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Abstract. The Narumi-Katayama index of a graph G, denoted by NK(G), is defined as
n∏

i=1

de1(vi). In

this paper, we determine the extremal NK(G) of trees, unicyclic graphs with given diameter and vertices.
Moreover, the second and third minimal NK(G) of unicyclic graphs with given vertices and the minimal
NK(G) of bicyclic graphs with given vertices are obtained.

1. Introduction

Let G be a simple graph with the vertex set V(G) and edge set E(G). A connected graph G with n vertices
is a tree (unicyclic or bicyclic graph) if |E(G)| = n− 1 (|E(G)| = n or |E(G)| = n + 1). Denote by de1(vi) or di the
degree of vertex vi. The distance between two vertices is defined as the length of a shortest path between
them. The diameter of G is the maximum distance over all pairs of vertices u and v of G. In 1984, Narumi
and Katayama [1] proposed a definition ”simple topological index”:

NK(G) =

n∏
i=1

de1(vi).

On this graph invariant, several works [2,3,4,5,6] are reported and the name ”Narumi-Katayama index” is
used.

In [6], I. Gutman et al. considered the problem of extremal Narumi-Katayama index and offered a few
results filling the gap. For graphs without isolated vertices, I. Gutman et al. [6] presented the minimal,
second-minimal and third-minimal (maximal, second-maximal, and third-maximal, resp.) NK-values and
extremal graphs. Moreover, the maximal (second-maximal) Narumi-Katayama index of n-vertex tree
(unicyclic graph) is determined [6]. And the maximal Narumi-Katayama index of n-vertex bicyclic graphs
is given. For connected n-vertex graphs, the minimal and second minimal Narumi-Katayama index are
showed [6]. Consequently, the second-minimal Narumi-Katayama index among n-vertex trees and the
minimal Narumi-Katayama index among n-vertex unicyclic graphs are presented [6].

In this paper, we determine the extremal NK(G) of trees, unicyclic graphs with given diameter and
vertices. Moreover, the second and third minimal NK(G) of unicyclic graphs with given vertices and the
minimal NK(G) of bicyclic graphs with given vertices are obtained.
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2. The minimal Narumi-Katayama index of trees and unicyclic graphs with given diameter

Lemma 2.1 Operation A: For an edge uv of Graph G, let u be a vertex with all adjacency vertices are pendent vertices
except a vertex v. If all pendent edges incident with u are grafted to v, then the resulting graph G∗ (Fig. 1) satisfies
NK(G) > NK(G∗).
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Figure 1: Operation A

Proof. By the definition of NK-index,
NK(G) −NK(G∗) =

∏
vi∈V(G)\{u,v}

de1(vi) · [de1G(u) · de1G(v) − 1 · (de1G(u) + de1G(v) − 1)]

=
∏

vi∈V(G)\{u,v}

de1(vi) · (de1G(u) − 1) · (de1G(v) − 1) > 0.

Hence the result holds. �

Lemma 2.2 Operation B: Let G be a connected graph. For a cut vertex v of G (we say v is an root of G), if T1 is
a tree branch of G including v (see Fig. 2), we transform T1 to the star with same order S|T1 | and obtain G∗, then
NK(G) ≥ NK(G∗), with the equality holds if and only if T1 � S|T1 |.
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Figure 2: Operation B
Proof. T1 is a tree including vertex v. By the definition of NK-index and repeating the operation in Lemma
2.1,

NK(G) =
∏

vi∈V(G)\T1

de1(vi) ·
∏
vi∈T1

de1(vi) ≥
∏

vi∈V(G)\T1

de1(vi) ·
∏

vi∈S|T1 |

de1(vi) = NK(G∗).

Obviously, the equality holds if and only if T1 � S|T1 |. �

Lemma 2.3 Operation C: Let Sk+1 and Sl+1 be two stars rooted in u and v, respectively. If all edges incident to v are
grafted to u with d(u) ≥ d(v), denoted by the resulting graph G∗ (Fig. 3), then NK(G) > NK(G∗).
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Figure 3: Operation C

Proof. By the definition of NK-index, then
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NK(G) −NK(G∗) =
∏

vi∈V(G)\{u,v}

de1(vi) · [de1G(u) · de1G(v) − (de1G(u) + l) · (de1G(v) − l)]

=
∏

vi∈V(G)\{u,v}

de1(vi) · l · [de1G(u) − de1G(v) + l].

Since de1G(u) ≥ de1G(v) and l ≥ 1, NK(G) −NK(G∗) > 0.
Hence the result follows. �

Theorem 2.4 Let T be a tree with given diameter d and n vertices. Then NK(T) ≥ NK(T∗1), where T∗1 ∈ T
1,∗
d and T 1,∗

d
(Fig. 4) is the set of trees with given diameter d and Sn−d rooted in the diametral path excepting the two end vertices.
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Figure 4: A tree T∗1 in T 1,∗
d

Proof. For a tree T with given diameter d, choose a diametral path Pd+1 = v1 · · · vd+1, and replace tree branches
rooted in v2, . . ., vd by stars, then graft two stars to a star. Repeat the operations B and C. By Lemmas 2.2
and 2.3, the result follows. �

Theorem 2.5 Let T be a tree with given diameter d, n vertices and T < T 1,∗
d . Then NK(T) ≥ NK(T∗2), where T∗2 ∈ T

2,∗
d

and T 2,∗
d (Fig. 5) is the set of trees with given diameter d and in the diametral path, Sn−d−1 and a vertex are rooted in

two different vertices.
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Figure 5: A tree T∗2 in T 2,∗
d

Proof. Similar to the proof in Theorem 2.4, by repeating operations in Lemmas 2.2 and 2.3, the NK-index of
T is decreasing. Note that T < T 1,∗

d , in the diametral path v1v2 · · · vd+1, the star Sn−d−1 is rooted in a vertex
vk. The only one remaining vertex u is adjacent to vi (i = 2, . . . , d, i , k) or one of pendent vertices of Sn−d−1.
The resulting graphs are denoted by T∗2 and T∗3. By direct calculations, NK(T∗3) = 2d−1

· (n − d) > NK(T∗2) =

3 · 2d−3
· (n − d).

Hence NK(T) ≥ NK(T∗2). �

Lemma 2.6 [7] Let G be a connected unicyclic graph with at least one pendent vertex, and the diameter of G be D. If
d(u, v) = D, where u, v ∈ V(G), then u or v should be a pendent vertex.

Theorem 2.7 Let U � Cn be a unicyclic graph with given diameter d and n vertices. Then NK(U) ≥ NK(U∗j) =

NK(U∗∗), where U∗j ( j = 2, . . . , b d+1
2 c) is a unicyclic graph with diameter d, Sn−d−2 and C3 rooted in the same vertex

of the diametral path v1v2 · · · vdvd+1 except two end vertices. U∗2 and U∗∗ are depicted in Figure 6.
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Figure 6: U∗2 and U∗∗ (diameter d)
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Proof. By Lemma 2.6, for U � Cn, one of endpoints in a diametral path of unicyclic graph is a pendent
vertex. There are two cases:

Case 1: A diametral path has an endpoint in the cycle.
For a unicyclic graph U, let a diametral path be u1u2 · · · ukv1v2 · · · vl (without loss of generation, let k ≥ l),

where v1, v2, . . ., vl are the vertices in the cycle with k + l = d + 1. Tui (i = 2, . . . , k) are the tree branches rooted
in ui with max{(u2, v)|v ∈ V(Tu2 )} ≤ 1, . . ., max{(uk, v)|v ∈ V(Tuk )} ≤ d − (k − 1).

If U1 is obtained from U by transforming the branches in Path u2 · · · ukv1 and the cycle to stars, by Lemma
2.2, then NK(U) ≥ NK(U1). If the graph U1 is transformed to U2, where U2 is the unicyclic graph that a
star rooted in ui of Path u2 · · · uk, a star rooted in v1 and a star rooted in vi of the cycle, by Lemma 2.3, then
NK(U1) ≥ NK(U2).

By repeating Operation C in Lemma 2.3, the graph U3, U4 and U5 are obtained.
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Figure 7: Ui, i = 2, 3, 4, 5.
Note that NK(U2) ≥ NK(U3) and NK(U2) ≥ NK(U4) = NK(U5).
By direct calculation,
NK(U3) −NK(U4) =

∏
v∈V(U3)\{vi,v1}

de1(v) · [2 · de1U3 (v1) − 3 · (2 + de1U3 (v1) − 3)]

=
∏

v∈V(U3)\{vi,v1}

de1(v) · (3 − de1U3 (v1)) ≤ 0.

If de1U3 (v1) = 3, then U3 � U4.
If de1U3 (v1) > 3, then NK(U3) ≤ NK(U4) ≤ NK(U2) ≤ NK(U1) ≤ NK(U).
For even positive integer l, the graph U3 consists of a path with length d− l

2 , a cycle Cl and a star Sn−d− l
2 +1

rooted in the same endpoint of the path.
NK(U3) = 2d−2+ l

2 · (n − d − l
2 + 3).

Let f (l) = 2d−2+ l
2 (n − d − l

2 + 3). Then f ′(l) =
1
2
· 2d−2+ l

2 [(n − d −
l
2

+ 3)ln2 − 1] > 0. f (l) is an increasing

function in l. Then f (l) ≥ f (4) = 2d(n − d + 1) for l ≥ 4, i.e., U∗∗ attains the minimal NK-index.
For odd positive integer l, the graph U3 consists of a path with length d− l−1

2 , a cycle Cl and a star Sn−d− l−1
2

rooted in the same endpoint of the path.
NK(U3) = 2d+ l−3

2 · (n − d − l−5
2 ).

Let h(l) = 2d+ l−3
2 (n− d− l−5

2 ). Obviously, h(l) is an increasing function in l. Then h(l) ≥ h(3) = 2d(n− d + 1)
for l ≥ 3, i.e., U∗2 attains the minimal NK-index.

Case 2: Two endpoints of each diametral path are pendent vertices.
In order to decrease the NK-value of U, we can transform a unicyclic graph U to U6, where a star S′ and

a unicyclic graph U′ are rooted in v and w of a diametral path. By Lemma 2.2, NK(U) ≥ NK(U6).
By transforming tree branches to stars in U′ and grafting stars to a star, we obtain the graphs U7 and U8.
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Figure 8: U6 and U7

By Lemmas 2.2 and 2.3, NK(U6) ≥ NK(U7), NK(U6) ≥ NK(U8) and
NK(U7) −NK(U8) =

∏
v∈V(U7)\{vk,u}

de1(v)[3 · de1U7 (vk) − 2 · (de1U7 (vk) + 1)] > 0.
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Figure 9: U8

Let U9 be the unicyclic graph obtained by adding a pendent vertex at w, and identifying u with w from
U8.

Then NK(U9) −NK(U8) =
∏

v∈V(U8)\{u,w}

de1(v)[de1U8 (u) + 2 − 3 · de1U8 (u)] < 0.

Let U10 (U11) be the unicyclic graph obtained by grafting all pendent edges of vertex v (u) to vertex u (v)
from U9. Then NK(U10) − NK(U9) =

∏
x∈V(U9)\{u,v}

de1(x)[2 · (de1U9 (u) + de1U9 (v) − 2) − de1U9 (u) · de1U9 (v)] < 0.

Obviously, NK(U10) ≤ NK(U11).
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Figure 10: U9 and U10

Hence NK(U10) ≤ NK(U9) ≤ NK(U8) ≤ NK(U7) ≤ NK(U6) ≤ NK(U).
The graph U10 consists of a path with length d, a cycle Cl with l ≤ d and a star Sn−d−l+1 rooted in the same

vertex of the path except two end vertices.
And NK(U10) = 2d−2

· 2l−1
· (n − d − l + 4) = 2d+l−3

· (n − d − l + 4).
Let 1(l) = 2d+l−3(n − d − l + 4). Then 1′(l) = 2d+l−3[(n − d − l + 4)ln2 − 1] > 0. 1(l) is an increasing function

in l. Then 1(l) ≥ 1(3) = 2d(n − d + 1) for l ≥ 3, i.e., U∗j attains the minimal NK-index.

By above discussions, NK(U) ≥ NK(U∗j) = NK(U∗∗) = 2d(n − d + 1). �

Let f (x) = 2x(n− x + 1). Then f ′(x) = 2x[ln2 · (n− x + 1)− 1] > 0. f (x) is an increasing function in x. Then
f (x) ≥ f (2), i.e., the following corollary holds:
Corollary 2.8 [6] Among all connected n-vertex unicyclic graphs, the graph Yn (Fig. 11 ) has minimal Narumi-
Katayama index (equal to 4(n − 1) ). This graph is unique.
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3. The second and third minimal Narumi-Katayama index of unicyclic graphs

In [6], the minimal Narumi-Katayama index of unicyclic graphs is presented. In this section, we discuss
the second and third minimal Narumi-Katayama index of unicyclic graphs.

Theorem 3.1 Let U � Yn. U∗i (i = 3, 4, 5) is a unicyclic graph with n vertices and given cycle length k, where U∗i
(i = 3, 4, 5) are depicted in Fig. 12.

Then NK(U) ≥ NK(U∗5) > NK(U∗3) > NK(U∗4).
Proof. Let Ck be the cycle of unicyclic graph U. In order to decrease NK-index, by Lemma 2.2, we can change
the tree branches rooted in the cycle Ck to stars. By Operation C of Lemma 2.3, the Narumi-Katayama index
is strictly decreasing. Repeated Operations B and C, then U∗3 is obtained.
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Figure 12: U∗i (i = 3, 4, 5)

Let U∗4 = U∗3 − uw + vw, U∗5 = U∗3 − uw + xw. NK(U∗3) − NK(U∗4) =
∏

vi∈V(U∗3)\{u,v}

de1(vi)[3 · de1U∗3 (v) − 2 ·

(de1U∗3 (v) + 1)] > 0. NK(U∗3) −NK(U∗5) =
∏

vi∈V(U∗3)\{u,x}

de1(vi)[3 · 1 − 2 · 2] < 0.

Then NK(U∗4) < NK(U∗3) < NK(U∗5) ≤ NK(U). �

Lemma 3.2 Let U be a unicyclic graph with the cycle Ck and other vertices are pendent vertices. U′ is the unicyclic
graph obtained by deleting a 2-degree vertex and adding a pendent vertex of Ck . Then NK(U) > NK(U′).
Proof. Let u, v be a 2-degree and a vertex of Ck.

NK(U) −NK(U′) =
∏

vi∈V(U)\{u,v}

de1(vi) · [2 · de1U(v) − 1 · (de1U(v) + 1)] > 0.

Hence NK(U) > NK(U′). �

By Theorem 3.1 and Lemma 3.2, the following result holds:
Theorem 3.3 Let U � Yn. Wn and Mn are the unicyclic graphs U∗5 and U∗3 in the case k = 3. Then NK(U) >
NK(Wn) > NK(Mn).
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4. The minimal Narumi-Katayama index of bicyclic graphs

Bicyclic graphs are divided into three types:
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Figure 13: I, II and III-type bicyclic graphs

Lemma 4.1 Let B be a I-type bicyclic graph with the cycles Cp, Cq and n vertices. Then NK(B) ≥ NK(B∗4) (B∗4 is
depicted in Fig. 14), where Cp and Cq have a common vertex u, and the other vertices are pendent vertices attached
in u.
Proof. For a bicyclic graph B with the cycles Cp and Cq, the other vertices consist of some tree branches
rooted in Cp, Cq and vertex u. By Lemma 2.2, if these tree branches are transformed into stars, then
Narumi-Katayama index is decreasing. Then we can obtain B∗1. And NK(B) ≥ NK(B∗1).
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Let B∗2 be the graph obtained by grafting all pendent edges incident with w to v from B∗1. Then

NK(B∗1) − NK(B∗2) =
∏

vi∈V(B∗1)\{v,w}

de1(vi) · [de1B∗1 (v) · de1B∗1 (w) − 2 · (de1B∗1 (v) + de1B∗1 (w) − 2)] > 0 for de1B∗1 (v) > 2

and de1B∗1 (w) > 2. If de1B∗1 (v) = 2 or de1B∗1 (w) = 2, then B∗1 � B∗2.
Let B∗3 (B∗4) be the graph obtained by grafting all pendent edges incident with u (v) to v (u) from B∗2.

NK(B∗2) −NK(B∗4) =
∏

vi∈V(B∗2)\{u,v}

de1(vi) · [de1B∗2 (u) · de1B∗2 (v) − 2 · (de1B∗2 (v) + de1B∗2 (u) − 2)]

=
∏

vi∈V(B∗2)\{u,v}

de1(vi) · [(de1B∗2 (u) − 2) · (de1B∗2 (v) − 2)].

If de1B∗2 (v) = 2, then B∗2 � B∗4. If de1B∗2 (v) > 2, then NK(B∗2) > NK(B∗4).

NK(B∗3) −NK(B∗4) =
∏

vi∈V(B∗3)\{u,v}

de1(vi) · [4 · de1B∗3 (v) − 2 · (de1B∗3 (v) + 2)]

=
∏

vi∈V(B∗3)\{u,v}

de1(vi) · [2 · (de1B∗3 (v) − 2)].

If de1B∗3 (v) = 2, then B∗3 � B∗4. If de1B∗3 (v) > 2, then NK(B∗3) > NK(B∗4).
Combining above discussions, we have:
(1) If de1B∗2 (v) = 2, then B∗2 � B∗3 � B∗4.
(2) If de1B∗2 (v) > 2, then NK(B∗2) > NK(B∗4) and NK(B∗3) > NK(B∗4).
Hence NK(B) ≥ NK(B∗4). �

Lemma 4.2 For a bicyclic graph B∗4, the minimal Narumi-Katayama index is attained when there are n − 5 pendent
vertices, denoted by B∗4(3, 3,n − 5).
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Proof. Suppose there are k 2-degree vertices in B∗4. Then NK(B∗4) = 2k
· (n − k + 3). Let f (k) = 2k(n − k + 3).

Since f ′(k) = 2k[(n − k + 3)ln2 − 1] > 0, f (k) is an increasing function in k. Then f (k) ≥ f (4) for k ≥ 4, i.e.,
when p = 3, q = 3 and n−5 vertices are pendent vertices, i.e., B∗4(3, 3,n−5) attains the minimal NK-value. �

Lemma 4.3 Let B be a II-type bicyclic graph. Then NK(B) ≥ NK(B∗5), where B∗5 is depicted in Figure 15.
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Proof. Let B be a II-type bicyclic graph. In order to decrease NK(B), by repeating operations in Lemmas 2.2
and 2.3, we can obtain the bicyclic graph B1,∗

5 and NK(B) ≥ NK(B1,∗
5 ).

Let B2,∗
5 (B∗5) be the graph obtained by grafting all pendent vertices of vertex u (v) to v (u ) from B1,∗

5 . By
Lemma 2.2, NK(B1,∗

5 ) ≥ NK(B2,∗
5 ) and NK(B1,∗

5 ) ≥ NK(B∗5).

NK(B∗5) −NK(B2,∗
5 ) =

∏
vi∈V(B1,∗

5 )\{u,v}

de1(vi) · [2 · (de1B1,∗
5

(u) + de1B1,∗
5

(v) − 2) − 3 · (de1B1,∗
5

(v) + de1B1,∗
5

(u) − 3)].

If de1B1,∗
5

(u) = 3 and de1B1,∗
5

(v) = 2, then B2,∗
5 � B∗5.

Otherwise, NK(B∗5) ≤ NK(B2,∗
5 ) ≤ NK(B1,∗

5 ) ≤ NK(B). �

Lemma 4.4 For a bicyclic graph B∗5, the minimal Narumi-Katayama index is attained when there are n − 4 pendent
vertices, denoted by B∗5(n − 4).
Proof. Suppose there are k 2-degree vertices in B∗5. Then NK(B∗5) = (n− k + 1) · 2k

· 3. Let f (k) = 3 · 2k(n− k + 1).
Since f ′(k) = 3 · 2k[(n − k + 1)ln2 − 1] > 0, f (k) is an increasing function in k. Then f (k) ≥ f (2) for k ≥ 2, i.e.,
when B∗5 � B∗5(n − 4), NK(B∗5(n − 4)) attains the minimal value. �

Lemma 4.5 Let B be a III-type bicyclic graph with n vertices. Then NK(B) ≥ NK(B∗6), where B∗6 is depicted in Figure
16.
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Figure 16: B1,∗
6 , B4,∗

6 and B∗6
Proof. For a III-type bicyclic graph B, similar to the proof of Lemma 4.3, and repeating the operations in
Lemmas 2.2 and 2.3, we can obtain the bicyclic graph B1,∗

6 with NK(B) ≥ NK(B1,∗
6 ).

Let B2,∗
6 (B3,∗

6 ) be the graph obtained by grafting all pendent vertices of vertex u (v) to v (u) from B1,∗
6 .

Since de1B1,∗
6

(u) ≥ 3 and de1B1,∗
6

(v) ≥ 3,

NK(B1,∗
6 ) −NK(B2,∗

6 ) =
∏

vi∈V(B1,∗
6 )\{u,v}

de1(vi) · [de1B1,∗
6

(u)de1B1,∗
6

(v) − 3 · (de1B1,∗
6

(v) + de1B1,∗
6

(u) − 3)] ≥ 0;
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NK(B2,∗
6 ) −NK(B3,∗

6 ) =
∏

vi∈V(B2,∗
6 )\{u,v}

de1(vi) · [de1B2,∗
6

(v) · 3 − 2 · (de1B2,∗
6

(v) − 2 + 3)] ≥ 0.

Then NK(B1,∗
6 ) ≥ NK(B2,∗

6 ) ≥ NK(B3,∗
6 ).

Similarly, by grafting all pendent vertices of vertex y to x from B3,∗
6 , we obtain the graph B4,∗

6 and
NK(B3,∗

6 ) ≥ NK(B4,∗
6 ).

Let B5,∗
6 be the graph obtained by grafting all pendent vertices of vertex x to u from B4,∗

6 .

NK(B4,∗
6 ) −NK(B5,∗

6 ) =
∏

vi∈V(B4,∗
6 )\{u,x}

de1(vi) · [de1B4,∗
6

(u)de1B4,∗
6

(x) − 3 · (de1B4,∗
6

(u) + de1B4,∗
6

(x) − 3)] ≥ 0.

Then NK(B4,∗
6 ) ≥ NK(B5,∗

6 ).
Let B6,∗

6 (B∗6) be the graph obtained by grafting all pendent vertices of vertex u (w) to w (u) from B5,∗
6 .

NK(B5,∗
6 ) −NK(B6,∗

6 ) =
∏

vi∈V(B5,∗
6 )\{u,w}

de1(vi) · [de1B5,∗
6

(u)de1B5,∗
6

(w) − 3 · (de1B5,∗
6

(u) + de1B5,∗
6

(w) − 3)] ≥ 0;

NK(B6,∗
6 ) −NK(B∗6) =

∏
vi∈V(B6,∗

6 )\{u,w}

de1(vi) · [3 · de1B6,∗
6

(w) − 2 · (de1B6,∗
6

(w) − 2 + 3)] ≥ 0.

Then NK(B5,∗
6 ) ≥ NK(B6,∗

6 ) ≥ NK(B∗6).
Hence NK(B) ≥ NK(B1,∗

6 ) ≥ NK(B2,∗
6 ) ≥ NK(B3,∗

6 ) ≥ NK(B4,∗
6 ) ≥ NK(B5,∗

6 ) ≥ NK(B6,∗
6 ) ≥ NK(B∗6). �

Lemma 4.6 For a bicyclic graph B∗6, the minimal Narumi-Katayama index is attained when p = 3, q = 3 and other
vertices are pendent vertices, denoted by B∗6(3, 3,n − 6).
Proof. Suppose there are k 2-degree vertices in B∗6. Then NK(B∗6) = (n − k + 1) · 2k

· 3. By the proof of Lemma
4.4, NK(B∗6) is increasing in k. For k ≥ 4, i.e., when p = 3, q = 3 and n − 6 vertices are pendent vertices, i.e.,
NK(B∗6(3, 3,n − 6)) attains the minimal value. �

Theorem 4.7 Let B a bicyclic graph with n vertices. Then NK(B) ≥ NK(B∗5(n − 4)). The equality holds if and only if
B � B∗5(n − 4).
Proof. For a bicyclic graph B, B belongs to one of three types of bicyclic graphs. By Lemmas 4.1-4.6,
B attains the minimum NK-value in B∗4(3, 3,n − 5), B∗5(n − 4) or B∗6(3, 3,n − 6). By direct calculations,
NK(B∗4(3, 3,n − 5)) = 24

· (n − 1), NK(B∗5(n − 4)) = 22
· 3 · (n − 1), and NK(B∗6(3, 3,n − 6)) = 3 · 24

· (n − 3). Then
NK(B∗4(3, 3,n − 5)) > NK(B∗5(n − 4)) and NK(B∗6(3, 3,n − 6)) > NK(B∗5(n − 4)).

Then NK(B) > NK(B∗5(n − 4)) if B � B∗5(n − 4).
Hence NK(B) ≥ NK(B∗5(n − 4)). �
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