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Abstract. A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G)
to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V(G) with f (v) = ∅ the condition⋃

u∈N(v) f (u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the
value ω( f ) =

∑
v∈V | f (v)|. The 2-rainbow domination number of a graph G, denoted by γr2(G), is the minimum

weight of a 2RDF of G. The 2-rainbow domination subdivision number sdγr2(G) is the minimum number of
edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the
2-rainbow domination number. In this paper we prove that for every simple connected graph G of order
n ≥ 3,

sdγr2 (G) ≤ 3 + min{d2(v) | v ∈ V and d(v) ≥ 2}

where d2(v) is the number of vertices of G at distance 2 from v.

1. Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly V and E). For every
vertex v ∈ V, the open neighborhood N(v) is the set {u ∈ V(G) | uv ∈ E(G)} and the closed neighborhood of v is the
set N[v] = N(v)∪{v}. Similarly, the open neighborhood of a set S ⊆ V is the set N(S) =

⋃
v∈S N(v), and the closed

neighborhood of S is the set N[S] = N(S) ∪ S. The minimum and maximum degrees of G are respectively
denoted by δ(G) and ∆(G) (briefly δ,∆, when no ambiguity on the graph is possible). The distance between
two vertices u and v is the length of a shortest path joining them. We denote by N2(v) the set of vertices at
distance 2 from the vertex v and put d2(v) = |N2(v)| and δ2(G) = min{d2(v) | v ∈ V(G)}. For a more thorough
treatment of domination parameters and for terminology not presented here see [7, 10].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the
vertex set V(G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V(G) with f (v) = ∅
the condition

⋃
u∈N(v) f (u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value ω( f ) =

∑
v∈V | f (v)|.

The k-rainbow domination number of a graph G, denoted by γrk(G), is the minimum weight of a kRDF of G. A
γrk(G)-function is a k-rainbow dominating function of G with weight γrk(G). Note that γr1(G) is the classical
domination number γ(G). The k-rainbow domination number was introduced by Brešar, Henning, and Rall
[1] and has been studied by several authors (see for example [2–4, 8, 9, 11, 12]).
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The 2-rainbow domination subdivision number sdγr2 (G) of a graph G is the minimum number of edges
that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the
2-rainbow domination number of G. Since the rainbow domination subdivision number of the graph K2
does not change when its only edge is subdivided, in the study of the rainbow domination subdivision
number we must assume that one of the components of the graph has order at least 3. If G1,G2, . . . ,Gs
are the components of G, then γr2(G) =

∑s
i=1 γr2(Gi) and if G1,G2, . . . ,Gr are the components of G of order

at least 3, then sdγr2 (G) = min{sdγr2 (Gi) | 1 ≤ i ≤ s}. Hence, it is sufficient to study sdγr2 (G) for connected
graphs. The rainbow domination subdivision number was introduced by Dehgardi, Sheikholeslami, and
Volkmann [6] and has been studied in [5].

The parameter sdγr2 (G) can take large values [6]. Therefore an interesting problem is to find good upper
bounds on sdγr2 (G) in terms of the order and possibly of other parameters of G. Some bounds are already
known. For instance it has been proved that for any connected graph G of order n, sdγr2(G) ≤ n − δ(G) + 1
[5] and sdγr2 (G) ≤ n − γr2(G) + 3 [6].

Our purpose in this paper is to prove that for every simple connected graph G of order n ≥ 3,

sdγr2 (G) ≤ 3 + min{d2(v) | v ∈ V and d(v) ≥ 2}

We make use of the following results in this paper. Their proofs can be found in [5, 6].

Theorem A. For any connected graph G with adjacent vertices u and v, each of degree at least two,

sdγr2 (G) ≤ deg(u) + deg(v) − |N(u) ∩N(v)| − 1 = |N(u) ∪N(v)| − 1.

Theorem B. If G is a connected graph of order n ≥ 3 with γr2(G) = 2, then sdγr2 (G) ≤ 2.

Theorem C. If G is a connected graph of order n ≥ 3 with γr2(G) = 3, then sdγr2 (G) ≤ 3.

Theorem D. Let G be a connected graph. If there is a path v3v2v1 in G with deg(v2) = 2 and deg(v1) = 1,
then G has a γr2(G)-function f such that | f (v1)| = 1, | f (v3)| ≥ 1 and f (v1) , f (v3).

Theorem E. For any connected graph G of order n ≥ 12,

sdγr2 (G) ≤ n − δ(G) + 1.

Theorem F. Let G be a connected graph of order n ≥ 3 with δ(G) = 1. If v is a support vertex, then
sdγr2 (G) ≤ deg(v).

2. A new bound in terms of order and maximum degree

Lemma 2.1. Let G be a connected graph of order n ≥ 3. If v ∈ V(G) is a support vertex and has a neighbor
u with N(u) \N[v] , ∅, then sdγr2 (G) ≤ 2 + |N(u) −N[v]|.

Proof. Assume N(v) = {u = v1, v2, . . . , vdeg(v)} where deg(v2) = 1, and N(u) \N[v] = {y1, y2, . . . , yk}. Let G1 be
the graph obtained from G by subdividing the edge vvi with a vertex xi for i = 1, 2, and the edge uy j with
a vertex z j for 1 ≤ i ≤ k. Let Z be the set of the k + 2 subdivision vertices and let f be a γr2(G1)-function.
Without loss of generality, we may assume f (v2) = {1}, f (x2) = 0 and 2 ∈ f (v) by Theorem D. Consider two
cases.
Case 1. f (v) = {1, 2}.
Define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v2) = ∅, 1(u) = f (u) ∪ ∪z∈Z f (z) and 1(x) = f (x) for each x ∈ V(G) −
{v2,u}. Clearly, 1 is a 2RDF of G of weight less thanω( f ) = γr2(G1) and hence sdγr2 (G) ≤ k+2 = 2+|N(u)−N[v]|.
Case 2. f (v) = {2}.
To dominate x1, we must have f (x1) , ∅ or f (u) , ∅. Then the function 1 defined by 1(v) = {1, 2}, 1(v2) =
1(u) = ∅, 1(yi) = f (yi) ∪ f (zi) for 1 ≤ i ≤ k and 1(x) = f (x) otherwise, is a 2RDF of G of weight less than
ω( f ) = γr2(G1) and hence sdγr2 (G) ≤ k + 2 = 2 + |N(u) −N[v]|.

This completes the proof.
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Lemma 2.2. Let G be a connected graph of order n ≥ 3. If v ∈ V(G) is a support vertex, then

sdγr2 (G) ≤ 2 + d2(v).

Proof. Assume that N(v) = {v1, v2, . . . , vdeg(v)}where deg(v1) = 1. If v has a neighbor u such that N(u)\N[v] ,
∅, then it follows from Lemma 2.1 that sdγr2 (G) ≤ 2 + |N(u) − N[v]| ≤ 2 + d2(v). Let N(u) ⊆ N[v] for each
u ∈ N(v). If G is a star, then clearly sdγr2 (G) = 1. Thus we may assume that v2v3 ∈ E(G). Let G1 be obtained
from G by subdividing the edges vv1 and v2v3, with vertices x, y, respectively. Let f be a γr2(G1)-function.
By Theorem D, we may assume f (v1) = {1} and 2 ∈ f (v).

To dominate y, we must have | f (v2)|+| f (y)|+| f (v3)| ≥ 1. Define 1 : V(G)→ {∅, {1}, {2}, {1, 2}} by 1(v) = {1, 2}
and 1(x) = ∅ for each x ∈ V(G)− {v}. It is easy to see that 1 is a 2RDF of G of weight 2 and hence sdγr2 (G) ≤ 2.
This completes the proof.

Lemma 2.3. Let G be a connected graph of order n ≥ 3 and let G have a vertex v ∈ V(G) which is contained
in a triangle vuw such that N(u) ∪N(w) ⊆ N[v]. Then sdγr2 (G) ≤ 3.

Proof. Let G1 be obtained from G by subdividing the edges vu, vw,uw with vertices x, y, z, respectively.
Let f be a γr2(G1)-function. We claim that | f (v)| + | f (u)| + | f (w)| + | f (x)| + | f (y)| + | f (z)| ≥ 3. In the case,
the function 1 : V(G) → {∅, {1}, {2}, {1, 2}} defined by 1(v) = {1, 2}, 1(u) = 1(w) = ∅ and 1(l) = f (l) for each
l ∈ V(G)− {v,u,w}, is a 2RDF of G of weight less than γr2(G1), as desired. If f (v) = {1, 2}, then to dominate z,
we must have | f (z)| + | f (u)| + | f (w)| ≥ 1. If | f (v)| = 1, then to dominate x, y, we must have | f (x)| + | f (u)| ≥ 1
and | f (y)| + | f (w)| ≥ 1, respectively, and we are done. Let f (v) = ∅. If f (x) = ∅ (the case f (y) = ∅ is similar)
then we must have f (u) = {1, 2} and | f (y)| + | f (w)| ≥ 1, as desired. Let | f (x)| ≥ 1 and | f (y)| ≥ 1. To dominate
z, we must have | f (u)| + | f (z)| + | f (w)| ≥ 1 and the proof is complete.

Lemma 2.4. Let G be a connected graph of order n ≥ 3 and let G have a vertex v ∈ V(G) which is contained
in a triangle vuw such that N(u) ⊆ N[v] and N(w) \N[v] , ∅. Then

sdγr2 (G) ≤ 3 + |N(w) \N[v]|.

Proof. Let N(w) \N[v] = {w1,w2, . . . ,wk} and let G1 be obtained from G by subdividing the edges vu, vw,uw
with vertices x, y, z, respectively, and for each 1 ≤ i ≤ k, the edge wwi with the vertex zi. Assume f is a
γr2(G1)-function. As in Lemma 2.3, | f (v)| + | f (u)| + | f (w)| + | f (x)| + | f (y)| + | f (z)| ≥ 3. Define 1 : V(G) →
{∅, {1}, {2}, {1, 2}} by 1(v) = {1, 2}, 1(u) = 1(w) = ∅, 1(wi) = f (wi) ∪ f (zi) for 1 ≤ i ≤ k and 1(l) = f (l) for each
l ∈ V(G) − {v,u,w,w1,w2, . . . ,wk}. It is easy to see that 1 is a 2RDF of G of weight less than γr2(G1) and the
proof is complete.

Lemma 2.5. Let G be a connected graph of order n ≥ 3 and v a vertex of degree at least 2 of G such that
(i) N(y) \N[v] , ∅ for each y ∈ N(v),
(ii) there exists a pair α, β of vertices in N(v) such that (N(α) ∩N(β)) \N[v] = ∅.
Then sdγr2 (G) ≤ 3 + |N2(v)|.

Proof. Let N(v) = {v1, v2, . . . , vdeg(v)} and v1, v2 be any pair of adjacent vertices of N(v) satisfying (ii) if
such a pair exists. If not, then each pair of vertices of N(v) satisfying (ii) is independent. Assume that
S = {v1, v2, . . . , vk} is a largest subset of N(v) containing v1, v2 and such that every pair vi, v j, 1 ≤ i , j ≤ k, of
vertices satisfies (ii), and let K = (∪k

i=1N(vi)) \N[v]. Let N(vi) \N[v] = {vi1, vi2, . . . , vi`i } for 1 ≤ i ≤ k. Let G1 be
obtained from G by subdividing the edges vv1 and vv2 with respectively x1 and x2, and for each 1 ≤ i ≤ k,
the edge vivi j, 1 ≤ j ≤ `i, with vi j. We put Ti = {vi j

| 1 ≤ j ≤ `i} and T = ∪k
i=1Ti. If v1 and v2 are adjacent, we

also subdivide the edge v1v2 with a vertex u. Let f be a γr2(G1)-function. If v1v2 ∈ E(G), then as in the proof
of Lemma 2.4 we have | f (v)|+ | f (v1)|+ | f (v2)|+ | f (x1)|+ | f (x2)|+ | f (u)| ≥ 3. Define 1 : V(G)→ {∅, {1}, {2}, {1, 2}}
by 1(v) = {1, 2}, 1(v1) = 1(v2) = ∅, 1(vi j) = f (vi j) ∪ f (vi j) for each 1 ≤ i ≤ k and each 1 ≤ j ≤ `i and 1(x) = f (x)
otherwise. It is easy to see that 1 is a 2RDF of G of weight less than γr2(G1). Let v1v2 < E(G). By the choice
of v1, v2, we deduce that S is an independent set.
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To dominate x1, x2, we must have | f (v)| + | f (x1)| + | f (x2)| + | f (v1)| + | f (v2)| ≥ 2. If | f (v)| + | f (x1)| + | f (x2)| +∑k
i=1 | f (vi)| ≥ 3, then the function 1 : V(G)→ {∅, {1}, {2}, {1, 2}} defined by 1(v) = {1, 2}, 1(vi) = ∅ for 1 ≤ i ≤ k,
1(vi j) = f (vi j) ∪ f (vi j) for each 1 ≤ i ≤ k and each 1 ≤ j ≤ `i and 1(x) = f (x) otherwise, is a 2RDF of
G of weight less than γr2(G1). Thus we may assume that | f (v)| + | f (x1)| + | f (x2)| +

∑k
i=1 | f (vi)| = 2. If

| f (v)| = 1, then to dominate x1, x2 we must have | f (x1)| + | f (v1)| ≥ 1 and | f (x2)| + | f (v2)| ≥ 1 implying that
| f (v)| + | f (x1)| + | f (x2)| +

∑k
i=1 | f (vi)| ≥ 3, a contradiction. Hence f (v) = ∅ or f (v) = {1, 2}. We consider two

cases.

Case 1. Assume that f (v) = {1, 2}.
Thus | f (x1)| + | f (x2)| +

∑k
i=1 | f (vi)| = 0. If

∑`i
j=1 | f (vi j)| ≥ 3 for some 1 ≤ i ≤ k, say i = 1, then the function

1 : V(G) → {∅, {1}, {2}, {1, 2}} defined by 1(v1) = {1, 2}, 1(vi j) = f (vi j) ∪ f (vi j) for each 2 ≤ i ≤ k and each
1 ≤ j ≤ `i and 1(x) = f (x) otherwise, is a 2RDF of G of weight less than γr2(G1). Suppose that

∑`i
j=1 | f (vi j)| ≤ 2

for each i. If f (vi j) = {1, 2} for some 1 ≤ i ≤ k and some 1 ≤ j ≤ `i, say i = j = 1, then define 1 by
1(v11) = {1}, 1(vi j) = f (vi j) ∪ f (vi j) when i j , 11 and 1(x) = f (x) otherwise. Clearly 1 is a 2RDF of G of
weight less than γr2(G1). Thus we may assume | f (vi j)| ≤ 1 for each i and each j. Note that f (vi j) = {1, 2}
when f (vi j) = ∅. Define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v) = {1}, 1(vi j) = {2} ∪ f (vi j) when | f (vi j)| = 1 and
1(x) = f (x) otherwise. It is easy to see that 1 is a 2RDF of G of weight less than γr2(G1).

Case 2. Assume that f (v) = ∅.
Since | f (v)|+ | f (x1)|+ | f (x2)|+

∑k
i=1 | f (vi)| = 2, we deduce that that | f (x1)| = | f (x2)| = 1. Then f (vi) = ∅ for each

i ∈ {1, 2, . . . , k}. If f (x1) = f (x2), then the function 1 : V(G)→ {∅, {1}, {2}, {1, 2}} defined by 1(v) = f (x1), 1(vi j) =

f (vi j)∪ f (vi j) for each 2 ≤ i ≤ deg(v) and each 1 ≤ j ≤ i`i and 1(x) = f (x) otherwise, is a 2RDF of G of weight
less than γr2(G1). Let f (x1) , f (x2). As in Case 1, we may assume that | f (vi j)| ≤ 1 for each i and each j. Then
the function 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v) = {1}, 1(vi j) = {2} ∪ f (vi j) when | f (vi j)| = 1 and 1(x) = f (x)
otherwise is a 2RDF of G of weight less than γr2(G1).

In all cases we defined a 2RDF of G of weight less than γr2(G1). Since G1 was obtained by inserting at
most 3 + |T| ≤ 3 + |N2(v)| vertices, sdγr2 (G) ≤ 3 + |N2(v)|.

Lemma 2.6. Let G be a connected graph of order n ≥ 3 and v a vertex of degree at least 2 of G such that
(i) N(y) \N[v] , ∅ for each y ∈ N(v),
(ii) for every pair of vertices α, β in N(v), (N(α) ∩N(β)) \N[v] , ∅.

Then sdγr2 (G) ≤ 3 + |N2(v)|.

Proof. Let N(v) = {v1, v2, . . . , vk} and M = N(v1) \ N[v] = {w1,w2, . . . ,wp}. By the hypothesis, each y ∈
N(v) \ {v1} has a neighbor in M. Let T be a largest subset of N(v) \ {v1} such that for each subset T1 ⊆ T ,
|N(T1)\(N[v]∪M)| ≥ |T1|. By the definition of T , |N2(v)| ≥ |M|+|T| and for every vertex u ∈ U = N(v)\(T∪{v1}),
N(u) \N[v] ⊆M ∪N(T). Moreover, M dominates N(v) by (ii). If |U| ≤ 1, then by Theorem A we have

sdγr2 (G) ≤ |N(v) ∪N(v1)| − 1
= |T| + |U| + 1 + |M| + 1 − 1
≤ |U| + 1 + |N2(v)|
≤ |N2(v)| + 2,

as desired. Let |U| ≥ 2. Suppose that T = ∅ or, without loss of generality, T = {v2, v3, . . . , vs}. Let G1 be
obtained from G by subdividing the |M| + |T| + 3 edges v1w j with vertex yi for 1 ≤ j ≤ p and vvi with vertex
xi for 1 ≤ i ≤ s + 2 (1 ≤ i ≤ 3 when T = ∅). Let f be a γr2(G1)-function. If | f (v)| + | f (v1)| +

∑s+2
i=1 | f (xi)| ≥ 3,

then define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v) = {1, 2}, 1(w j) = f (w j) ∪ f (y j) for 1 ≤ j ≤ p and 1(x) = f (x)
otherwise. It is easy to see that 1 is a 2RDF of G of weight less than γr2(G1). Assume that

| f (v)| + | f (v1)| +
s+2∑
i=1

| f (xi)| ≤ 2. (1)
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Consider three cases.
Case 1. Assume that f (v) = {1, 2}.
By (1), f (v1) = ∅. Hence, if f (y j) = ∅ for some j, then f (w j) = {1, 2}. Define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by
1(v) = {1}, 1(w j) = {2} ∪ f (w j) when | f (y j)| ≥ 1 and 1(x) = f (x) otherwise. Since each vi has a neighbor in
{w1,w2, , . . . ,wp}, we deduced that 1 is a 2RDF of G of weight less than γr2(G1).
Case 2. Assume that f (v) = ∅.
To dominate x1, we must have | f (x1)| + | f (v1)| ≥ 1. If | f (x1)| + | f (v1)| ≥ 2, then by (1), we have f (xs+1) =
f (xs+2) = ∅ and hence f (vs+1) = f (vs+2) = {1, 2}. Define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v) = 1(v1) =
{1, 2}, 1(vs+1) = 1(vs+2) = ∅, and 1(x) = f (x) otherwise. Since for every vertex u ∈ U = N(v) \ (T ∪ {v1}),
N(u) \N[v] ⊆M∪N(T), 1 is a 2RDF of G of weight less than γr2(G1). Let | f (x1)|+ | f (v1)| = 1. By (1), we may
assume that f (xs+1) = ∅ and so f (vs+1) = {1, 2}. To dominate xs+2, we must have | f (xs+2)|+ | f (vs+2)| ≥ 1. Define
1 : V(G)→ {∅, {1}, {2}, {1, 2}} by 1(v) = {1, 2}, 1(v1) = f (v1)∪ f (x1), 1(vs+1) = 1(vs+2) = ∅, 1(w j) = f (w j)∪ f (y j) for
1 ≤ j ≤ p, and 1(x) = f (x) otherwise. Since for every vertex u ∈ U = N(v) \ (T∪ {v1}), N(u) \N[v] ⊆M∪N(T),
1 is a 2RDF of G of weight less than γr2(G1).
Case 3. Assume that | f (v)| = 1.
To dominate x1, we must have | f (x1)| + f (v1)| ≥ 1. It follows from (1) that f (xs+1) = f (xs+2) = ∅ and hence
f (vs+1) = f (vs+2) = {1, 2}. Define 1 : V(G) → {∅, {1}, {2}, {1, 2}} by 1(v) = {1, 2}, 1(v1) = f (v1) ∪ f (x1), 1(vs+1) =
1(vs+2) = ∅, 1(w j) = f (w j) ∪ f (y j) for 1 ≤ j ≤ p, and 1(x) = f (x) otherwise. Clearly, 1 is a 2RDF of G of weight
less than γr2(G1) and the proof is complete.

Theorem 2.7. Let G be a connected graph of order n ≥ 3. Then

sdγr2 (G) ≤ 3 + min{d2(v) | v ∈ V and d(v) ≥ 2}.

Proof. If G is a star K1,n−1 then sdγr2 (G) = 1. Otherwise, let v be a vertex of degree at least 2 of G such that
d2(v) is minimum. The result is a consequence of Lemmas 2.1 and 2.2 if v is a support vertex, of Lemmas
2.3 and 2.4 if some neighbor u of v different from a leaf satisfies N(u) ⊆ N[v], and of Lemmas 2.5 and 2.6 if
N(y) \N[v] , ∅ for every y ∈ N(v).

Corollary 2.8. Let G be a connected graph of minimum degree at least 2. Then sdγr2 (G) ≤ δ2(G) + 3.

For a vertex v of degree ∆, |N2(v)| ≤ n − ∆ − 1. Therefore the following improvement of the bound in
Theorem E is an immediate corollary of Theorem 2.7 for non-regular graphs.

Corollary 2.9. Let G be a connected graph of order n ≥ 3. Then sdγr2 (G) ≤ n − ∆ + 2.

3. An upper bound in terms of rainbow domination number

In this section we present an upper bound on sdγr2 (G) in terms of the rainbow domination number of G.

Lemma 3.1. Let G be a connected graph of order n ≥ 3 with δ(G) ≥ 2 and let G have a vertex v ∈ V(G)
which has a neighbor u such that N(u) ⊆ N[v]. Then subdividing the edges at v strictly increase the rainbow
domination number.

Proof. Let N(v) = {v1, v2 . . . , vk}where u = vk and let G′ be the graph obtained from G by subdividing the edge
vvi with subdivision vertex xi for i = 1, 2, . . . , k. Assume that f is a γr2(G′)-function. If | f (v)|+

∑k
i=1 | f (xi)| ≥ 3,

then the function 1 : V → P({1, 2}) defined by 1(v) = {1, 2} and 1(z) = f (z) for z ∈ V \ {v}, is a 2RDF of G of
weight less than γr2(G′). Let

| f (v)| +
k∑

i=1

| f (xi)| ≤ 2. (2)

We consider three cases.
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Case 1. Assume that f (v) = {1, 2}.
Then f (xi) = ∅ for each i, by (2). Define 1 : V(G)→ P({1, 2}) by 1(v) = {1} and 1(z) = f (z) for each z ∈ V \ {v}.
It is easy to see that 1 is a 2RDF of G of weight less than γr2(G′).
Case 2. Assume that | f (v)| = 1.
We may assume, without loss of generality, that f (v) = {1}. If f (xi) , ∅ for exactly one i = i0, then the
function 1 : V → P({1, 2}) by 1(v) = f (xi0 ) and 1(z) = f (z) for each z ∈ V \ {v} is a 2RDF of G of weight less
than γr2(G′). Let f (xi) = ∅ for each i. It follows that 2 ∈ f (vi) for each i. Since δ(G) ≥ 2 and N(u) ⊆ N[v], the
function 1 : V → P({1, 2}) by 1(u) = ∅ and 1(z) = f (z) for each z ∈ V \ {u} is a 2RDF of G of weight less than
γr2(G′).
Case 3. Assume that f (v) = ∅.
Then

⋃k
i=1 f (xi) = {1, 2}. If f (xi) = {1, 2} for some i, then the function 1 : V(G)→ P({1, 2}) by 1(vi) = f (vi)∪ {1}

and 1(z) = f (z) for each z ∈ V \ {vi} is a 2RDF of G of weight less than γr2(G′). Let f (xi) = {1}, f (x j) = {2} for
some i , j. If f (vi) , ∅ (the case f (v j) , ∅ is similar), then the function 1 : V(G) → P({1, 2}) by 1(v) = f (x j)
and 1(z) = f (z) for each z ∈ V \ {v} is a 2RDF of G of weight less than γr2(G′). Thus we may assume that
f (vi) = ∅ and f (v j) = ∅.

If k < {i, j}, then f (xk) = ∅ and we must have f (u) = {1, 2}. It is easy to see that the function 1 : V(G) →
P({1, 2}) defined by 1(v) = {1, 2}, 1(u) = ∅ and 1(z) = f (z) for each z ∈ V \ {u, v} is a 2RDF of G of weight
less than γr2(G′). Let k ∈ {i, j}. Assume, without loss of generality, that i = k. To dominate u, u must have
a neighbor vs ∈ N(v) for which 2 ∈ f (vs) since f (u) = ∅. It follows that s , j because f (v j) = ∅. Since
f (v) = f (xs) = ∅, to dominate xs we must have f (vs) = {1, 2}. Then the function 1 : V(G) → P({1, 2}) by
1(v) = {2} and 1(z) = f (z) for each z ∈ V \ {v} is a 2RDF of G of weight less than γr2(G′). This completes the
proof.

Theorem F and Lemma 3.1 imply the next result immediately.

Corollary 3.2. Let G be a connected graph of order n ≥ 3. If G contains two adjacent vertices u and v such
that N(u) ⊆ N[v], then

sdγr2 (G) ≤ d(v) ≤ ∆.

Theorem 3.3. Let G be a connected graph of order n ≥ 3 with δ(G) ≥ 2. If for each vertex v ∈ V(G),
subdividing the edges at v don’t increase the rainbow domination number, then

sdγr2 (G) ≤ γr2(G).

Proof. If γr2(G) = 2, 3, then the result follows by Theorems B and C. Assume now that γr2(G) ≥ 4. Let
u be a vertex of degree δ and let uv ∈ E(G). Since subdividing the edges at u don’t increase the rainbow
domination number, it follows from Lemma 3.1 that N(v) * N[u]. Similarly, we have N(u) * N[v]. Let
N(v) = {v1, v2 . . . , vk} where u = vk and let N(u) − N[v] = {u1,u2, . . . ,us}. Dehgardi et al. [6] proved that
subdividing the edge vvi for i = 1, 2, . . . , k, and the edge uu j for j = 1, 2, . . . , s increase the rainbow domination
number (Theorem A). Let T be a maximal subset of {uu1,uu2, . . . ,uus} such that subdividing the edges in T
and the edge vvi for i = 1, 2, . . . , k, does not increases the rainbow domination number. Then

sdγr2 (G) ≤ k + |T| + 1. (3)

Since deg(u) ≤ deg(v), we observe that |T| ≤ k − 2 and hence

sdγr2 (G) ≤ 2k − 1. (4)

Without loss of generality, assume that T = {uu1,uu2, . . . ,uur}when T , ∅. Let G′ be the graph obtained from
G by subdividing the edge uui with subdivision vertex xi for i = 1, 2, . . . , r, and the edge vv j with subdivision
vertex y j for j = 1, 2, . . . , k. Let f be a γr2(G′)-function. Then ω( f ) = γr2(G′) = γr2(G). If f (v) = {1, 2}, then the
function 1 : V(G)→ P({1, 2}) defined by 1(v) = {1}, 1(v j) = f (v j)∪ f (y j) for each 1 ≤ j ≤ k, 1(ui) = f (ui)∪ f (xi)
for each 1 ≤ j ≤ r, and 1(z) = f (z) for each z ∈ V \ {v, v1, . . . , vk,u1, . . . ,ur} is a 2RDF of G of weight less than
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γr2(G′), a contradiction. Thus | f (v)| ≤ 1. If | f (v)| +
∑k

j=1 | f (y j)| ≥ 3, then the function 1 : V(G) → P({1, 2})
defined by 1(v) = {1, 2}, 1(ui) = f (ui) ∪ f (xi) for each 1 ≤ j ≤ r, and 1(z) = f (z) for each z ∈ V \ {v,u1, . . . ,ur}

is a 2RDF of G of weight less than γr2(G′), a contradiction. Thus we may assume

| f (v)| +
k∑

j=1

| f (y j)| ≤ 2. (5)

We consider two cases.
Case 1. Assume that | f (v)| = 1.
Assume, without loss of generality, that f (v) = {1}. If | f (v)| +

∑k
j=1 | f (y j)| = 2, then | f (yi)| = 1 for exactly one

i = i0. Then the function 1 : V(G) → P({1, 2}) by 1(v) = f (yi0 ), 1(u j) = f (u j) ∪ f (x j) for each 1 ≤ j ≤ r, and
1(z) = f (z) for each z ∈ V \ {v,u1, . . . ,ur} is a 2RDF of G of weight less than γr2(G′) which is a contradiction.
Thus we may assume that f (y j) = ∅ for each 1 ≤ j ≤ k. This implies that 2 ∈ f (v j) for each j. If 1 ∈ ∪k

j=1 f (v j),
then the function 1 : V(G) → P({1, 2}) by 1(v) = ∅, 1(ui) = f (ui) ∪ f (xi) for each 1 ≤ j ≤ r, and 1(z) = f (z)
for each z ∈ V \ {v,u1, . . . ,ur} is a 2RDF of G of weight less than γr2(G′) which is a contradiction. Thus
f (v j) = {2} for each j. If

∑r
i=1 | f (xi)| ≥ 1, then the function 1 : V(G) → P({1, 2}) by 1(v) = ∅, 1(u) = {1, 2}, and

1(z) = f (z) for each z ∈ V \ {v,u} is a 2RDF of G of weight less than γr2(G′) which is a contradiction. Hence
f (xi) = ∅ for each i which implies that 1 ∈ f (ui) for 1 ≤ i ≤ r. Thus ω( f ) ≥ k + 1 + r. It follows from (3) that
sdγr2 (G) ≤ γr2(G).
Case 2. Assume that f (v) = ∅.
Then ∪k

j=1 f (y j) = {1, 2}. It follows from (5) that
∑k

j=1 | f (y j)| = 2. First let f (y j) = {1, 2} for some j, say j = 1.
Then by (5) we have f (y j) = ∅ and hence f (v j) = {1, 2} for 2 ≤ j ≤ k. Then γr2(G) = ω( f ) ≥ 2k > sdγr2 (G) by
(4).

Now let | f (y j1 )| = | f (y j2 )| = 1. Then f (y j) = ∅ and so f (v j) = {1, 2} for each j ∈ {1, 2, . . . , k} − { j1, j2}. If
f (v j1 ) , ∅ (the case f (v j2 ) , ∅ is similar) or if N(v j1 )∩(N(v)−{v j1 , v j2 }) , ∅ (the case N(v j2 )∩(N(v)−{v j1 , v j2 }) , ∅
is similar), then the function 1 : V → P({1, 2}) by 1(v) = f (v j2 ), 1(ui) = f (ui)∪ f (xi) for 1 ≤ i ≤ r, and 1(z) = f (z)
for each z ∈ V \ {v1,u1, . . . ,ur} is a 2RDF of G of weight less than γr2(G′) which is a contradiction. Suppose
that f (v j1 ) = f (v j2 ) = ∅, N(v j1 ) ∩ (N(v) − {v j1 , v j2 }) = ∅ and N(v j2 ) ∩ (N(v) − {v j1 , v j2 }) = ∅. To dominate v j1 , v j1
must have a neighbor w for which {1, 2} \ f (y j1 ) ⊆ f (w). This implies that

γr2(G) = ω( f ) ≥ | f (y j1 )| + | f (y j2 )| +
k∑

j=1

| f (v j)| + | f (w)| ≥ 3 + 2(k − 2) = 2k − 1

and hence sdγr2 (G) ≤ γr2(G) by (4).
This complete the proof.

Theorem F and Theorem 3.3 lead to the following general result.

Corollary 3.4. If G is a connected graph of order n ≥ 3, then

sdγr2 (G) ≤ max{γr2(G),∆(G)}.

To conclude the paper, let us mention the following conjecture which was established in some classes
of graphs.

Conjecture 3.5. For any connected graph G of order n ≥ 3, sdγr2 (G) ≤ γr2(G).

Since γr2(G) ≤ n − ∆(G) + 1 if G is connected of order at least 3, this conjecture, if true, would imply
sdγr2 (G) ≤ n − ∆(G) + 1 improving Corollary 2.9. Thus we post the following problem.
Problem 3.6. Is it true that for any connected graph G of order n ≥ 3,

sdγr2 (G) ≤ n − ∆ + 1.
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