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Convenient adjacencies on Z2

Josef Šlapal

Institute of Mathematics, Brno University of Technology, 616 69 Brno, Czech Republic

Abstract. We discuss graphs with the vertex set Z2 which are subgraphs of the 8-adjacency graph and
have the property that certain natural cycles in these graphs are Jordan curves, i.e., separateZ2 into exactly
two connected components. After considering graphs with the usual connectedness, we concentrate on a
graph with a special one.

1. Introduction

It is one of the crucial problems of digital image processing to provide the digital plane Z2 with a
convenient structure for the study of geometric and topological properties of (two-dimensional) digital
images. Here, convenience means that such a structure behaves analogously to the Euclidean topology on
the real plane R2. First of all, it is usually required that an analogue of the Jordan curve theorem be valid.
(Recall that the classical Jordan curve theorem states that any simple closed curve in the Euclidean plane
divides this plane into exactly two components). In the classical, graph theoretic approach to this problem
(see e.g. [7] and [8]), the well-known binary relations of 4-adjacency and 8-adjacency are used for structuring
Z2. Unfortunately, neither 4-adjacency nor 8-adjacency itself allows for an analogue of the Jordan curve
theorem - cf. [5]. To eliminate this deficiency, a combination of the two adjacencies has to be used. Despite
this inconvenience, the graph-theoretic approach proved to be useful for solving many problems of digital
image processing and for creating efficient graphic software. In [3], a new, purely topological approach
to the problem has been proposed which utilizes a convenient topology for structuring the digital plane,
namely the Khalimsky topology. The topological approach was then developed by many authors - see, e.g.,
[2], [4]-[6] and [9]-[13].

Since the Khalimsky topological space is an Alexandroff space (i.e., has a completely additive closure),
its connectedness coincides with the connectedness in a certain graph with the vertex set Z2, the so-called
connectedness graph of the topology. Thus, when studying the connectedness of digital images, this graph,
rather than the Khalimsky topology itself, may be used for structuring the digital plane. A well-known
analogue of the Jordan curve theorem is then valid in the graph - cf. [3]. A disadvantage of this approach
is that Jordan curves in the (connectedness graph of the) Khalimsky topology may never turn to form the
acute angle π4 . It would therefore be useful to find some new, more convenient graphs with the vertex set
Z2, i.e., graphs that would allow Jordan curves to turn, at some points, to form the acute angle π4 . In the
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J. Šlapal / Filomat 28:2 (2014), 305–312 306

present note, we will introduce such graphs. More precisely, we will define a certain natural graph with
the vertex set Z2 whose cycles are eligible for Jordan curves in Z2 and we solve the problem of finding
graphs with the vertex set Z2 with respect to which these cycles are Jordan curves. The results obtained
propose new structures onZ2 with natural Jordan curves which may, for example, be used in digital image
processing for solving problems related to boundaries such as boundary detection, contour filling, data
compression, etc.

2. Preliminaries

For the graph-theoretic concepts used see, for instance, [1]. By a graph on a set V we always mean an
undirected simple graph without loops whose vertex set is V, i.e., a graph (V,E) where E ⊆ {{a, b}; a, b ∈
V, a , b} is the set of edges of the graph. For an arbitrary vertex a ∈ V, we put E(a) = {b ∈ V; {a, b} ∈ E}.

A nonempty, finite and connected subset C of V is said to be a simple closed curve in (V,E) if E(a) ∩ C has
precisely two elements for every a ∈ C. Clearly, every simple closed curve is a cycle. A simple closed curve
in (V,E) is called a Jordan curve if it separates the set V into precisely two components, i.e., if the induced
subgraph V − C has exactly two components.

In the sequel, we will consider graphs on Z2 only. For every point (x, y) ∈ Z2, we denote by A4(x, y)
or A8(x, y) the sets of all points that are 4-adjacent or 8-adjacent to (x, y), respectively. Thus, A4(x, y) =
{(x+ i, y+ j); i, j ∈ {−1, 0, 1}, i j = 0, i+ j , 0} and A8(x, y) = A4(x, y)∪ {(x+ i, y+ j); i, j ∈ {−1, 1}}. The graphs
(Z2,A4) and (Z2,A8) are called the 4-adjacency graph and 8-adjacency graph, respectively. An arbitrary subset
A ⊆ A8 is said to be an adjacency onZ2 and the graph (Z2,A) is said to be an adjacency graph. Thus, adjacency
graphs are exactly the graphs on Z2 that are subgraphs of the 8-adjacency graph, i.e., the graphs (Z2,A)
with the property A(z) ⊆ A8(z) for every z ∈ Z2. In an adjacency graph (Z2,A), vertices a, b ∈ Z2 are said
to be adjacent if {a, b} ∈ A, i.e., if they are joined by an edge. Note that the inclusion of adjacencies gives a
partial order on the set of all adjacency graphs.

Definition 1. The square-diagonal graph is the adjacency graph in which two points z1 = (x1, y1), z2 = (x2, y2) ∈
Z2 are adjacent if and only if one of the following four conditions is fulfilled:

1. |y1 − y2| = 1 and x1 = x2 = 4k for some k ∈ Z,
2. |x1 − x2| = 1 and y1 = y2 = 4l for some l ∈ Z,
3. x1 − x2 = y1 − y2 = ±1 and x1 − 4k = y1 for some k ∈ Z,
4. x1 − x2 = y2 − y1 = ±1 and x1 = 4l − y1 for some l ∈ Z.

A portion of the square-diagonal graph is shown in Figure 1.
When studying digital images, it may be advantageous to equip Z2 with a structure with respect to

which all or most of the cycles in the square-diagonal graph are Jordan curves. Such a convenient structure
given by a topology was introduced in [10]. In this note, we focus on convenient structures given by
adjacencies.

3. Adjacency graphs with the usual connectedness

In digital image processing, the 4-adjacency and 8-adjacency are the most frequently used adjacencies.
But, since the late 1980’s, another adjacency has been used too, namely the adjacency given by the connect-
edness graph of the Khalimsky topology onZ2 [3] (i.e., the graph onZ2 in which arbitrary distinct vertices
z1, z2 ∈ Z2 are joined by an edge if and only if {z1, z2} is a connected subset of the Khalimsky topological
space). This adjacency will be called the Khalimsky adjacency and the corresponding adjacency graph will
be called the Khalimsky graph.

The Khalimsky graph coincides with the adjacency graph (Z2,K) given as follows:
For any z = (x, y) ∈ Z2,

K(z) =
{

A8(z) if x + y is even,
A4(z) if x + y is odd.
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Figure 1: A portion of the square-diagonal graph.
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Figure 2: A portion of the Khalimsky graph.

A portion of the Khalimsky graph is shown in Figure 2.
It is readily verified that a cycle in the square-diagonal graph is a Jordan curve in the Khalimsky graph

if and only if it does not turn, at any of its points, to form the acute angle π4 - cf. [3]. It could therefore
be useful to replace the Khalimsky graph with some more convenient adjacency graphs that allow Jordan
curves to turn, at some points, to form the acute angle π4 .

We define an adjacency graph (Z2,A) as follows:
For any point z = (x, y) ∈ Z2,

A(z) =



A8(z) if x = 4k, y = 4l, k, l ∈ Z,
A8(z) − A4(z) if x = 2 + 4k, y = 2 + 4l,
k, l ∈ Z,
{(x − 1, y), (x + 1, y)} if x = 2 + 4k,

y = 1 + 2l, k, l ∈ Z,
{(x, y − 1), (x, y + 1)} if x = 1 + 2k,

y = 2 + 4l, k, l ∈ Z,
A4(z) if either x = 4k and y = 2 + 4l or
x = 2 + 4k and y = 4l, k, l ∈ Z.

A portion of the graph (Z2,A) is shown in Figure 3.

Theorem 1. Every cycle in the square-diagonal graph is a Jordan curve in the adjacency graph (Z2,A) and (Z2,A)
is a minimal adjacency graph with this property.

Proof. Clearly, any cycle in the square-diagonal graph is a simple closed curve in (Z2,A). Let z = (x, y) ∈ Z2

be a point such that x = 4k + p and y = 4l + q for some k, l, p, q ∈ Z with pq = ±2. Then we define the
fundamental triangle T(z) to be the nine-point subset of Z2 given below:



J. Šlapal / Filomat 28:2 (2014), 305–312 308

r r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r r

�
�
�

��

�
�

�
��

�
�
�

��

�
�

�
��

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

0 2 4 6 8

2

4

6

8

Figure 3: A portion of the graph (Z2,A).

T(z) =



{(r, s) ∈ Z2; y − 1 ≤ s ≤ y + 1 − |r − x|} if
x = 4k + 2 and y = 4l + 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; y − 1 + |r − x| ≤ s ≤ y + 1} if

x = 4k + 2 and y = 4l − 1 for some k, l ∈ Z,
{(r, s) ∈ Z2; x − 1 ≤ r ≤ x + 1 − |s − y|} if

x = 4k + 1 and y = 4l + 2 for some k, l ∈ Z,
{(r, s) ∈ Z2; x − 1 + |s − y| ≤ r ≤ x + 1} if

x = 4k − 1 and y = 4l + 2 for some k, l ∈ Z.
Graphically, the fundamental triangle T(z) consists of the point z and the eight points lying on the

triangle surrounding z - the four types of fundamental triangles are represented in the following figure:
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Given a fundamental triangle, we speak about its sides - it is clear from the above picture which sets
are understood to be the sides (note that each side consists of five or three points and that two different
fundamental triangles may have at most one side in common).

Now, one can easily see that:

1. Every fundamental triangle is connected (so that the union of two fundamental triangles having a
common side is connected) in (Z2,A).

2. If we subtract from a fundamental triangle some of its sides, then the resulting set is still connected
in (Z2,A).

3. If S1,S2 are fundamental triangles having a common side D, then the set (S1 ∪ S2)−M is connected in
(Z2,A) whenever M is the union of some sides of S1 or S2 different from D.

4. Every connected subset of Z2 with at most two points is a subset of a fundamental triangle.

We will now show that the following is also true:

5. For every cycle C in the square-diagonal graph, there are sequences SF,SI of fundamental triangles,
SF finite and SI infinite, such that, whenever S ∈ {SF,SI}, the following two conditions are satisfied:
(a) Each member ofS, excluding the first one, has a common side with at least one of its predecessors.
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(b) C is the union of those sides of fundamental triangles in S that are not shared by two different
fundamental triangles from S.

Put C1 = C and let S1
1 be an arbitrary fundamental triangle with S1

1 ∩ C1 , ∅. For every k ∈ Z, 1 ≤ k, if
S1

1,S
1
2, ..., S

1
k are defined, let S1

k+1 be a fundamental triangle with the following properties: S1
k+1 ∩ C1 , ∅,

S1
k+1 has a side in common with S1

k which is not a subset of C1 and S1
k+1 , S1

i for all i, 1 ≤ i ≤ k. Clearly,
there will always be a (smallest) number k ≥ 1 for which no such fundamental triangle S1

k+1 exists. De-
noting by k1 this number, we have defined a sequence (S1

1, S
1
2, ..., S

1
k1

) of fundamental triangles. Let C2

be the union of those sides of fundamental triangles in (S1
1, S

1
2, ..., S

1
k1

) that are disjoint from C1 and not
shared by two different fundamental triangles in (S1

1,S
1
2, ..., S

1
k1

). If C2 , ∅, we construct a sequence
(S2

1,S
2
2, ..., S

2
k2

) of fundamental triangles in an analogous way to (S1
1,S

1
2, ..., S

1
k1

) by taking C2 instead of
C1 (and obtaining k2 analogously to k1). Repeating this construction, we get sequences (S3

1, S
3
2, ..., S

3
k3

),
(S4

1,S
4
2, ..., S

1
k4

), etc. We put S = (S1
1,S

1
2, ..., S

1
k1
,S2

1,S
2
2, ..., S

2
k2
, S3

1,S
3
2, ..., S

3
k3
, ...) if Ci , ∅ for all i ≥ 1 and

S = (S1
1,S

1
2, ..., S

1
k1
,S2

1, S
2
2, ..., S

2
k2
, ..., Sl

1, S
l
2, ..., S

l
kl

) if Ci , ∅ for all i with 1 ≤ i ≤ l and Ci = ∅ for i = l + 1.

Further, let S′1 = T(z) be a fundamental triangle such that z < S whenever S is a member of S. Having
defined S′1, let S′ = (S′1,S

′
2, ...) be a sequence of fundamental triangles defined analogously to S (by taking

S′1 instead of S1
1). Then one of the sequences S, S′ is finite and the other is infinite. Indeed, S is finite

(infinite) if and only if its first member equals such a fundamental triangle T(z) for which z = (k, l) ∈ Z2 has
the property that (1) k is even, l is odd and the cardinality of the set {(x, l) ∈ Z2; x > k} ∩ C is odd (even) or
(2) k is odd, l is even and the cardinality of the set {(k, y) ∈ Z2; y > l} ∩ C is odd (even). The same is true
for S′. If we put {SF,SI} = {S,S′} where SF is finite and SI is infinite, then the conditions (a) and (b) are
clearly satisfied.

Given a cycle C in the square-diagonal graph, let SF and SI denote the union of all members ofSF andSI,
respectively. Then SF∪SI = Z2 and SF∩SI = C. Let S∗F and S∗I be the sequences obtained from SF and SI by
subtracting C from each member of SF and SI, respectively. Let S∗F and S∗I denote the union of all members
of S∗F and S∗I , respectively. Then S∗F and S∗I are connected by (1), (2) and (3) and it is clear that S∗F = SF − C
and S∗I = SI −C. So, S∗F and S∗I are the two components ofZ2 −C by (4) (SF −C is called the inside component
and SI − C is called the outside component). We have proved that every cycle in the square-diagonal graph
is a Jordan curve in (Z2,A).

To show that (Z2,A) is a minimal adjacency graph with this property, let (Z2,B) be a subgraph of (Z2,A)
such that every cycle in the square-diagonal graph is a Jordan curve in (Z2,B). Suppose that there is an edge
{z1, z2} ∈ A − B. Since (Z2,B) is a supergraph of the square-diagonal graph, there is a fundamental triangle
T(z) with z ∈ {z1, z2}. Thus, {z1, z2} is one of the three edges incident with z and the point z′ ∈ {z1, z2} − {z}
lies on a side D of T(z). Let S be the fundamental triangle different from T(z) such that one of the sides of
S is D. Then the union C of all sides of T(z) and S different from D is a cycle in the square diagonal graph
but it is not a Jordan curve in (Z2,B) because the inside part of C, i.e., the set (T(z) ∪ S) − C, is evidently
not connected in the subgraph Z2 − C of (Z2,B). Thus, the subgraph Z2 − C of (Z2,B) has more than two
components. This is a contradiction. Therefore, A = B and the minimality of (Z2,A) is proved.

Remark 1. It follows from the proof of Theorem 1 that every cycle in the square-diagonal graph is a Jordan
curve in (Z2,B) whenever (Z2,B) is an adjacency graph that is a supergraph of (Z2,A) with the property
that, for every edge {a, b} ∈ B − A, there exists a fundamental triangle T with {a, b} ⊆ T such that the union
of all sides of T is a simple closed curve in (Z2,B). For example, every cycle in the square-diagonal graph
is a Jordan curve in each of the two adjacency graphs portions of which are shown in Figure 4 (and also in
the adjacency graph that is the union of the two graphs). Another adjacency graph having this property
is given by the connectedness graph of the topology studied in [10] and [11]. This adjacency graph is
demonstrated in Figure 5.
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Figure 4: Portions of two adjacency supergraphs of (Z2,A).
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Figure 5: A portion of the adjacency graph that coincides with the connectedness graph of the topology introduced in [10].

4. An adjacency graph with a special connectedness

Definition 2. Let (V,E) be a graph. A set P of paths of length 2 in (V,E) is said to be a path partition of type
2, briefly a 2-partition, of (V,E) if

(a) for every edge {a, b} ∈ E, there is exactly one path (a0, a1, a2) ∈ P with the property that there exists
i ∈ {1, 2} such that {a, b} = {ai−1, ai} and

(b) every pair of different paths belonging to P has at most one vertex in common.

Let (V,E) be a graph with a 2-partition P and U ⊆ V be an induced subgraph of (V,E). Let PU be the set
of all paths belonging to P that are paths in U. If PU is a 2-partition of U, then we say that U is a P-subgraph
of (V,E).

Definition 3. Let (V,E) be a graph with a 2-partition P. A sequence C = (ci| i ≤ n) of vertices of (V,E) is
called a P-path in (V,E) if every path (a0, a1, a2) ∈ P satisfies the following two conditions:

(i) If there exists i ∈ {0, 1, ..., n − 1} such that ci = a1 and ci+1 = a2, then i > 0 and ci−1 = a0.

(ii) If there exists i ∈ {1, 2, ..., n} such that ci−1 = a2 and ci = a1, then i < n and ci+1 = a0.

Given a graph (V,E) with a 2-partition P, a subset X ⊆ V is said to be P-connected if, for every pair
a, b ∈ X, there is a P-path (ci| i ≤ n) in (V,E) such that c0 = a, cn = b and ci ∈ X for all i ∈ {0, 1, ..., n}. A
maximal (with respect to set inclusion) P-connected subset of V is called a P-component of the graph (V,E).

Definition 4. Let (V,E) be a graph with a 2-partition P. A nonempty, finite and P-connected subset J of V
is said to be a P-simple closed curve in (V,E) if every path (a0, a1, a2) ∈ P with {p0, p1} ⊆ J satisfies a2 ∈ J and
every z ∈ J fulfills the following two conditions:
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Figure 6: A portion of the graph (Z2,C).

(1) There are exactly two paths (a0, a1, a2) ∈ P satisfying both {a0, a1, a2} ⊆ J and z ∈ {a0, a2} and there is no
path (b0, b1, b2) ∈ P satisfying both {b0, b1, b2} ⊆ J and z = b1.

(2) There is exactly one path (b0, b1, b2) ∈ P satisfying both {b0, b1, b2} ⊆ J and z = b1 and there is no path
(a0, a1, a2) ∈ P satisfying both {a0, a1, a2} ⊆ J and z ∈ {a0, a2}.

Clearly, every P-simple closed curve is a cycle.

Definition 5. In a graph (V,E) with a 2-path partitionP, aP-simple closed curve J is called aP-Jordan curve
if the induced subgraph V − J of (V,E) is a P-subgraph of (V,E) consisting of precisely two P-components.

Let C be an adjacency on (Z2,C) given as follows:
C = A4 ∪ {{(4k + i, 4l + i), (4k + i + 1, 4l + i + 1)}; k, l, i ∈ Z} ∪ {{(4k + i, 4l − i), (4k + i + 1, 4l − i − 1)}; k, l, i ∈ Z}.

Put Q = {((x1
i , x

2
i )| i ≤ 2) ∈ (Z2)3; for every j ∈ {0, 1}, x j

0 = x j
1 = x j

2 or there exists an odd number k ∈
Z fulfilling either x j

i = 2k + i + 1 for all i = 0, 1, 2 or x j
i = 2k − i − 1 for all i = 0, 1, 2} − {((x0

i , x
1
i )| i ≤ 2) ∈

(Z2)3; x j
0 = x j

1 = x j
2 for every j ∈ {0, 1}}.

It may easily be seen that Q is a 2-partition on (Z2,C). A portion of the graph (Z2,C) is demonstrated in
Figure 6. Each path (a0, a1, a2) ∈ Q in this portion is represented as an arrow whose initial, mid and terminal
points are a0, a1 and a2, respectively.

Theorem 2. Every cycle in the square diagonal graph that does not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, is a
Q-Jordan curve in the adjacency graph (Z2,C).

Proof. In [9], a closure operation on Z2 is studied and, as the main result (Theorem 3.19), it is proved that
every cycle in the square diagonal graph that does not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, is a Jordan
curve with respect to this closure operation. It may easily be seen that connectedness with respect to the
closure operation from [9] is equivalent to Q-connectedness in the adjacency graph (Z2,C).

Example 1. Consider the following (digital picture of a) triangle:

r r r r r r r r rr rr rr rr

(0,0)=A B C D=(8,0)

E =(4,4)
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While the triangle ADE is a Q-Jordan curve in (Z2,C), it is not a Jordan curve in the Khalimsky graph. For
this triangle to be a Jordan curve in the Khalimsky graph, we have to delete the points A,B,C and D. But
this will lead to a considerable deformation of the triangle.
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