = Cay(G; S). Then the map defined by (i, j) 7→ a jbi is an isomorphism from
C±ε(p ; 4p, 1) to X. Since, by [23], the graph C±ε(p ; 4p, 1) is symmetric, the lemma holds.

4. Analysis of tetravalent one-regular graphs of order 4p2

Let p be an odd prime. Then define C(2, p, 2) to be a graph with V(C(2, p, 2)) = Z4 ×Zp and adjacencies
in C(2, p, 2) satisfying the following conditions:

(0, i) ∼ (0, j) ⇐⇒ j − i = ±1,
(0, i) ∼ (1, j) ⇐⇒ j − i = −1,
(0, i) ∼ (2, j) ⇐⇒ j − i = 1,
(1, i) ∼ (2, j) ⇐⇒ j − i = ±1,
(1, i) ∼ (3, j) ⇐⇒ j − i = −1,
(2, i) ∼ (3, j) ⇐⇒ j − i = 1,
(3, i) ∼ (3, j) ⇐⇒ j − i = ±1.
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Let X = C(2, p, 2) and let B = {Bi | i ∈ Zp}, where Bi = {(0, i), (1, i), (2, i), (3, i)} ⊆ Z4 × Zp. Observe that for
each j ∈ Zp, j , i, the subgraph X[Bi,B j] induced on the union Bi ∪ B j is not an independent set of vertices
if and only if j = i ± 1. Moreover, for each such j we have that X[B j,B j+1] � 2C4, see also Figure 1. The
following lemma shows that there is no one-regular Zp-cover of C(2, p, 2).

0 1 2 3 4 5 66

Figure 1: A spanning tree in the base graph C(2, p, 2) for p = 7.

Lemma 4.1. Let Y be a tetravalent one-regular graph of order 4p2, p > 3 a prime, such that there exists a normal
subgroup H of Aut(Y) of order p. Then Y is not a regular Zp-cover of the graph C(2, p, 2).

Proof. Let K = {1, τ1, τ2, τ3} be the Klein 4-group acting on Z4 so that τ1 = (0 1)(2 3), τ2 = (0 2)(1 3) and
τ3 = (0 3)(1 2). Let X = C(2, p, 2), let B = {Bi | i ∈ Zp}, where Bi = {(0, i), (1, i), (2, i), (3, i)} ⊆ Z4 ×Zp, and let K
be the kernel of the action of Aut(X) on B. We shall be sloppy and shall identify restrictions of elements of
K to sets Bi by elements ofK . For instance, when we say that the restriction γi of γ ∈ K to Bi is, for example,
τ1, we mean that γi = ((0, i)(1, i))((2, i)(3, i)). Now, the structure of X indicated in Figure 1 implies that the
restrictions γi must satisfy the following conditions:

γi ∈ {1, τ1} ⇐⇒ γi+1 ∈ {1, τ2} ∀i ∈ Zp. (1)

Let the vertices of X be labeled in the following way: ai = (0, i), bi = (1, i), ci = (2, i) and di = (3, i). Let
E = ⟨γi | i ∈ Zp⟩. It is well known, see for instance [33, 44], that Aut(X) = E o ⟨ρ, τ⟩ � Zp

2 oD2p where

ρ = (a0 a1 . . . ap−1)(b0 b1 . . . bp−1)(c0 c1 . . . cp−1)(d0 d1 . . . dp−1)

and

τ = (a0)(b0 c0)(d0)
p−1∏
i=1

(ai a−i)(bi c−i)(ci b−i)(di d−i).

Now let Y be a tetravalent one-regular graph of order 4p2. Assume that Aut(Y) contains a normal
subgroup H isomorphic toZp such that the corresponding quotient graph YH is isomorphic to X = C(2, p, 2).
Then, since the orbits of H form an Aut(Y)-invariant partition, the whole automorphism group Aut(Y) of
Y projects to a subgroup of Aut(X). On the other hand, the graph Y can be viewed as an H-covering graph
(that is, a Zp-covering) of X, and it can therefore be derived from X through a suitable voltage assignment
ζ. To find this voltage assignment fix the spanning tree T of X as indicated on Figure 1.

Let G be the largest subgroup of Aut(X) which lifts with respect to the natural projection X×ζZp � Y→
YH � X, where ζ is as given in Figure 1. Clearly, since Y is arc-transitive, we may assume that ρ, τ ∈ G. Let
F denote the largest subgroup of E which lifts. Then G = F o ⟨ρ, τ⟩ and thus |G| = 2p|F|. We will show that
|F| > 8. This will then imply that the lift Ḡ of G is of order |Ḡ| = 2p2|F| > 16p2, and consequently that Y is not
one-regular.

Since ρ, τ ∈ G, we have that

if ϕ ∈ F then ϕρ, ϕτ ∈ F. (2)
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It is convenient to view elements γ in E as vectors in Zp
4. Namely, we write γ = (e0, . . . , ep−1) where ei = s if

and only if γi = τs (where ei = 0 means that γi = τ0 = id). Note that in this context (2) can be interpreted as
follows: F is invariant under the “cyclic shift”

ϕ = ( f0, f1, . . . , fp−1) 7→ ( fp−1, f0, . . . , fp−2),

and under the “reflection around the first entry”

ϕ = ( f0, f1, . . . , fp−1) 7→ ( f ′0 , f ′p−1, f ′p−2, . . . , f ′2 , f ′1),

where

f ′i =


0 , if fi = 0
1 , if fi = 2
2 , if fi = 1
3 , if fi = 3

Now choose ϕ ∈ F. By (1) the first two components of ϕ can be one of the following pairs: ϕ = (0, 0, . . .),
ϕ = (0, 2, . . .), ϕ = (1, 0, . . .), ϕ = (1, 2, . . .), ϕ = (2, 1, . . .), ϕ = (2, 3, . . .), ϕ = (3, 1, . . .), or ϕ = (3, 3, . . .). Since
the lift of G acts arc-transitively on Y the group G must be of order |G| = 2p|F| ≥ 16p and thus |F| , 1.

Suppose first that there existψ ∈ F such thatψ < {id, (3, 3, . . . , 3)}. Since ρ is of prime order, the conjugacy
class of ψ under ⟨ρ⟩ is of size p. But then, by (2), we have that |F| > 8, which implies that Ḡ is not acting
one-regularly on Y.

Suppose now that (3, 3, . . . , 3) belongs to F. Then, since ⟨(3, 3, . . . , 3)⟩ ≤ F is of order 2 and |G| = 2p|F| = 16p,
we have that there must also exist a non-identity automorphism ψ ∈ F which is different from (3, 3, . . . , 3).
But then, as above, the conjugacy class of ψ is of size p, and consequently |F| > 8. This shows that Ḡ is not
acting one-regularly on Y, and the proof is completed.

By the following lemma there are only two normal one-regular Cayley graphs on the group G =
⟨a, b, c, 1| ap = bp = c2 = 12 = [a, b] = [c, 1] = [a, c] = [b, c] = 1, a1 = b, b1 = a⟩.

Lemma 4.2. Let p be a prime and G = ⟨a, b, c, 1| ap = bp = c2 = 12 = [a, b] = [c, 1] = [a, c] = [b, c] = 1, a1 =
b, b1 = a⟩. Then a tetravalent normal Cayley graph X of order 4p2 on G is one-regular if and only if it is either
isomorphic to

CN3
4p2 = Cay(G, {a1, bc1, b−11, a−1c1}) or to CN4

4p2 = Cay(G, {a1, bεc1, b−11, a−εc1}).

Moreover, Aut(CN3
4p2 ) � G o Z2

2 and Aut(CN4
4p2 ) � G o Z4.

Proof. Let X be a tetravalent one-regular normal Cayley graph Cay(G,S) on the group G with respect to
the generating set S. Since X is one-regular and normal, the stabilizer A1 = Aut(G,S) of the vertex 1 ∈ G is
transitive on S, and either Aut(G,S) � Z2

2 or Aut(G,S) � Z4. This implies that elements in S are all of the
same order.

Observe that G contains elements of order 2, p and 2p. In particular, elements of the form c, aib j1 and
aib jc1, where p | i + j, are of order 2; elements of the form aib j are of order p; and elements of the form aib jc,
ambn1 and ambnc1, where p - m + n, are of order 2p. In the following, we will show that up to isomorphism,
there are only two generating sets of size 4 such that the corresponding Cayley graphs are normal and
one-regular.

First, observe that neither four involutions nor two elements of order p can generate G. Moreover, G
cannot be generated by the following pairs of elements of order 2p: ai1 b j1 c and ai2 b j2 c, am1 bn11 and am2 bn21,
am1 bn1 c1 and am2 bn2 c1, where mi + ni , 0 (1 ≤ i ≤ 2). Second, Z(G) = ⟨ab, c⟩ = ⟨ab⟩ × ⟨c⟩ � Zp ×Z2, and thus
⟨c⟩ char G. Also, since Aut(G, S) is transitive on S, we have that S , {aib jc, ambn1, (aib jc)−1, (ambn1)−1} and
S , {aib jc, ambnc1, (aib jc)−1, (ambnc1)−1}, where m + n , 0. Now suppose that G is generated by

S0 = {aib j1, am′bn′c1, (aib j1)−1, (am′bn′c1)−1},
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where p - i + j and p - m′ + n′.

Case 1. Aut(G,S0) = ⟨α⟩ × ⟨β⟩ � Z2 × Z2, where α and β are such that aα = ai1 b j1 , bα = a j1 bi1 , cα = c,
1α = axb−xc1, aβ = ai2 b j2 , bβ = a j2 bi2 , cβ = c and 1β = ayb−y1.

Subcase 1.1. Let i = j.

Since ab ∈ Z(G), G can be generated by S0 if and only if m′ , n′. Now take an automorphism σ of G such
that

aσ = ai, bσ = bi, cσ = c, 1σ = 1.

Then (ab1)σ = aibi1, and hence

S = S0
σ−1
= {ab1, ambnc1, (ab1)−1, (ambnc1)−1} = {ab1, ambnc1, a−1b−11, a−nb−mc1},

where ambnc1 = (am′bn′c1)σ−1
. Moreover, it can be easily seen that m , n.

Suppose first that (ab1)α = ambnc1. Then (ambnc1)α = ab1, (a−1b−11)α = a−nb−mc1, and (a−nb−mc1)α =
a−1b−11. It follows that either m+n = 2 or m+n = −2. If m+n = 2 then, since m , n, we have that m , 1 and

aα = b, bα = a, cα = c, 1α = am−1b1−mc1.

If m + n = −2, then since m , n, we have n , −1 and

aα = a−1, bα = b−1, cα = c, 1α = a−1−nb1+nc1.

Suppose now that (ab1)β = a−1b−11. Then (a−1b−11)β = ab1, (ambnc1)β = a−nb−mc1, and (a−nb−mc1)β = ambnc1.
By a similar argument as above, one can get that

aβ = b−1, bβ = a−1, cβ = c, 1β = 1.

Consequently, either S0 = S1 = {ab1, amb2−mc1, a−1b−11, am−2b−mc1}, where m , 1, or

S0 = S2 = {ab1, a−2−nbnc1, a−1b−11, a−nbn+2c1},

where n , −1. In addition, replacing −n with m, it can be seen that S2 = S1. Moreover, it can be easily
seen that G can indeed be generated by S1. Namely, since (ab1)p = 1 we have 1, ab ∈ ⟨S1⟩. Then, since
amb2−mc1 ∈ ⟨S1⟩, we get that amb2−mc ∈ ⟨S1⟩. Further, since (amb2−mc)p = c, also c, amb2−m ∈ ⟨S1⟩. Now, since
amb2−m = ambmb2−2m, m , 1, and ab ∈ ⟨S1⟩, we get that b2−2m ∈ ⟨S1⟩. Finally, the fact that b1 = a implies that
G = ⟨S1⟩.
Subcase 1.2. Let i , j.

Take an automorphism σ of G such that aσ = aib j, bσ = a jbi, cσ = c, and 1σ = 1. Then (a1)σ = aib j1 and

S = S0
σ−1
= {a1, ambnc1, (a1)−1, (ambnc1)−1} = {a1, ambnc1, b−11, a−nb−mc1},

where ambnc1 = (am′bn′c1)σ−1
.

Suppose first that (a1)α = ambnc1. Then (ambnc1)α = a1, (b−11)α = a−nb−mc1, and (a−nb−mc1)α = b−11. In
addition, either m+ n = 1 or m+ n = −1. If m+ n = 1 then, since {a1, ac1, b−11, b−1c1} cannot generate G, we
have that m , 1. Thus α is mapping according to the rule: aα = b, bα = a, cα = c, and 1α = amb−mc1. If on the
other hand m + n = −1 then, since {a1, b−1c1, b−11, ac1} cannot generate G, we have that n , −1, and hence
α is mapping according to the rule: aα = a−1, bα = b−1, cα = c, and 1α = a−nbnc1.

Suppose now that (a1)β = b−11. Then we have that (b−11)β = a1, (ambnc1)β = a−nb−mc1, and (a−nb−mc1)β =
ambnc1. Whenever m + n = 1 or m + n = −1, we can get that β is mapping according to the rule: aβ = b−1,
bβ = a−1, cβ = c, and 1β = 1. Thus, we can conclude that either S0 = S3 = {a1, amb1−mc1, b−11, am−1b−mc1},
where m , 1, or S0 = S4 = {a1, a−n−1bnc1, b−11, a−nbn+1c1}, where n , −1. Moreover, replacing −n with m, it
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can be easily seen that S4 = S3. Also, since (a1)2 = ab and a1amb1−mc1 = a2−mbmc, we get that c, a2−mbm ∈ ⟨S3⟩.
Further, the facts that a2−mbm = a2−2mambm, m , 1 and ab ∈ ⟨S3⟩ combined together imply that a2−2m ∈ ⟨S3⟩.
Since a1 ∈ ⟨S3⟩, it follows that 1 ∈ ⟨S3⟩. Finally, since a1 = b, G is indeed generated by S3.

Now considering the automorphism γ of G defined by aγ = a
1
2 , bγ = b

1
2 , cγ = c, and 1γ = a

1
2 b−

1
2 1 we get

that S1
γ = {a1, a

m+1
2 b1− m+1

2 c1, b−11, a
m+1

2 −1b−
m+1

2 c1}, where m , 1. Thus we only need to consider the generating
set S3 = {a1, amb1−mc1, b−11, am−1b−mc1}, where m , 1.

Case 2. Aut(G,S0) = ⟨α⟩ � Z4, where α is such that aα = ai1 b j1 , bα = a j1 bi1 , cα = c, and 1α = axb−xc1.

Subcase 2.1. Let i = j.

Since ab ∈ Z(G), G can be generated by S0 (where p - i and p - m′ + n′) if and only if m′ , n′. Now take an
automorphism σ of G such that aσ = ai, bσ = bi, cσ = c, and 1σ = 1. Then (ab1)σ = aibi1, and consequently

S = S0
σ−1
= {ab1, ambnc1, (ab1)−1, (ambnc1)−1} = {ab1, ambnc1, a−1b−11, a−nb−mc1},

where ambnc1 = (am′bn′c1)σ−1
, and m , n.

Suppose first that (ab1)α = ambnc1. Then (ambnc1)α = a−1b−11, (a−1b−11)α = a−nb−mc1, (a−nb−mc1)α = ab1.
Hence either m + n = ω or m + n = −ω, where ω2 = −4. If m + n = ω then since m , n, we have that m , ω

2 .
It follows that aα = aib

ω
2 −i, bα = a

ω
2 −ibi, cα = c, and 1α = am− ω2 b

ω
2 −mc1, where i = (m+1)ω+2−2m

2(2m−ω) . If on the other
hand m + n = −ω then, since m , n, we have that n , −ω2 , and so aα = aib−

ω
2 −i, bα = a−

ω
2 −ibi, cα = c, and

1α = a−
ω
2 −nb

ω
2 +nc1, where i = 2−2n−(n+1)ω

2(2n+ω) .
Suppose now that (ab1)α = a−nb−mc1. Then (a−nb−mc1)α = a−1b−11, (a−1b−11)α = ambnc1, and (ambnc1)α =

ab1. Hence, either m + n = ω or m + n = −ω, where ω2 = −4. If m + n = ω then, since m , n, we have
that m , ω

2 , and thus aα = aib−
ω
2 −i, bα = a−

ω
2 −ibi, cα = c, and 1α = am− ω2 b

ω
2 −mc1, where i = (1−m)ω−2m−2

2(2m−ω) . If
however m + n = −ω then, since m , n, we have that n , −ω2 , and so aα = aib

ω
2 −i, bα = a

ω
2 −ibi, cα = c, and

1α = a−
ω
2 −nb

ω
2 +nc1, where i = (n−1)ω−2n−2

2(2n+ω) .
We can conclude that either S0 = S5 = {ab1, ambω−mc1, a−1b−11, am−ωb−mc1}, where m , ω

2 , or S0 =

S6 = {ab1, a−ω−nbnc1, a−1b−11, a−nbn+ωc1}, where n , −ω2 . Moreover, replacing −n with m, it can be easily
seen that S5 = S6. Also, the group G is indeed generated by S5. Namely, since (ab1)p = 1 we have that
1, ab ∈ ⟨S5⟩. Further, since ambω−mc1 ∈ ⟨S5⟩, also ambω−mc ∈ ⟨S5⟩, and the fact that (ambω−mc)p = c implies that
c, ambω−m ∈ ⟨S5⟩. Finally, since ambω−m = ambmbω−2m, m , ω

2 , and ab ∈ ⟨S5⟩, it follows that bω−2m ∈ ⟨S5⟩. Now
this fact and b1 = a combined together imply that G = ⟨S5⟩.
Subcase 2.2. Let i , j.

Take an automorphism σ of G such that aσ = aib j, bσ = a jbi, cσ = c, and 1σ = 1. Then (a1)σ = aib j1, and
consequently

S = S0
σ−1
= {a1, ambnc1, (a1)−1, (ambnc1)−1} = {a1, ambnc1, b−11, a−nb−mc1},

where ambnc1 = (am′bn′c1)σ−1
.

Suppose first that (a1)α = ambnc1. Then (ambnc1)α = b−11, (b−11)α = a−nb−mc1, and (a−nb−mc1)α = a1. Also,
either m + n = ε or m + n = −ε, where ε2 = −1. If m + n = ε then, since {a1, a

ε+1
2 b

ε−1
2 c1, b−11, a

1−ε
2 b−

ε+1
2 c1}

cannot generate G (namely, for φ ∈ Aut(G) such that aφ = a2, bφ = b2, cφ = c, and 1φ = a−1b1 we have
{a1, a

ε+1
2 b

ε−1
2 c1, b−11, a

1−ε
2 b−

ε+1
2 c1}φ = {ab1, aεbεc1, a−1b−11, a−εb−εc1}), we have that m , ε+1

2 . It follows that

aα = aibε−i, bα = aε−ibi, cα = c, and 1α = am−ibi−mc1,

where i = mε−m+1
2m−ε−1 . If on the other hand m + n = −ε then, since G cannot be generated by

{a1, a
1−ε

2 b−
ε+1

2 c1, b−11, a
ε+1

2 b
ε−1

2 c1},
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we have that n , − ε+1
2 , and so

aα = aib−ε−i, bα = a−ε−ibi, cα = c, and 1α = a−ε−i−nbε+i+nc1,

where i = − (n+1)ε+n
2n+ε+1 .

Suppose now that (a1)α = a−nb−mc1. Then (a−nb−mc1)α = b−11, (b−11)α = ambnc1, and (ambnc1)α = a1. Also,
either m + n = ε or m + n = −ε, where ε2 = −1. If m + n = ε then, since {a1, a

ε+1
2 b

ε−1
2 c1, b−11, a

1−ε
2 b−

ε+1
2 c1}

cannot generate G, we have that m , ε+1
2 , and thus

aα = aib−ε−i, bα = a−ε−ibi, cα = c, and 1α = am−ε−ibε+i−mc1,

where i = ε(1−m)−m
2m−ε−1 . If however m + n = −ε then, since {a1, a

1−ε
2 b−

ε+1
2 c1, b−11, a

ε+1
2 b

ε−1
2 c1} cannot generate G,

we have that n , − ε+1
2 , and consequently

aα = aibε−i, bα = aε−ibi, cα = c, and 1α = a−i−nbi+nc1,

where i = n(ε−1)−1
2n+ε+1 .

We can conclude that either S0 = S7 = {a1, ambε−mc1, b−11, am−εb−mc1}, where m , ε+1
2 , or S0 = S8 =

{a1, a−n−εbnc1, b−11, a−nbn+εc1}, where n , − ε+1
2 . Further, replacing −n with m, one can see that S8 = S7. That

G is indeed generated by S7 can be seen in the following way. Since (a1)2 = ab and a1ambε−mc1 = aε+1−mbmc,
we have that c, aε+1−mbm ∈ ⟨S7⟩. Then, since aε+1−mbm = aε+1−2mambm, m , ε+1

2 , and ab ∈ ⟨S7⟩, we get that
aε+1−2m ∈ ⟨S7⟩. Finally, since a1 ∈ ⟨S7⟩, it follows that also 1 ∈ ⟨S7⟩. Now the fact that a1 = b implies that
G = ⟨S7⟩.

Now considering the automorphism γ of G defined by

aγ = a
1
2 , bγ = b

1
2 , cγ = c, and 1γ = a

1
2 b−

1
2 1,

gives that S5
γ = {a1, a

m+1
2 b

ω
2 − m+1

2 c1, b−11, a
m+1

2 − ω2 b−
m+1

2 c1}, where m , ω
2 . So we only need to consider the

generating set S7 = {a1, ambε−mc1, b−11, am−εb−mc1}, where m , ε+1
2 and ε2 = −1. Observe also, that this

implies that p ≡ 1 (mod 4).

We have proved that when Aut(G,S0) � Z2 ×Z2 there always exists an automorphism σ of G such that
S0
σ = S = {a1, bc1, b−11, a−1c1}. Moreover, Aut(G,S) = ⟨α, β⟩, where

aα = b, bα = a, cα = c, 1α = c1 aβ = b−1, bβ = a−1, cβ = c, and 1β = 1.

One the other hand when Aut(G,S0) � Z4 there always exists an automorphism δ of G such that S0
δ = S =

{a1, bεc1, b−11, a−εc1}. Moreover, in this case Aut(G,S) = ⟨ρ⟩, where

aρ = a
ε−1

2 b
ε+1

2 , bρ = a
ε+1

2 b
ε−1

2 , cρ = c, and 1ρ = a
1−ε

2 b
ε−1

2 c1.

Observe also that the following hold:

(1) If ε2 = −1 then {a1, bεc1, b−11, a−εc1}τ = {a1, b−εc1, b−11, aεc1}, where τ is an automorphism of G
mapping according to the rule aτ = b−ε, bτ = a−ε, cτ = c, and 1τ = c1.

(2) Since a1bc1 = a2c, (a2c)2 = a4, (a2c)p = c, a1 = b and p is an odd prime, we can conclude that
⟨{a1, bc1, b−11, a−1c1}⟩ = ⟨a1, bc1⟩ = ⟨a, b, c, 1⟩ = G.

(3) Let ε2 = −1. Then a1bεc1 = a1+εc, (a1+εc)2 = a2(1+ε), and (a1+εc)p = c. Since p is an odd prime and a1 = b,
we can conclude that ⟨{a1, bεc1, b−11, a−εc1}⟩ = ⟨a1, bεc1⟩ = ⟨a, b, c, 1⟩ = G.
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Figure 2: A local structure of the graph CN3
4p2 .

To finish the proof, it is sufficient to prove that the graphs

Cay(G, {a1, bc1, b−11, a−1c1}) and Cay(G, {a1, bεc1, b−11, a−εc1})

are normal Cayley graphs.
First, let X = Cay(G, {a1, bc1, b−11, a−1c1}), let A = Aut(X) and let A∗1 be the subgroup of the stabilizer A1

fixing the set S = {a1, bc1, b−11, a−1c1} pointwise. Then, since the 2-arc (1, a1, a−1bc) lies on a 6-cycle but the
2-arc (1, a1, ab) does not, one can see that A∗1 fixes every vertex at distance 2 from 1 in X (see also Figure 2).
By connectivity of X and transitivity of A on V(X), A∗1 fixes every vertex in X and hence A∗1 = 1. It follows
that A1 � AS

1 ≤ S4. Since Aut(G,S) = Z2
2 ≤ A1 ≤ S4, we have that A1 ∈ {Z2

2,D8,A4,S4}. If A1 ∈ {A4,S4} then
there exists a permutation δ in A1 of order 3. We can, without loss of generality, assume that δ fixes a1, and
cyclically permutates the other three neighbors of 1. But, however, considering the images of the vertices at
distance 2 from 1, one can see that this is impossible (see Figure 2). If A1 = D8 then we may, without loss of
generality, assume that there exists an involution γ ∈ A1 such that γ < Aut(G,S), (a1)γ = a1, (b−11)γ = b−11,
(bc1)γ = a−1c1 and (a−1c1)γ = bc1. However, ab is a common neighbor of a1 and bc1 in X, but there is no
common neighbor of a1 and a−1c1, and thus this case cannot occur. It follows that A1 = Aut(G,S) = Z2

2, and
so X is a normal one-regular Cayley graph as claimed.

Now let X = Cay(G, {a1, bεc1, b−11, a−εc1}), let A = Aut(X) and let A∗1 be the subgroup of the stabilizer
A1 fixing S pointwise. Then considering 6-cycles passing through the vertex 1 one can see that A∗1 fixes all
the vertices at distance 2 from 1 in X (see also Figure 3). Then, connectivity and vertex-transitivity of X
combined together imply that A∗1 fixes every vertex of X and hence A∗1 = 1. It follows that A1 � AS

1 ≤ S4.
Since Aut(G,S) � Z4 . A1 ≤ S4, we have that A1 ∈ {Z4,D8,S4}. If A1 ∈ {D8,S4} then, without loss of
generality, we may assume that there exists an involution ζ ∈ A1 such that ζ < Aut(G,S), (a1)ζ = a1,
(b−11)ζ = b−11, (bεc1)ζ = a−εc1, and (a−εc1)ζ = (bεc1). Since there is no 6-cycle passing through b−11, 1, a1 and
ab, it follows that ζ fixes ab. On the other hand, since ζ normalizes a Sylow p-subgroup P of G (P E A, see
Theorem 5.1), we have that (xy)ζ = 1R(xy)ζ = 1ζ

−1(R(x)R(y))ζ = 1R(x)ζR(y)ζ = R(x)ζR(y)ζ = 1R(x)ζ1R(y)ζ = xζyζ, for
every x, y ∈ ⟨a, b⟩. In other words, ζ induces an automorphism on ⟨a, b⟩. Thus, ζ fixes ⟨ab⟩ pointwise, and,
in particular, ζ fixes both aεbε and a−εb−ε, a contradiction. This means that A1 = Aut(G,S) = Z4, and thus X
is a normal one-regular Cayley graph as claimed.
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Figure 3: A local structure of the graph CN4
4p2 .

Lemma 4.3. CA1
4p2 � CN3

4p2 .

Proof. Let G1
4p2 = ⟨a , b | a4p = bp = 1, ab = ba⟩ � Z4p × Zp and let G3

4p2 = ⟨a, b, c, 1| ap = bp = c2 =

12 = [a, b] = [c, 1] = [a, c] = [b, c] = 1, a1 = b, b1 = a⟩. Then the automorphism group of CN3
4p2 =

Cay(G3
4p2 , {a1, bc1, b−11, a−1c1}), is equal to Aut(CN3

4p2 ) = R(G3
4p2 ) o A1 = R(G3

4p2 ) o ⟨α, β⟩ � G3
4p2 o Z

2
2, where

aα = b, bα = a, cα = c, 1α = c1, aβ = b−1, bβ = a−1, cβ = c, 1β = 1.
Let H = ⟨R(a1)α, R(b)⟩. Then it is easy to see that H = ⟨R(a1)α⟩ × ⟨R(b)⟩ � G1

4p2 . Since H1 ≤ A1 = ⟨α, β⟩ �
Z2

2 and subgroups of order 4 in H are cyclic, we have that H1 < A1. Moreover, since (R(a1)α)2p is a unique
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element of order 2 in H and 1(R(a1)α)2p
, 1, we have that H1 < {⟨α⟩, ⟨β⟩, ⟨αβ⟩}. Thus H1 = 1, that is, H is

a regular subgroup of Aut(CN3
4p2 ). Now Proposition 2.6 and Example 3.4 combined together imply that

CA1
4p2 � CN3

4p2 .

Lemma 4.4. CN2
4p2 � CN4

4p2 .

Proof. Let G2
4p2 = ⟨a , b | a4p = bp = 1 , a−1ba = bε, ε2 ≡ −1(mod p)⟩, and let G3

4p2 = ⟨a, b, c, 1| ap = bp = c2 = 12 =

[a, b] = [c, 1] = [a, c] = [b, c] = 1, a1 = b, b1 = a⟩. Let 4−1 be the inverse of 4 in Zp and let r = 4−1(ε − 1).
Observe that 8r(ε + 1) + 4 ≡ 0 (mod 4p) and that 4r , (ε − 1) in Z4p.

Now define a map α from the vertex set of CN4
4p2 = Cay(G3

4p2 , {a1, bεc1, b−11, a−εc1}) to the vertex set of

CN2
4p2 = Cay(G2

4p2 , {ab, a−1bε, ab−1, a−1b−ε}) in the following way:

aib j 7→ a4r(i− j)bi+ j

aib jc 7→ a4r(i− j+ε+1)+2bi+ j

aib j1 7→ a4r( j−i+1)+1bi+ j

aib j1c 7→ a4r( j−i−ε)−1bi+ j

where c and 1 are involutions in G3
4p2 . Then

(aib j, a1 · aib j)α = (aib j, a j+1bi1)α = (a4r(i− j)bi+ j, a4r(i− j−1+1)+1bi+ j+1)
= (a4r(i− j)bi+ j, a4r(i− j)+1bi+ j+1) = (a4r(i− j)bi+ j, ab · a4r(i− j)bi+ j),

(aib j, bεc1 · aib j)α = (aib j, a jbi+ε1c)α = (a4r(i− j)bi+ j, a4r(i+ε− j−ε)−1bi+ j+ε)
= (a4r(i− j)bi+ j, a4r(i− j)−1bi+ j+ε) = (a4r(i− j)bi+ j, a−1bε · a4r(i− j)bi+ j),

(aib j, b−11 · aib j)α = (aib j, a jbi−11)α = (a4r(i− j)bi+ j, a4r(i−1− j+1)+1bi−1+ j)
= (a4r(i− j)bi+ j, a4r(i− j)+1bi−1+ j) = (a4r(i− j)bi+ j, ab−1 · a4r(i− j)bi+ j),

(aib j, a−εc1 · aib j)α = (aib j, a j−εbi1c)α = (a4r(i− j)bi+ j, a4r(i− j+ε−ε)−1bi+ j−ε)
= (a4r(i− j)bi+ j, a4r(i− j)−1bi+ j−ε) = (a4r(i− j)bi+ j, a−1b−ε · a4r(i− j)bi+ j).

Similarly, it can be checked that for any edge (u, s · u), we have that (u, s · u)α = (v, s̄ · v), where

u ∈ {aib jc, aib j1, aib j1c},
v ∈ {a4r(i− j+ε+1)+2bi+ j, a4r( j−i+1)+1bi+ j, a4r( j−i−ε)−1bi+ j},
s ∈ {a1, bεc1, b−11, a−εc1}, and
s̄ ∈ {ab, a−1bε, ab−1, a−1b−ε}.

From this it follows that α is an isomorphism from CN2
4p2 to CN4

4p2 . The details are omitted.

Lemma 4.5. The graphs BW12(5, 1, 5), GPS2(4, 3, (0 1) : (1 2)), CAi
4p2 , i ∈ {0, 1}, CN2

4p2 , NC0
4p2 and NC1

4p2 , are
pairwise non-isomorphic.

Proof. First, by the remark subsequent to Example 3.1, the graph BW12(5, 1, 5) is not isomorphic to any of
the other graphs listed in the lemma. Next, Example 3.2 shows thatGPS2(4, 3, (0 1) : (1 2)) is not isomorphic
to any of the other graphs listed in the lemma. Then, since the automorphism group of CA0

4p2 has a cyclic

Sylow p-subgroup, CA0
4p2 is not isomorphic to CA1

4p2 and CN2
4p2 . Also, Example 3.4 and Lemmas 4.3 and 4.4

combined together show that CA1
4p2 and CN2

4p2 are not isomorphic. Namely, the stabilizer of a vertex in

CA1
4p2 is isomorphic to Z2

2 whereas the stabilizer of a vertex in CN2
4p2 is isomorphic to Z4. Finally, since

the automorphism groups of both NC0
4p2 and NC1

4p2 have a minimal normal Sylow p-subgroup and the

automorphism groups of CA1
4p2 , CN2

4p2 , do not have a minimal normal Sylow p-subgroups, we have that
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none ofNC0
4p2 andNC1

4p2 is isomorphic to CA1
4p2 , CN2

4p2 . Moreover, since the automorphism groups of both

NC0
4p2 andNC1

4p2 have an elementary abelian Sylow p-subgroup and the automorphism group of CA0
4p2 has

a cyclic Sylow p-subgroup, which follows that none ofNC0
4p2 andNC1

4p2 is isomorphic to CA0
4p2 . The result

now follows from the fact that the stabilizer of a vertex inNC0
4p2 is isomorphic toZ2

2 whereas the stabilizer

of a vertex inNC1
4p2 is isomorphic to Z4 (see [23, Lemmas 8.4 and 8.7] and Lemma 2.11).

5. The classification

X |V(X)| Aut(X) Re f erences
BW12(5, 1, 5) 36 G36 o Z2

2 Example 3.1
GPS2(4, 3, (0 1) : (1 2)) 36 |Aut(X)| = 144 Example 3.2

NC0
4p2 4p2, p > 7, given in Lemma 2.11

p ≡ ±1 (mod 8) [23, Lemma 8.4]
NC1

4p2 4p2, p > 7, given in Lemma 2.11
or p ≡ 1 or 3 (mod 8) [23, Lemma 8.7]

CA0
4p2 4p2, p ≡ 1 (mod 4) (Z2p2 ×Z2) o Z4 Example 3.3

CA1
4p2 4p2, p > 2 (Z4p ×Zp) o Z2

2 Example 3.4
CN2

4p2 4p2, p ≡ 1 (mod 4) G3
4p2 o Z4 Lemmas 4.2 and 3.6

Table 2: Tetravalent one-regular graphs of order 4p2.

We are now ready to state the main theorem of this paper.

Theorem 5.1. Let p be a prime. Then a tetravalent graph X of order 4p2 is one-regular if and only if it is isomorphic
to one of the graphs listed in Table 2. Furthermore, all the graphs listed in Table 2 are pairwise non-isomorphic.

Proof. Let X be a tetravalent one-regular graph of order 4p2. Let A = Aut(X) and let Av be the stabilizer of v ∈
V(X) in A. By [39], there is no tetravalent one-regular graph of order 16, andBW12(5, 1, 5),GPS2[4, 3, (0 1) :
(1 2)] and CA1

36 are the only tetravalent one-regular graphs of order 36 (see also Examples 3.1, 3.2 and 3.4).
Thus, we may assume that p > 3. Since X is one-regular we have that |A| = 16p2, and thus A is a solvable
group. Let P be a Sylow p-subgroup of A.

Claim: P is normal in A.

Since |A| = 16p2 Sylow’s theorems imply that the number of Sylow p-subgroups of A is equal to |A : NA(P)| =
kp + 1. In addition, this number divides 16. Hence, if p > 7 then we clearly have that P is normal in A as
claimed. Now we will prove that P is normal in A also when p ∈ {5, 7}.

Let N = O2(A) be the largest normal 2-subgroup of A. Suppose first that |N| = 16 and consider the
quotient graph XN. Then N ≤ K, where K is the kernel of A acting on V(XN), XN is a symmetric graph of
valency 2 or 4, and, by Proposition 2.8, A/K acts arc-transitively on XN. But then 2 | |A/K|, which is clearly
impossible since |A| = 16p2. Therefore |N| | 8. Now we distinguish three different cases depending on the
order of N. Let T be a minimal normal subgroup of A.

Case 1. |N| = 1.

Then either |T| = p2 or |T| = p. In the former case we have that T = P and thus P E A as claimed. We may
therefore assume that |T| = p. Let XT be the quotient graph of X relative to the orbits of T, and let K be the
kernel of A acting on V(XT). Then T ≤ K and A/K acts arc-transitively on XT. If A/T is abelian then, since
A/K is a quotient group of the group A/T, also A/K is abelian. But since A/K is vertex-transitive on XT,
Proposition 2.1 implies that it is regular on XT, contradicting arc-transitivity of A/K on XT. Thus A/T is a
non-abelian group. Let C = CA(T). Then T ≤ C and, by Proposition 2.2, A/C is isomorphic to a subgroup
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of Aut(T) � Zp−1. It follows that A/C is abelian, and consequently T < C. Let L/T be a minimal normal
subgroup of A/T contained in C/T. Then L/T � Zp, and therefore P = L E A.

Case 2. |N| = 2.

Then |T| ∈ {p2, p, 2}. If |T| = p2 then P E A as claimed. Suppose now that |T| = 2, and let C = CA(T). Then
T ≤ C and, moreover, by Proposition 2.2, |A/C| = 1 which implies that T < C. Let L/T be a minimal normal
subgroup of C/T. Then either |L/T| = p2 or |L/T| = p. In the former case it follows that |L| = 2p2, and
consequently P char LEA, implying that PEA as claimed. In the later case we have L = Z2 ×Zp. Suppose
first that A/L is abelian and consider the quotient graph XL of X relative to the orbits of L. Let K be the
kernel of A acting on V(XL). Then L ≤ K, A/K is a quotient group of A/L, and as such also abelian. But
since A/K is vertex-transitive on XL, Proposition 2.1 implies that A/K is regular on XL, which is impossible
since A/K acts arc-transitively on XL. Thus, A/L is a non-abelian group. Let C = CA(L). Then L ≤ C and, by
Proposition 2.2, A/C . Aut(L) � Zp−1. It follows that A/C is abelian, and so L < C. Let M/L be a minimal
normal subgroup of A/L contained in C/L. Then M/L � Zp and thus M E A and |M| = 2p2. In addition,
since P char M E A, we have that P E A as claimed.

Assume now that |T| = p. Then an argument similar to the one used above shows that A/T is a non-
abelian group. Let C = CA(T). Then, by Proposition 2.2, we have that A/C . Aut(T) � Zp−1. Thus A/C is
abelian, which implies that T < C. Let L/T be a minimal normal subgroup A/T contained in C/T. Then
either L/T � Zp or L/T � Z2. If L/T � Zp, then clearly L = P E A. If however L/T � Z2, then L � Z2p and,
by Proposition 2.2, A/C . Aut(L) � Zp−1 where C = CA(L). Hence A/C is abelian, and consequently L < C.
Now let M/L be a minimal normal subgroup of A/L contained in C/L. Then M/L � Zp, and so |M| = 2p2.
But then P char M E A, implying that P E A as claimed.

Case 3. |N| ∈ {4, 8}.
Then either |A/N| = 2p2 or |A/N| = 4p2. Clearly PN/N is a Sylow p-subgroup of A/N and by Sylow’s
theorems, PN/N E A/N. Moreover, PN E A. If |N| = 4 then for p ∈ {5, 7} we have that P is characteristic
in PN, and hence normal in A. Also, if |N| = 8 and p = 5 then one can easily see that P is characteristic in
PN and hence normal in A. Therefore we can now assume that |N| = 8 and p = 7. Then N is isomorphic
to one of the following groups: D8, Q8 (the quaternion group), Z8, Z4 × Z2 or Z3

2. Let C = CA(N). By
Proposition 2.2, we have that A/C . Aut(N). If N � Z3

2 then 7 - |Aut(N)| and hence 72 | |C|, which implies
that P ≤ C. It follows that P is characteristic in PN and hence normal in A. If however N � Z3

2 then N ≤ C
and Aut(N) � PSL(2, 7). Observe that |A/N| = 98 and A/C . Aut(N) � PSL(2, 7). But Aut(N) = PSL(2, 7)
has no subgroup of order 98 since |PSL(2, 7)| = 168, implying that A/N , A/C, and therefore N < C. Note
also that |C| > 8, but 16 - |C|. Namely, if 16 | |C|, the fact that A/K acts arc-transitively on XC, where K is the
kernel of A acting on V(XC), implies that 2 | |A/K|. But this is impossible since C ≤ K. Therefore 7 | |C|. If
72 - |C| then |C| = 8 · 7 = 56. But then A/C is a group of order |A/C| = 2 · 7 = 14 isomorphic to a subgroup of
Aut(N) � PSL(2, 7), which by Proposition 2.3 is impossible. Therefore 72 | |C|, and consequently P ≤ CA(N).
It follows that P is characteristic in PN, and thus normal in A. This proves that A always has a normal
Sylow p-subgroup as claimed.

Assume first that P is cyclic. Let XP be the quotient graph of X relative to the orbits of P and let K be
the kernel of A acting on V(XP). By Proposition 2.4, the orbits of P are of length p2. Thus |V(XP)| = 4, P ≤ K
and A/K acts arc-transitively on XP. By Proposition 2.8, we have that XP � C4 and hence A/K � D8, forcing
|K| = 2p2. Since A/K is a quotient group of A/P, it follows that A/P is a non-abelian group. Moreover,
|K| = 2p2 and thus K is not semiregular on V(X). Then Kv � Z2 where v ∈ V(X). By Proposition 2.2,
A/C . Aut(P) � Zp(p−1), where C = CA(P). Since A/P is not abelian, we have that P is a proper subgroup
of C. If C ∩ K , P then C ∩ K = K (|K| = 2p2). Since Kv is a Sylow 2-subgroup of K, Kv is characteristic in
K and so normal in A, implying that Kv = 1, a contradiction. Thus, C ∩ K = P and 1 , C/P = C/(C ∩ K) �
CK/KEA/K � D8. If C/P � Z2 then C/P is in the center of A/P and since (A/P)/(C/P) � A/C is cyclic, A/P is
abelian, a contradiction. It follows that |C/P| ∈ {4, 8}, and hence C/P has a characteristic subgroup of order
4, say H/P. Thus, |H| = 4p2 and H/P E A/P, implying that H E A. In addition, since H ≤ C = CA(P), we
have that H is abelian. Clearly, |Hv| ∈ {1, 2, 4}. First, suppose that |Hv| = 4. Then Hv is a Sylow 2-subgroup
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of H, implying that Hv is characteristic in H. The normality of H in A implies that Hv E A, forcing Hv = 1,
a contradiction. Second, suppose that |Hv| = 2, and let Q be a Sylow 2-subgroup of H. Then Q E A and
Qv = Hv. Consider the quotient graph XQ of X relative to the orbits of Q. Since |Q| = 4 and Qv � Z2,
Proposition 2.8 implies that XQ � C2p2 and hence X � C2p2 [2K1], contradicting one-regularity of X. Thus, we
have that Hv = 1, and since |H| = 4p2, H is regular on V(X). It follows that X is a Cayley graph on an abelian
group with a cyclic Sylow p-subgroup P. By elementary group theory, we know that up to isomorphism
Z4p2 and Z2p2 × Z2, where p > 3, are the only abelian groups with a cyclic Sylow p-subgroup. However,
by Xu [41, Theorems 3], there is no tetravalent one-regular Cayley graph on Z4p2 , and so H � Z2p2 × Z2.
Proposition 2.6 and Example 3.3 combined together now imply that X � CA0

4p2 .
Now assume that P is elementary-abelian. Suppose first that P is a minimal normal subgroup of A, and

consider the quotient graph XP of X relative to the orbits of P. Let K be the kernel of A acting on V(XP).
By Proposition 2.4, we have that the orbits of P are of length p2, and thus |V(XP)| = 4. By Proposition 2.8,
XP � C4, and hence A/K � D8, forcing |K| = 2p2 and thus Kv = Z2. Proposition 2.9 now implies that X is
isomorphic to C±1(p, 4, 2),NC0

4p2 orNC1
4p2 . However, by Lemma 2.10, C±1(p, 4, 2) is not one-regular whereas,

by Lemma 2.11,NC0
4p2 andNC1

4p2 both are one-regular. Conditions on the prime p written in Table 2 follow
from the definition of these graphs (see page 288).

Suppose now that P is not a minimal normal subgroup of A. Then a minimal normal subgroup N of A
is isomorphic to Zp. Let XN be the quotient graph of X relative to the orbits of N and let K be the kernel
of A acting on V(XN). Then N ≤ K and A/K is transitive on V(XN). Moreover, we have that |V(XN)| = 4p.
By Proposition 2.8, XN is a cycle of length 4p, or N acts semiregularly on V(X), the quotient graph XN is
a tetravalent connected G/N-arc-transitive graph and X is a regular cover of XN. If XN � C4p, and hence
A/K � D8p, then |K| = 2p and thus Kv = Z2. Applying Proposition 2.12 we get that X is either isomorphic
to C±1(p; 4p, 1) or to C±ε(p; 4p, 1) . By Lemmas 3.5 and 3.6 and Example 3.4, these two graphs are both one-
regular and they are, respectively, isomorphic toCA0

4p2 andCA1
4p2 . If, however, XN is a tetravalent connected

G/N-symmetric graph, then, by Proposition 2.8, X is a covering graph of a symmetric graph of order 4p. By
Proposition 2.13, there are six tetravalent symmetric graphs of order 4p: K4,4, C2p[2K1], CA0

4p, CA1
4p, C(2, p, 2)

and g28. But, since there is no tetravalent one-regular graph of order 16, the automorphism group of g28 does
not admit a one-regular subgroup, and since, by Lemma 4.1, there is no one-regular Zp-cover of C(2, p, 2),
we only need to consider the covering graphs of C2p[2K1], CA0

4p and CA1
4p. Observe that in each of these

three graphs a one-regular subgroup of automorphisms contains a normal regular subgroup isomorphic to
Z2p × Z2. Let H be a one-regular subgroup of automorphisms of XN. Since X is one-regular graph, A is
the lift of H. Since H contains a normal regular subgroup isomorphic to Z2p ×Z2 also A contains a normal
regular subgroup. Therefore X is a normal Cayley graph of order 4p2. Since A/Zp � H and Z2p ×Z2 E H,
there exists a normal subgroup G of A such that G/Zp � Z2p × Z2. The classification of groups of order
4p2, given in [5, 6], and a detail analysis of all these groups give that G is either isomorphic to Z2p × Z2p
or to G = ⟨a, b, c, 1| ap = bp = c2 = 12 = [a, b] = [c, 1] = [a, c] = [b, c] = 1, a1 = b, b1 = a⟩ � (Zp × Z2p) o Z2.
However, by Proposition 2.7, there is no tetravalent one-regular graph onZ2p ×Z2p, whereas for the latter
group, Lemmas 4.2, 4.3 and 4.4, combined together imply that X is either isomorphic to CA1

4p2 or to CN2
4p2 .

Since, by Lemma 4.3, graphs listed in Table 2 are pairwise non-isomorphic the proof is completed.
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