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Abstract. The degree distance (DD), which is a weight version of the Wiener index, defined for a connected
graph G as vertex-degree-weighted sum of the distances, that is, DD(G) = Y., ,jcv(q)ldc () + dc(0)]1d(u, v|G),
where d¢ (1) denotes the degree of a vertex u in G and d(1, v|G) denotes the distance between two vertices
1 and v in G. In this paper, we establish two upper bounds for the degree distances of four sums of two
graphs in terms of other indices of two individual graphs.

1. Introduction

All graphs considered in this paper are simple and connected. Let G = (V,E) be a graph with vertex
set V and edge set E. Let dg(v) be the degree of a vertex v in G and d(u, v|G) be the distance between two
vertices # and v in G.

One of the oldest and well-studied distance-based graph invariants associated with a connected graph
G is the Wiener number W(G), also termed as Wiener index in chemical or mathematical chemistry literature,
which is defined [21] as the sum of distances over all unordered vertex pairs in G, namely,

W(G) = Z d(u, v|G).
{1,01CV(G)

This equation was introduced by Haruo Hosoya [12], although the concept has been introduced by late
Harry Wiener. However, the approach by Wiener is applicable only to acyclic structures, whilst Hosoya
matrix definition allowed the Wiener index to be used for any structure.

In 1994, Dobrynin and Kochetova [6] and Gutman [10] independently proposed a vertex-degree-
weighted version of Wiener index called degree distance or Schultz molecular topological index, which is
defined for a connected graph G as

DDG) = ) [de() +do(®)ld(u, 0lG).
{u,0}CV(G)
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The interested readers may consult [5, 9, 11] for Wiener index and [2, 4, 7, 13, 16-20] for degree distance.
The relation between the degree distance and the Wiener index was investigated in [10]. For other unde-
fined terminology and notations from graph theory, the readers are referred to [1].

Wiener indices, hyper-Wiener indices and reverse Wiener indices of four sums of two graphs were
computed in [8, 15], respectively. Vertex PI indices of four sums of two graphs were calculated in [14]. In
this paper, we continue this program to compute the degree distances of four sums of two graphs and two
upper bounds for them in terms of other indices of two individual graphs are given.

2. Preliminaries

We first recall some graph operations, see Fig. 1. More details on them may be found in [3].

For a graph G = (V,E), we refer to each vertex of V as a black vertex. Denote by S(G) the graph obtained
from G by inserting an additional vertex which is referred to as the white vertex in each edge of G. Two
black vertices in S(G) are related if they are adjacent in G; and two white vertices in S(G) are related if their
corresponding edges in G are adjacent. Denote by R(G) and Q(G) the graphs obtained from S(G) by joining
every pair of related black vertices and every pair of related white vertices, respectively. Suppose that
graphs X and Y have the same vertex set V, then their union is the graph X U Y with vertex set V and edge
set E(X) U E(Y); in particular, we denote by T(G) the union of R(G) and Q(G).

G
S(G) R(G)
Q(G) T(G)

Fig. 1. A graph G and S(G), R(G), Q(G) and T(G).

If G is a graph, then the line graph of G, denoted by L(G), is the graph with E(G) as vertex set, in which
two vertices are adjacent if and only if the corresponding edges have a vertex in common. Let G; and G,
be two graphs. For convenience, throughout the paper we denote V(G;) and E(G;) by V; and E;,i = 1,2,
respectively.

Next we present the definition of F-sum.

Let F be one of the symbols S, R, Q or T. We denote by G; +r G, the F-sum of G; and G, for which the set
of vertices V(G1 +r Gz) = (V1 U E1) X V; and two vertices (11, 12) and (v1, v2) of G1 +r G, are adjacent if and
OI‘lly if up=v €Vy and Uy € Ex orun = vy and u101 € E(P(Gl)).

Note that G; +r G; has [V;| copies of the graph F(G;), and we may label these copies by vertices of Go.



Mingqiang An et al. / Filomat 28:3 (2014), 579-590 581

The vertices in each copy have two situations: the vertices in V; which are still referred to as black vertices
and the vertices in E; which are still referred to as white vertices. Now we join only black vertices with the
same name in F(G;) in which their corresponding labels are adjacent in G,.

Moreover, we state three lemmas which are proved in [8] and will be used repeatedly in the proofs of
our main results.

Lemma 2.1 ([8]). Let G; and G, be two graphs and v = (v1,v;) be a vertex of Gy +r G,. Then:
(a) If v; € V1 (that is v is a black vertex), then for all u = (u1, 1) € V(G; +r G2) we have

d(u, |Gy +r G) = d(uq, v1|F(G1)) + d(uz, v2|Gy).

(b) If v1 € Ey, then for all u = (u1,u) € V(G1 +r Gz) with up # 03,41 = ulvl € Ey and u, v} € Vi (thatis v and
u are white vertices in different copies of F(G1)), we have

d(u,0|G1 +5 G2) = 1+ d(uz, v21G2) + min{d(uy, v1|F(G1), d(vy, v1|F(G1)))-

(c) If v € Eq, then for all u = (uy,up) € V(Gy +r G2), where u, = v, and u; € E; (that is v and u are white
vertices in the same copy of F(G1)), we have

d(u, |Gy +r G2) = d(uy, v1|1F(Gy)).

Lemma 2.2 ([8]). Let G; and G; be two graphs, u1,v1 € E1,up,v; € Vo and F = S or R. Then for u = (u, up)
and v = (v1, v2) in Gy +f G, with u; # v,, we have

_ 2+ d(uz, Uzle) if u; = vy,
A, vlGr +r Go) = { A, IF(G) + (2, 02IGo)  if iy %o,
Lemma 2.3 ([8]). Let G; and G, be two graphs, u1,v1 € E1,up,v; € Vo and F = Q or T. Then for u = (u1, up)
and v = (v, v2) in G +¢ Gy with uy # v, we have
2 + d(uz, v2|Gz) ifu; = v,

d(u, 0lG1 +r G2) = { 1+ d(uq, 11|F(G1)) + d(uz, v2|Go) if uy # vy.

The following two lemmas, which can be easily deduced from the definitions of F-sum and graph
operations, respectively, are also crucial in the proofs of our main results.

Lemma 2.4. Let G; and G; be two graphs and u = (u1, u,) be a vertex of Gy +r G,. Then:
(a) If uy € Vy and u, € V, (thatis u is a black vertex), then we have

G, +:6, () = drGy (1) + dg, (u2).
(b) If uy € E1 and u; € V; (that is u is a white vertex), then we have
G, +:G, (1) = dpGy (1)

Lemma 2.5. Let G be a graph. Then:
(a) If uy € V(G), then we have

drcy(u1) = k- dg(u1),
where

k= 1ifF=SorQ
")l 2ifF=RorT. @)
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(b) If uy = ujuy’ € E(G), then we have

dsc)(u1) = drey(u1) = 2;

doe)(u1) = dr(c)(u1) = drcy(ur) +2;

where dL(G)(M1) = dc(ui) + dG(ulll) -2

3. Main results

In this section, we give two upper bounds for the degree distance of G; +r G,. First, we present an upper
bound for the degree distance of G +r G» in terms of degree distances of F(G;) and G,, where F = R or S.

Theorem 3.1. Let G; and G; be two graphs and F = S or R. Let A(G;) be the maximum degree of G,. Then

DD(Gy +¢ G2) <|[V1PDD(Gy) + [V2PDD(F(G1)) + 4IE1|(IVaf* = |Val) + 4(k + 1)|Eq|(IE1| + [V4])-
W(G2) + 4E2||V2IW(F(G1)) + 2|E1||IV1IA(G2)W(Ga),

where k is defined in Eq. (1).

Proof. Let u = (u1,uz) and v = (v1,v2) be two vertices in Gy +r G,. According to the colors of u# and v we
must consider the following three cases:
Case 1. Suppose that u = (u1,u;) and v = (v1, v) are black, thatis u,v € V1 X V,. By Lemma 2.1(a),

d((u1, uz), (v1,02)|G1 +r Ga) = d(u1, v1|F(G1)) + d(uz, v2|G2).

Therefore, by Lemma 2.4, the vertex-degree-weighted summation of distances between black vertices is

A ::% Z {[dG1+FGZ(Ll) + dc,+:6,(0)]d (11, 12), (01, 02)|G1 +F G2) = (11, U2), (V1,02) € V1 X Vl}

Y [dre ) + do,uw) + drcy(@1) + do, (@) [, 1 IF(G) + d(uiz, 02l Go)]

(u1,12),(v1,02)

Z Z [dp(cl)(u1)+dp(cl)(v1)] d(u1, v1lF(G1))

Up,02€Vo uy,01€V7

1

+5 Z Z [dF(G1)(u1)+dF(Gq)(Ul)]d(u2/UZ|G2)
U, 026V uy,01€V7

1

+5 Y Y ldou(ua) +do,(02)] d(ur, 01IF(G)

Uy, 00€Vs u1,01€Vy

NI~ NI~

+% Z Z [dc, (12) + dg, (v2)] d(12, 02|G2)).-

uy,01€Vy Up, 026V
In what follows, each summation of A is computed, separately.

Ay 2=% Z Z [dF(Gl)(”l)+dF(Gl)(Ul)]d(”lrvﬂP(Gl))

Uy, 02€Vs u1,01€Vy

=5WVal Y [dray(an) + drfon)] dlas, oalFG)

uy,01€Vy
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by Lemma 2.5,

Ay ::% Z Z [dp(cl)(ul) + dF(Gl)(Ul)] d(uz,v2|G2)

Uy, 02€Vo uy1,01€Vy

=kW(G2) ) [do, () +do, (01)]

u1,01€Vy

=4k|E1||V1|W(Gy),

where k is illustrated in Eq. (1); and

Ay=3 Y o) +de,(@)] Y dn,oFG)

Uy, 0,€V>H uy,0 €V

2BVl ) d(un, 01lF(G));

uy,01€Vy

Ay 1=% Z Z [dc,(u2) + dc,(v2)] d(u2, v2|G2))

uy,01 €V U, 06V,

=|V1?DD(Gy).

Thus,

A=A1+A) + Az + Ay

1
=§|V2|2 Z [dF(Gl)(ul)""dF(Gl)(vl)] d(u1, v1|F(Gy)) + 4k|E1||V1IW(G2)

uy,01€V]

+ 2BVl Y d(ur, wilF(G1) + [ViPDD(G).

uy,01€Vy

Case 2. Suppose that u = (11, ) and v = (v, v2) have different colors, thatisu € E; X Vo, and v € Vi X V)
oru € Vi X Vyand v € E; X V,. In this case, by Lemma 2.1(a),

d((u1, u2), (v1,02)|G1 +r G2) = d(u1, v1|F(G1)) + d(u2, v2|G2).

Therefore, by Lemma 2.4, the vertex-degree-weighted summation of distances between vertices 1 and v,
where u is black and v is white, is

1
B’ ::E ZHdGlﬂGZ (1) + dc,+5c,(0)]d((u1, uz), (v1,v2)IG1 +£ G2) = (U1, U2) € V1 X V3,
(v1,v2) € Ey X V2

:% Y. 2, Y [dre(w) +drgy(en)] dn, 01 F(G)

Uy, 0,€Vyo v1€E1 u1€Vy

+% Y. 2 2 [dren(m) + decy(e)] duz, 02lGo)

U, 02€Vy v1€E1 u1 €V

+% YN Y de@du, vilFG)

Uy, 00€Vy v1€E1 u1€Vy

+% Yo Y Y do, (), 02(G).

Uuy,0,€Vy v1€E1 u1€Vy
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In what follows, each summation of B’ is computed, separately.

Bimg Y Y Y [drcn(n) + drgo@n)] d, o FG)

U, 02€Vy v1€E1 u1€Vy

=%|Vz|2 Z Z [dF(Gl)(ul) +dF(G1)(vl)] d(u1, m|F(G));

v1€E] u1€Vy

B, ::% Z Z [dF(Gl)(u1)+dF(G1)(Ul)] Z d(uz, 02|G2)

v1€E] u1€Vy Uz, 02€VH

=W(Ga) ) Y, [drcy(n) + drcy(@1)];

v1€E; 1€V

Biimy Y dow) Y Y dlun,oilF(G)

Uy, 0,€Vy v €E1 1€V

=IVallEs ) ) d(n, o1lF(Gy));

v1€E] u1€Vy

Bi=s Y Y Y e, 0lG)

v1€E 1€V up, 0,6V,

1
=5IElVil ), do,(u2)d(uz, 021Ga)).

Up,02€V>

Thus, the vertex-degree-weighted summation of distances between vertices with different colors is:
B =2B’ = 2(B; + B, + B + B))
Va2 Y Y [dre () +diy @) i, 01F(G)) +2W(G2) )| Y drey ()

v1€E1 1€V v1€E 1€V

+drG (@)1 + 2VallEal ) Y d(un, 0alFG) + EallVAl ), de, (u2)d(1tz, 021G2)).

v1€E1 1€V, Uy, 02€Vy

Case 3. Suppose that u = (11, uz) and v = (v, vp) are white, thatis u € E; X Vo and v € E; X V;. Let

C :=% Z {[dc,+r6, (1) + dG +:6,(0)]d((u1, u2), (V1, V2)|G1 +¢ G2) : (11, Ua), (v1,02) € E1 X Va}.

We break down this summation into two sums C = C; + C,, where

1
Cl = E Z{[dG1+sz(u) + dG] +FG2(U)]d((ulr MZ)/ (01102)|G1 +F GZ) : (ulr MZ)/ (01102) € El X V2/

Uy =01, Uy # Ua};

1
C = 3 Z{[dcl+;cz(u) +dG,+:6, () ]A((u1, u2), (01, 02)|G1 +F G2) = (11, U2), (V1,02) € E1 X V>,

up # 01}
By Lemmas 2.2, 2.4 and 2.5, we have

clzé Y, Y, lec) +do e, @)12 + (s, 02IGo)]

u1€E up,0,€Vo;ur#0,

Z% Z Z [drGy) (1) + dry ()2 + d(u2, v2|G2)]

u1€E up,00€Vour#0,

:% YooY 2202+ d,0lG))]

u1€E up,00€Vosur#0,

=4|E1|( V2l = [V2l) + 4IE; [W(Gy);

584



Mingqgiang An et al. / Filomat 28:3 (2014), 579-590

and

G = Z Z [dc,+r6, (1) + dG,+,6,(0)][d(u1, v1IF(G1)) + d(u2, v2|G2)]

u1,01€E1;u1 #01 Up, 026V

Y, ), (ke () + dey @01l 01lF(G)

u1,01€E1;u1#01 Up,02€V5

+ % 2 Z [drGy) (1) + drGy) (01)]d(u2, 2| G2)

u1,01€E1;U1#01 Uz, 026V

LR Y e @) + doysrcy@)1dn, o1F(G)

uy,01€E1 ;11 #01

NI~ NI

+4(E; - [E/DW(Go).
So,
C=C1+(C,

1
=§|Vz|2 Z [dr(c,) (1) + dr,y(01)]1d(ur, v1|F(G1)) + 41E1 (V2 = |V2))

u1,01€E1;u1#0

+ 4[E1PW(Gy).
Therefore, by the above computation and the definition of degree distance,

DD(G1 +r Gz) =A+B+C
=[V1iDD(Gy) + 4IE1|(|V2l* = |Val) + 4[E1[([E1| + KIV1)W(G2)

2
+ %[ Z [dF(Gl)(m) + dF(Gl)(Zh)] d(uy1,v1|F(Gy))

u1,01€Vy

+2 Z Z [dp(cl)(ul) + dp(cl)(vl)] d(u1,v1|F(Gy))

v1€E) u1€V4

+ Z [dGl+pGZ (M) + dG1+FGz(v)]d(u1/ (%t |F(Gl))]

u1,01€E1;u1#01

+2ABIVaL Y G, oilFG)) + Y Y d(n, 01F(Gy))]

uy,01€Vq v €EL 1 €Vy

+2W(G») Z Z [dF(Gl)(ul) + dF(Gl)(vl)]

v1€E] u1€Vy

FIENVAL Y de,(u2)d(1iz, 021Go)

U, €V,

=IV1PDD(Gy) + 4IE:|(Val? = [Val) + 4IEal(Exl + KIVADW(G2)
+[VaPDD(E(GY) +2W(Ga) ) Y [rcy(an) + drcy(o1)]

v1€E1 1€V,

+2ABVal Y d(n, lFGO) + Y Y d(n, 01lF(Gy))]

uy,0€Vq v1€E1 1€V,

+ |E1lIV4] Z dc, (uz)d(uz, v2|G2).

Up,02€Vso

@

585
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On the other hand, by Lemma 2.5,

Z Z [dF(Gl)(ul)"'dF(G])(vl)] = Z Z [k - dg, (u1) + 2]

v1€E1 1€V, v €E1 1€V

=2k|E1* + 2|E1||V4; 3)

by the definition of Wiener index,

Y dau,wlFG)+ Y Y dan,wilF(G) =2WEG)) - Y. d(un, vilF(Gy))

uy,01€Vy v1€E 1€V uy,01€E1 ;11 #0
= Y ), dau,vilFG)
1€V u1€E,
<2W(F(G1)); 4
clearly,
Y, Ao (u)d(uz,021G2) SAG) Y d(uz, v2IGo)
1,026V 12,026V
=2A(G2)W(Gy). ®)

Thus, combining Eq. (3) and inequalities (4) and (5) with Eq. (2), we obtain
DD(Gi +r G2) =|Vi?DD(G2) + V2P DD(F(G1)) + 4IEx|(1V2l* = [Val) + 4(k + D)IE1|(Eq| + [V3])-
WG) + 2BVl Y dan, orlFG) + Y Y, d(an, 01]F(G))]

uy,0 €V v1€E] u1€Vy

FENVI] Y do,(u)d(u, 02l Go)

(%
<|V1PDD(Gy) + |V2* DD(F(Gy1)) + 4[E1|(IVal* = [Va) + 4(k + 1)|E1|(|E1| + [V4]):
W(G) + 4|E2||V2AW(F(G1)) + 2|E1|[V1]A(G2) W(G2).

This completes the proof. m

Now we give the other upper bound for the degree distance of G; +r G, in terms of degree distances of
F(Gy) and G, where F = Q or T.

Theorem 3.2. Let G; and G; be two graphs and F = Q or T. Let A(G) be the maximum degree of G,. Then

DD(G; +r G) <|[V12DD(Gy) + [V2*DD(F(G1)) + 2(IE1] + [V1[)M1(G1)W(Gy) + 4k|E:|(|E4|
+ [Vi)W(Ga) + (IE1 + 1)(IV2* = [Va)M;1(G1) + 4|E,|| V2 W(F(G1))
+ 2|E1[[V1|A(G2)W(Gy),

where k is defined in Eq. (1).

Proof. Let A, B and C be as in the proof of the Theorem 3.1. The values of A and B do not change here. So
we must only calculate the value of C. Let

1
C =3 Z {[dG,+:6, (1) + dg, 1.6, (0)]d((u1, u2), (01, V2)|G1 +£ G2) : (U1, u2), (v1,02) € Ey X Va}.
We break down this summation into three sums C = C; + C; + C3, where

1
C = 5 Z{[dG1+FG2(u) + d,+:6, (@)]A((u1, u2), (01, 02)|G1 +£ G2) = (11, U2), (V1,02) € E1 X V>,

Uy =0, Uy F Ua};
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1
G = 5 Z{[dcl+;cz(u) +dG,+:6,()]d((u1, u2), (01, 02)IG1 +F G2) = (U1, ), (v1,v2) € E1 X V3,

Uy # 01, Uy = Uaf;

1
Cs = 5 Z{[dcmcz(u) + d,+:6, (@) ]A((u1, u2), (01, 02)|G1 +F G2) = (11, U2), (V1,02) € E1 X V>,

Uy # 1, Uy # Vo).
By Lemmas 2.3, 2.4 and 2.5, we have

=3 Y Y, o) +dosc @2+ ds, 2lGo)

U1 EEq Uy, 02€ Vo ur#0s

=Y Y i)+ dic (o) + 4112 + i, 2IGo)]

u1€Eq tp,02€Vo ur#0;

%Z Y, ldieym) + diey@)Mn,0alG) +4 Y Y1

u1€E] p,0,€Vo;up#0s u1€E7 1p,02€V ;U #0s
YY), i) +dieyE)]+2 ), Y d,wlG)
u1€Eq up,02€Vo;ur#0, u1€Eq tp,02€Vour#0;
=2[W(Gy) + V2> — V2] Z dr Gy (u1) + 4IE1|(IV2* = [Val) + 4IE1|W(Gy). (6)
u1€E;

It is easy to know that:

Y dicy) = Y e, () +de, () ~ 2]

u1€E ulzu{ui’EEl
=M1(G1) — 2|E4]. @)
By putting Eq. (7) into Eq. (6), we obtain
C1 =2[W(G2) + [Vl = [V2ll[M1(G1) — 2|E1]] + 4E|(IV2l* = [V2]) + 4IE1|W(G)
=2M1(G1)W(Gy) + 2(IVaf* = [Va)Mi(Gy).

Also by Lemmas 2.3 and 2.4,
1
G =3 Z Z [dG, 456, (1) + dG, 46, (©)]d(u1, v1|F(G1))
u1,01€E1;u1#01 U2€V)
1
=5 2 ) () + e @), 01lF(G)
u1,01€E1;u1#01 U €V,
1
=51Vl Y [ () + dry(o)]d(n, 01lF(GY),
uy,01€E1;u1#01
and
1
G =3 Z Z [dr(Gy) (1) + dpG,y (@)1 + d(ur, v1|F(G1)) + d(uz, v2|G2)]

u1,01€E1;u1 #01 U, 02EV;Ur #02

SV =1Va) Yl (m) + dr (o)

uy,01€E1;u1#0,

1
+3 Z Z [drG,)(u1) + dpGy)(01)]d(ur, v1|F(G1))
1,01 €E1 ;U1 #01 U, 02EV;Un #02
1
+35 Y Y., () +drcy (o0, v2IGa).

11,01 €E1;U1#01 12,02€ V251 #02

587
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In what follows, each part of Cs is calculated, separately. We first compute the following summation which
will be used later.

Z [y (u1) +drcy(v)] = Z [drGy(ur) + drcy(v1)] = Z [y (1) + drcy(v1)]

u1,01€E1;u1#0; u1,01€E; u1,01€E1;u1=0,

=2(|E1] - 1) Z drc,y(u1)

u €E,

=2(|E1| = D(M1(G1) = 2|E4)).

Then by Lemma 2.5,

Ch: Z [drcy)(u1) + dpGy)(01)]

uy,01€E1;u1 01

Z [drcy(u1) + dicy)(v1) + 4]

w1, €E1;u1 01

Z [drcy(u1) + dycy(v1)] + 4 Z 1

u1,01€E1;u1#01 u1,01€E ;11 #0;
=2(|E1| - 1)(M1(G1) — 2|E1]) + 4(IE1]* — |Eql)
=2(|E1| = DM (Gr);

obviously
1
Cl=5 ), Y. ldrc(n) + dry(@0)ld(ur, 01[F(G)
uy,01€E1 ;U1 #01 U, 02V U #0)
1 2
=sUVaP=1Va) Y [dr(n) + dry (1), orlF(G));
uq,01€E1;u1#01
and
1
cy =5 Z Z [drGy)(u1) + dpGy)(01)]d(u2, v2|G2)

u1,01€E1;u1#01 U, 02€V2Ur#02

=W(G,) Z [drGy) (1) + dpGy)(01)]

uy,01€E1;u1#0,
=W(Gz) - 2(|E1| — 1)M1(Gy)
=2(|E1| = )M1(G1)W(Go).

Thus, the value of C3 is obtained:

]‘ ’ 4 1244
C3 :§(|V2|2 - |V2|)C3 + C3 + C3

=(|Val* = IVa)(IE1] = 1)M1(G1) + 2(IE1] = 1)M1(G1)W(Gy)

+ %(lVﬂ2 —|Val) Z [drG,)(u1) + dr,)(v1)]d(u1, v1|F(Gy)).

u1,01€E1;u1#0,
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Therefore, we finally obtain the value of C as follows:
C=C1+C+GC3
=2M1(G1)W(Gy) + 2(IV2f* = [V2)Mi(G1)
+ %|V2|2 Z [drGy)(u1) + drc,)(v1)]d (U, 01|1F(G1))

11,01 €E1;U1#0

+ (IV2l = [Va)(IEx = 1)M1(G1) + 2(E1 — )M (G1)W(Gy)

Vol Y () + dro(o) i, oilF(G)

u1,01€E1;u1#0

+2|E1IM1(G)W(Gy) + (IE1| + 1)(1Val* = [Va)M1(Gy).
Hence, by the above calculation and the definition of degree distance,
DD(Gy +r G;) =A+B+C
=|V1’DD(Gy) + 4KIE1lIV1IW(G2) + (IE1l + 1)(IVal = [Va)Mi(Gr)
+ 2|E1IM1(G1)W(G2) + |El[ V4] Z dc, (u2)d(12, 02G2)

Uz, 02€V>

2
+ %[ Z [dF(Gl)(m) + dF(Gl)(Zh)] d(uy1,v1|F(Gy))

u1,01€Vy

+2 Z Z [dp(cl)(ul) + dp(cl)(vl)] d(u1,v1|F(Gy))

v1€E) u1€V4

+ Z [dGl+pGZ (M) + dG1+FGz(v)]d(u1/ (%t |F(Gl))]

u1,01€E1,u1#01
+2ABMVal Y dn, o FG) + Y Y d(u, 01lF(Gy)]
uy,01€Vy v €EL 1 €Vy

+2W(G,) Z Z [drcy (1) + drc,)(@1)]

v1€E] u1€Vy

=|V1?DD(G,) + |Vo?DD(F(G1)) + 4k|E1||V1IW(G2) + 2|E1|1M1(G1)W(G2)
+ (IE1| + 1)(IVal? = [V2)Mi(Gy) + [E| V4| Z d, (u2)d(uz, v2|Gz)

Up, 026V

+2ABIVaL Y, oilFG)) + Y Y d(n, 01 F(G)]

uy,01€Vq v €EL 1€V

F2WG) Y Y k() + drgy(@)]: (®)

v1€E] 1€V

On the other hand, since F = Q or S, by Lemma 2.5 and Eq. (7),

Z Z [drG) (1) + drG,)(01)] = Z Z [k - dg, (u1) + dicy(v1) + 2]

v1€E] u1€Vy v1€E] 1€V
=k Y Y do )+ Y Y digye)+2) ) Y1
v €E] 1 €Vy u1€Vy v1€Eq v €E] 1 €Vy
=2kE1l* + [V1|(M1(G1) = 2Eq ) + 2E4[I V4]
=21 > + V1 IM1(Gy), )

where k is stated in Eq. (1).
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Thus, combining Eq. (9) and inequalities (4) and (5) with Eq. (8), we get

DD(G; +r G) =|[V1?DD(G,) + [V2? DD(F(G1)) + 2(IE1| + [V1[)M1(G1)W(G>)
+ 4k|Eq|(IE1| + [VADW(G2) + (IE1 + 1)(Val* = [Val)M1(G1)

+2ABIVaL Y du,lFGy) + Y Y d(u, il F(Gy))]

u1,01 €V v1€E 1€V
+ENVAL Y de, (u2)d(ui2, 02l Go)
Uy, €V

<|ViPDD(Gy) + V2" DD(F(Gy)) + 2(|E1| + [V1[)M1(G1)W(Gy) + 4KIE1|(IE:|
+VIDW(Gy) + (IE1 + 1)(IV2* = [Val)M1(Gi) + 4|2l V2l W(F(G1))
+ 2|E1|IV1|A(G2)W(G2).

This completes the proof. m
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