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Quasi-Special Osserman Manifolds
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Abstract. In this paper we deal with a pseudo-Riemannian Osserman curvature tensor whose reduced
Jacobi operator is diagonalizable with exactly two distinct eigenvalues. The main result gives new insight
into the theory of the duality principle for pseudo-Riemannian Osserman manifolds. We concern with
special Osserman curvature tensor and propose new ways to exclude some additional duality principle
conditions from its definition.

1. Introduction

Let us start with the basic notation and terminology used throughout this work. Let R be an algebraic
curvature tensor on a vector space V equipped with an indefinite metric 1 of the signature (ν,n − ν). The
sign εX = 1(X,X) denotes the norm of X ∈ V, and it determines various types of vectors. We say that
X ∈ V is timelike (if εX < 0), spacelike (εX > 0), null (εX = 0), nonnull (εX , 0), or unit (εX ∈ {−1, 1}). The
curvature operator R is linked with R by equation R(X,Y,Z,W) = 1(R(X,Y)Z,W). For the initial definitions
and deeper explanations of this topic, the reader can consult Gilkey’s book [11].

We need some natural operators associated with the curvature tensor. The polarized Jacobi operator
J(X,Y) :V →V is given by

J(X,Y)(Z) =
1
2

(R(Z,X)Y + R(Z,Y)X) ,

for all X,Y,Z ∈ V. Specifically, the Jacobi operator JX : V → V is defined by JX = J(X,X), which means
that JX(Z) = R(Z,X)(X) holds for all Z ∈ V. In the case of nonnull X ∈ V, JX preserves nondegenerate
hyperspace {X}⊥ = {Y ∈ V : X ⊥ Y}, and we have the reduced Jacobi operator J̃X : {X}⊥ → {X}⊥, given by
J̃X = JX|{X}⊥ .

We say that R is an Osserman curvature tensor if the characteristic polynomial of JX is constant on
both pseudo-spheres, in particular on the positive (εX = 1) and the negative (εX = −1) one. In a pseudo-
Riemannian setting, Jordan normal form plays a crucial role, since characteristic polynomial does not
determine the eigen-structure of a symmetric linear operator. We say that R is a Jordan Osserman curvature
tensor if the Jordan normal form of JX is constant on both pseudo-spheres.

In this text we study the Osserman curvature tensor R, whose Jacobi operator JX is diagonalizable for
all nonnull X, and we call such R - diagonalizable Osserman. Diagonalizability is a natural Riemannian-like
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condition, moreover, it is known that every Jordan Osserman curvature tensor of non-balanced signature
(n , 2ν) is necessarily diagonalizable [12].

In the Riemannian setting (ν = 0), it is known that a local two-point homogeneous space (flat or locally
rank one symmetric space) has a constant characteristic polynomial on the unit sphere bundle. Osserman
wondered if the converse held [16], and this question has been called the Osserman conjecture by subsequent
authors. During the solution of some particular cases of the conjecture, the implication

JX(Y) = λY⇒ JY(X) = λX (1)

appeared naturally, and if it holds, it can significantly simplify some calculations. The first results on this
topic were published by Chi [8], who proved the conjecture in the cases of dimensions n , 4k, k > 1. In
his paper he used the statement that (1) holds, if λ is an extremal (minimum or maximum) eigenvalue of
the Jacobi operator. Rakić hoped that correctness of (1) could offer deeper understanding of the Osserman
conjecture. He formulated the duality principle for Osserman manifolds and proved it in the Riemannian
setting [17]. After that, the duality principle has been reproved by Gilkey [10], and it has become a beneficial
tool for the conjecture solution. Moreover, the best results in this topic were achieved by Nikolayevsky
[13–15], who used the duality principle [14] to prove the Osserman conjecture in all dimensions, except
some possibilities in dimension n = 16.

The variant of the Osserman conjecture has appeared in a pseudo-Riemannian setting. For example,
in the Lorentzian setting (ν = 1), an Osserman manifold necessarily has a constant sectional curvature [5].
The observation of Osserman manifolds in the signature (2, 2) become very popular, and it is worth noting
results from [5], which are based on the discussion of possible Jordan normal forms of the Jacobi operator.

This is why we have started investigating the duality principle for Osserman curvature tensor in a
pseudo-Riemannian setting. In a pseudo-Riemannian setting, the implication (1) looks inaccurate, and
therefore we corrected it in the following way [1, 2, 4].

Definition 1 (Duality principle). We say that the duality principle holds for curvature tensor R if for all mutually
orthogonal units X,Y ∈ V, and for all λ ∈ R holds

JX(Y) = εXλY⇒ JY(X) = εYλX.

The duality principle for Osserman curvature tensor works for every known example, however we
failed to prove it in general. In our previous work [1, 2, 4] we gave the affirmative answer only for the
conditions of small index (ν ≤ 1) or low dimension (n ≤ 4). In this text, we restrict our attention to small
numbers of eigenvalues of the reduced Jacobi operator.

The simplest case is the diagonalizable Osserman curvature tensor whose reduced Jacobi operator has a
single eigenvalue, and it has to be a real space form (constant sectional curvature) [9]. This is the reason why
we devote our attention to the first nontrivial case, the diagonalizable Osserman curvature tensor whose
reduced Jacobi operator has two distinct eigenvalues, and we call it a two-leaves Osserman (Definition 3).
The duality principle holds for n ≤ 4 [1–4], but every connected pointwise two-leaves Osserman manifold
is a globally Osserman for n > 4 [2, 9]. This is why we put the problem into a pure algebraic concept with
an algebraic Osserman curvature tensor instead of working with an Osserman manifold and associated
tangent bundles. The more precise introduction and motivation of our specific problem will be given at the
beginning of Section 4.

Our paper is organized as follows. Section 1 is devoted to the general introduction and motivation of
the topic. Section 2 presents some original preliminaries, mostly concerning null vectors. In Section 3 we
define two-leaves Osserman curvature tensor. We introduce valuable notations and give two important
lemmas. Section 4 gives additional specific introduction of a special Osserman curvature tensor. We define
a quasi-special Osserman curvature tensor, prove important lemmas, and try to exclude the specific special
Osserman condition. At the end, we prove that every almost-special Osserman curvature tensor is a special
Osserman.
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2. Preliminaries

This section contains some small original results which we need later in the text. The lemmas are
mostly related to null vectors, especially to totally isotropic spaces (Definition 2). The first lemma shows
an interesting general property of a Jacobi operator.

Lemma 1. For nonzero scalars α, β, γ, δ holds

JαX+βY =
αβ

γδ
JγX+δY +

α(αδ − βγ)
δ

JX +
β(βγ − αδ)

γ
JY.

Proof. This is a simple calculation by definition.

JαX+βY = R( · , αX + βY)(αX + βY) = α2
JX + β2

JY + 2αβJ(X,Y)

JγX+δY = R( · , γX + δY)(γX + δY) = γ2
JX + δ2

JY + 2γδJ(X,Y)

Let us equate 2J(X,Y) from the previous equations.

1
αβ

(
JαX+βY − α

2
JX − β

2
JY

)
=

1
γδ

(
JγX+δY − γ

2
JX − δ

2
JY

)
Thus

JαX+βY =
αβ

γδ
JγX+δY +

(
α2
−
αβγ

δ

)
JX +

(
β2
−
αβδ

γ

)
JY,

which proves the lemma.

Definition 2 (Totally isotropic space). A vector space is totally isotropic if it consists just of null vectors.

Lemma 2. Vectors from a totally isotropic space are mutually orthogonal.

Proof. Let X and Y belong to a totally isotropic spaceU. Then X+Y ∈ U gives 0 = εX+Y = εX+21(X,Y)+εY =
21(X,Y), and thus X ⊥ Y.

Lemma 3. If V is a vector space of the signature (p, q), then for every totally isotropic subspace U ≤ V holds
dimU ≤ min(p, q). Especially dimU ≤ 1

2 dimV.

Proof. We decompose V = V+
⊕ V

− as an orthogonal sum, where V+ is a maximal spacelike subspace
of dimension q and V− is the complementary maximal timelike subspace of dimension p. Without loss
of generality we can assume p ≤ q. Totally isotropic U ≤ V with dimU > p, gives linearly independent
vectors V1, . . . ,Vp,Vp+1 ∈ U. For all i ∈ {1, . . . , p + 1} we can decompose Vi = Pi + Qi, with Pi ∈ V

+ and
Qi ∈ V

−. The dimension of V− enables an existence of scalars α1, . . . , αp+1, which are not all zero, such
that

∑p+1
i=1 αiQi = 0. Thus

∑p+1
i=1 αiVi =

∑p+1
i=1 αiPi +

∑p+1
i=1 αiQi =

∑p+1
i=1 αiPi. The left side

∑p+1
i=1 αiVi ∈ U has

zero norm, while the right side
∑p+1

i=1 αiPi ∈ V
+ belongs to a definite subspace. Hence

∑p+1
i=1 αiVi = 0, and

therefore vectors Vi are not linearly independent. Especially dimU ≤ min(p, q) ≤ 1
2 (p + q) = 1

2 dimV.

Lemma 4. Every null N , 0 from a nondegenerate spaceV can be decomposed as N = S + T, where S,T ∈ V and
εS = −εT > 0.

Proof. N ∈ V = V+
⊕ V

−, so N = S + T with S ∈ V+ and T ∈ V−. V+
⊥ V

− gives S ⊥ T, and therefore
0 = εN = 1(S + T,S + T) = εS + εT. Since N , 0, we conclude S , 0 and εS , 0, which finally implies
εS = −εT > 0.
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A decomposition from Lemma 4 is not unique, even in the same plane Span{S,T}. If we set S1 =
θS + (1 − θ)T and T1 = (1 − θ)S + θT for some θ > 1

2 , then S1,T1 ∈ V with S1 + T1 = S + T = N and

1(S1,T1) = 1(θS + (1 − θ)T, (1 − θ)S + θT) = θ(1 − θ)(εS + εT) = 0.

Further we obtain εS1 = θ2εS + (1 − θ)2εT = (θ2
− (1 − θ)2)εS = (2θ − 1)εS > 0, while S1 ⊥ T1 gives

εS1 + εT1 = εS1+T1 = εN = 0 and εS1 = −εT1 > 0. Every θ > 1
2 makes a new decomposition, for example,

θ = 1+εS
2εS

> 1
2 gives a natural decomposition

N =
(
εS + 1

2εS
S +

εS − 1
2εS

T
)

+
(
εS − 1

2εS
S +

εS + 1
2εS

T
)
,

with εS1 = −εT1 = 1.
New constructions are possible in other planes. If dimV > 2, there exists nonnull W ∈ V, such that

W ⊥ Span{S,T}. We want to find α, β, γ, such that S1 = αS + βT + γW and T1 = (1 − α)S + (1 − β)T − γW,
which assure S1 + T1 = S + T = N. From the orthogonality S1 ⊥ T1 we have

0 = 1(S1,T1) = α(1 − α)εS + β(1 − β)εT − γ
2εW = ((α − α2) − (β − β2))εS − γ

2εW ,

and therefore

γ2εW = (α − β)(1 − α − β)εS. (2)

The last condition εS1 > 0 gives

0 < εS1 = α2εS + β2εT + γ2εW = (α2
− β2)εS + (α − β)(1 − α − β)εS = (α − β)εS,

which is true for α > β. In the case of spacelike W we choose α + β < 1, while in the case of timelike W
we choose α + β > 1, which according to the equation (2) with α > β determines the final conditions for
α and β. Finally, every α and β limited with the last two inequalities create a new decomposition, where

γ = ±

√
(α−β)(1−α−β)εS

εW
.

Lemma 5. LetU ≤ V be a nondegenerate subspace and X ∈ V be nonnull. Then every null 0 , N ∈ U orthogonal
to X can be decomposed as N = S + T, where S,T ∈ U and εS = −εT > 0, such that vectors X − S and X − T are not
both null.

Proof. We use Lemma 4 to set N = S + T, with S,T ∈ U and εS = −εT > 0. If X − S and X − T are both null,
then 0 = εX−S = εX − 21(X,S) + εS and 0 = εX−T = εX − 21(X,T) + εT. Thus

21(X,S) = εX + εS, 21(X,T) = εX − εS. (3)

Sum of the equations (3) is 21(X,S) + 21(X,T) = 2εX, and therefore 0 = 1(X,N) = εX , 0, which completes
the proof.

Lemma 6. LetU,W ≤V,U is nondegenerate, and let Ξ :U 7→W be a linear function such that Ξ(X) is null for
every nonnull X ∈ U. Then Ξ(U) is a totally isotropic space.

Proof. It is needed to show that Ξ(N) is null for every null N ∈ U. Lemma 4 decomposes N = S + T, with
S,T ∈ U and εS = −εT > 0, and therefore

εΞ(αS+βT) = εαΞ(S)+βΞ(T) = α2εΞ(S) + β2εΞ(T) + 2αβ1(Ξ(S),Ξ(T)). (4)

Nonnull vectors S and T belong to U, which implies εΞ(S) = 0 and εΞ(T) = 0. A simple calculation
ε2S+T = 4εS + εT = 3εS > 0 gives another nonnull 2S + T ∈ U, and therefore εΞ(2S+T) = 0. The equation (4),
for α = 2 and β = 1, gives 1(Ξ(S),Ξ(T)) = 0. Another look at the same equation, currently for α = 1 and
β = 1, brings εΞ(S+T) = 21(Ξ(S),Ξ(T)) = 0, and finally εΞ(N) = 0.
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3. Two-leaves Osserman algebraic curvature tensors

In this section we introduce a concept of the two-leaves Osserman curvature tensor. Here, we establish
the notation and the approach, which we use later in the text to solve some problems related to the duality
principle. It is worth noting that through this section we do not differ eigenvalues of the reduced Jacobi
operator, and therefore every statement has its adequate dual.

Definition 3 (Two-leaves Osserman). Let R be an Osserman curvature tensor on a vector spaceV of the signature
(ν,n − ν), such that reduced Jacobi operator J̃X is diagonalizable with exactly two distinct eigenvalues εXλ and εXµ
for every nonnull X ∈ V. Then we say that R is the two-leaves Osserman.

Diagonalizability and two eigenvalues (εXλ and εXµ) enable orthogonal decomposition of the vector
spaceV for every nonnull X.

V = Span{X} ⊕ Ker(J̃X − εXλId) ⊕ Ker(J̃X − εXµId)

Let us introduce the following short notation for some important subspaces and their dimensions, which
we use in the forthcoming text.

L(X) = Ker(J̃X − εXλId), dimL(X) = τ

M(X) = Ker(J̃X − εXµId), dimM(X) = σ

U(X) = Span{X} ⊕ L(X), dimU(X) = τ + 1 = n − σ

Since each eigenspace of a self-adjoint diagonalizable linear operator is nondegenerate, all mentioned
subspaces are nondegenerate. The previous decomposition can be written as

V = Span{X} ⊕ L(X) ⊕M(X) =U(X) ⊕M(X),

and arbitrary Y ∈ V can be decomposed as

Y = ξX + YL + YM,

where YL ∈ L(X) and YM ∈ M(X). The vectors X, YL, and YM are all mutually orthogonal, and we use the
opportunity to denote relevant projections with

ΠL(X,Y) = YL, ΠM(X,Y) = YM, ΠU(X,Y) = ξX + YL.

The following lemma gives some kind of the linear extension along the line forM spaces using three
points from that line. It is direct consequence of Lemma 1.

Lemma 7 (Three points lemma). Let R be a two-leaves Osserman curvature tensor. If for nonnull vectors X,
Y, and γX + δY (γ, δ , 0) holds Z ∈ M(X) ∩ M(Y) ∩ M(γX + δY), then for every nonnull αX + βY holds
Z ∈ M(αX + βY). If for nonnull vectors X, Y, and γX + δY (γ, δ , 0) holds Z ∈ L(X) ∩L(Y) ∩L(γX + δY), then
for every nonnull αX + βY holds Z ∈ L(αX + βY).

Proof. The lemma obviously holds for αβ = 0, while otherwise (α, β , 0) we apply Lemma 1.

JαX+βY(Z) =
αβ

γδ
JγX+δY(Z) +

α(αδ − βγ)
δ

JX(Z) +
β(βγ − αδ)

γ
JY(Z)

JαX+βY(Z) =
αβ

γδ
εγX+δYµZ +

α(αδ − βγ)
δ

εXµZ +
β(βγ − αδ)

γ
εYµZ

=

(
αβ

γδ

(
γ2εX + δ2εY + 2γδ1(X,Y)

)
+
α(αδ − βγ)

δ
εX +

β(βγ − αδ)
γ

εY

)
µZ
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JαX+βY(Z) =
(
α2εX + β2εY + 2αβ1(X,Y)

)
µZ

JαX+βY(Z) = εαX+βYµZ

The previous equation means Z ∈ M(αX + βY), which proves the first part of the lemma. The second part
of the lemma is dual, because of the symmetry between µ and λ.

Like the previous lemma, we can look for the linear extension along the line forM spaces using only
two points from that line. The next lemma gives possible situations in that case.

Lemma 8 (Two points lemma). Let R be a two-leaves Osserman curvature tensor, such that for nonnull A and B
holds Z ∈ M(A) ∩M(B). Then for every nonnull αA + βB holds Z ∈ M(αA + βB), or there exists N , 0 such that
for every nonnull αA + βB holds N ∈ L(αA + βB).

Proof. Let A, B, andαA+βB (α, β , 0) be nonnull, such that Z ∈ M(A) and Z ∈ M(B). Z ⊥ A and Z ⊥ B imply
Z ⊥ αA + βB, and thus Z can be decomposed as Z = Lαβ + Mαβ, where Lαβ = ΠL(αA + βB,Z) ∈ L(αA + βB)
and Mαβ = ΠM(αA + βB,Z) ∈ M(αA + βB). Let us start with calculations.

JαA+βB(Z) = JαA+βB(Lαβ) +JαA+βB(Mαβ)

R(Z, αA + βB)(αA + βB) = εαA+βBλLαβ + εαA+βBµMαβ

α2
JA(Z) + β2

JB(Z) + 2αβJ(A,B)(Z)
= εαA+βB(λ − µ)Lαβ + εαA+βBµ(Lαβ + Mαβ)

α2εAµZ + β2εBµZ + 2αβJ(A,B)(Z)

= εαA+βB(λ − µ)Lαβ +
(
α2εA + β2εB + 2αβ1(A,B)

)
µZ

2αβJ(A,B)(Z) = εαA+βB(λ − µ)Lαβ + 2αβ1(A,B)µZ

1
αβ
εαA+βB(λ − µ)Lαβ = 2J(A,B)(Z) − 21(A,B)µZ

The right hand side of the last equation, N = 2J(A,B)(Z) − 21(A,B)µZ, does not depend of the choice of
α, β. Thus

1
αβ
εαA+βB(λ − µ)Lαβ = N. (5)

Let us suppose that there exist α, β , 0, such that Lαβ = 0. This implies Z = Mαβ and Z ∈ M(αA + βB).
We reach all conditions from Lemma 7, and therefore Z ∈ M(αA + βB) for all nonnull αA + βB. Otherwise,
Lαβ , 0 for all α, β , 0. Due to the equation (5) and the fact that 1

αβεαA+βB(λ − µ) , 0, vectors Lαβ and N are
collinear with 0 , N ∈ L(αA + βB). Finally, Lemma 7 enables appending α = 0 and β = 0, which completes
the proof.

4. Quasi-special Osserman algebraic curvature tensors

Many known examples of the two-leaves Osserman curvature tensor have something in common, which
motivate us to introduce some additional conditions.

Definition 4 (Quasi-special Osserman). We say that R is a quasi-special Osserman if it is the two-leaves Osser-
man and for all nonnull X,Y ∈ V holds

Y ∈ U(X)⇒U(X) =U(Y). (6)
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Definition 5 (Special Osserman). We say that R is special Osserman if it is quasi-special Osserman and for all
nonnull X,Z ∈ V holds

Z ∈ M(X)⇒ X ∈ M(Z). (7)

Garcı́a-Rı́o and Vázquez-Lorenzo proposed the concept of special Osserman manifolds [7, 9]. The
original definition in our terminology can be recognized as Definition 5, which means two-leaves Osserman
with additional conditions (6) and (7). They managed to give the complete classification of special Osserman
manifolds [7, 9]. Let us recall this results.

Theorem 1 (Garcı́a-Rı́o, Vázquez-Lorenzo). The complete and simply connected special Osserman manifold is
isometric to one of the following:
1) an indefinite complex space form of signature (2k, 2r), k, r ≥ 0,
2) an indefinite quaternionic space form of signature (4k, 4r), k, r ≥ 0,
3) a paracomplex space form of signature (k, k)
4) a paraquaternionic space form of signature (2k, 2k), or
5) a Cayley plane over the octaves with definite or indefinite metric tensor, or a Cayley plane over the anti-octaves
with indefinite metric tensor of signature (8, 8).

At the first sight it seems that we have too many conditions in the definition of a special Osserman
curvature tensor. However, this work is the first serious attempt to exclude the condition (7). If we look
closely, we can link that condition with the duality principle. In fact, the additional condition which made
quasi-special Osserman to be special Osserman, is the duality principle for the value µ. Let us note that
eigenspaces L(X) andM(X) play different roles now, and the duality principle for the value λ is already
included in the condition (6). The aim of our work is to examine if quasi-special Osserman curvature tensors
are necessarily special Osserman. Can we prove that strong quasi-special Osserman condition implies the
duality principle? Unfortunately, this article does not give the final answer to this question, but it contains
good grounds for the future investigations.

Let us remark that special Osserman curvature tensors are not the only examples of two-leaves Osser-
man. For example, let V be a vector space furnished with a metric 1 and a quaternionic structure, where
{J1, J2, J3 = J1 J2} is a canonical basis of that quaternionic structure. Let us define a curvature operator by
R = RJ1 + RJ2 , where

R
J(X,Y)Z = 1(JX,Z)JY − 1(JY,Z)JX + 21(JX,Y)JZ

presents one of the first examples of an Osserman curvature operator. The associated curvature tensor
of such defined R is diagonalizable Osserman, whose reduced Jacobi operator has exactly two distinct
eigenvalues: λ = −3 (with multiplicity τ = 2) and µ = 0. Therefore it is a two-leaves Osserman curvature
tensor. However, since for every unit X holds

U(X) = Span{X, J1X, J2X} , Span{X, J1X, J3X} =U(J1X),

it is not quasi-special Osserman.
The following lemma has a profound effect on our theory of quasi-special Osserman curvature tensors.

Lemma 9 (Weak duality lemma). Let R be a quasi-special Osserman curvature tensor and let A,B ∈ V be nonnull.
Then

εΠL(B,A)

εA
=
εΠL(A,B)

εB
,
εΠM(B,A)

εA
=
εΠM(A,B)

εB
,
εΠU (B,A)

εA
=
εΠU (A,B)

εB
.

Proof. Let A = ξ1B + AL + AM and B = ξ2A + BL + BM be decompositions with AL = ΠL(B,A) ∈ L(B),
AM = ΠM(B,A) ∈ M(B), BL = ΠL(A,B) ∈ L(A), and BM = ΠM(A,B) ∈ M(A). Our statement is the
consequence of the symmetric property of a Jacobi operator.

1(JA(B),B) = R(B,A,A,B) = R(A,B,B,A) = 1(JB(A),A)
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1(JA(ξ2A) +JA(BL) +JA(BM),B) = 1(JB(ξ1B) +JB(AL) +JB(AM),A)

1(εAλBL + εAµBM, ξ2A + BL + BM) = 1(εBλAL + εBµAM, ξ1B + AL + AM)

1(εAλBL,BL) + 1(εAµBM,BM) = 1(εBλAL,AL) + 1(εBµAM,AM)

εAεBLλ + εAεBMµ = εBεALλ + εBεAMµ

(εAεBL − εBεAL )λ = (εBεAM − εAεBM )µ (8)

The initial decompositions for A and B provide the following scalar products: εA = ξ2
1εB + εAL + εAM , εB =

ξ2
2εA + εBL + εBM , 1(A,B) = ξ1εB, and 1(B,A) = ξ2εA. Hence εAεB = ξ2

1ε
2
B + εBεAL + εBεAM and εBεA =

ξ2
2ε

2
A + εAεBL + εAεBM . Because of ξ2

1ε
2
B = (1(A,B))2 = ξ2

2ε
2
A, the previous equations give

εBεAL + εBεAM = εAεB − (1(A,B))2 = εAεBL + εAεBM ,

and therefore

εAεBL − εBεAL = εBεAM − εAεBM . (9)

Finally, using the fact λ , µ, equations (8) and (9) imply

εAεBL − εBεAL = 0 = εBεAM − εAεBM .

Thus
εAL

εA
=
εBL

εB
and

εAM

εA
=
εBM

εB
, which are equations

εΠL(B,A)

εA
=
εΠL(A,B)

εB
and

εΠM(B,A)

εA
=
εΠM(A,B)

εB
. At the end

εΠU (B,A)

εA
=
εA − εΠM(B,A)

εA
=
εB − εΠM(A,B)

εB
=
εΠU (A,B)

εB
,

which completes the proof.
Lemma 9 has important consequences, especially in special cases. In the case of B ∈ L(A), holds

ΠM(A,B) = 0, and therefore εΠM(B,A) = εAM = 0. In the case of B ∈ M(A), holds ΠL(A,B) = 0, and therefore
εΠL(B,A) = εAL = 0. The duality principle for B ∈ L(A) gives AM = 0, instead of εAM = 0, which justifies the
name ”Weak duality lemma”.

One of the key questions is a possible existence of a nontrivial intersection ofU(A) andU(B). The next
lemma gives some useful limits in that direction.

Lemma 10. Let R be a quasi-special Osserman curvature tensor, such thatU(A)∩U(B) , 0 holds for some nonnull
A,B ∈ V. Then εΠM(B,A) = 0.

Proof. The lemma condition enables existence of N with 0 , N ∈ U(A) ∩ U(B). N is null, otherwise
A ∈ U(A) = U(N) = U(B), and ΠM(B,A) = 0. Lemma 4 decomposes N ∈ U(B) with N = S + T, where
S,T ∈ U(B) and εS = −εT > 0. Let us apply Lemma 9 twice, firstly on the pair S,A and then on the pair T,A.

εΠM(A,S)

εS
=
εΠM(S,A)

εA
,
εΠM(A,T)

εT
=
εΠM(T,A)

εA
.

S,T ∈ U(B) givesU(S) = U(B) = U(T), and thereforeM(S) =M(B) =M(T) = U(B)⊥. Hence ΠM(S,A) =
ΠM(B,A) = ΠM(T,A), which implies

εΠM(A,S)

εS
=
εΠM(B,A)

εA
=
εΠM(A,T)

εT
.

S = ΠU(A,S) + ΠM(A,S), so T = N − S = (N − ΠU(A,S)) + (−ΠM(A,S)), where N − ΠU(A,S) ∈ U(A)
and −ΠM(A,S) ∈ M(A). This is why ΠM(A,T) = −ΠM(A,S), and since the sign does not effect the norm,
εΠM(A,T) = εΠM(A,S). Thus arise

εΠM(A,S)

εS
=
εΠM(A,S)

εT
,
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therefore εS = −εT implies εΠM(A,S) = 0, and finally εΠM(B,A) = 0 holds.
We proved important lemmas and everything is prepared for the final result. Let R be a quasi-special

Osserman curvature tensor and let A and B be arbitrary nonnull such that B ∈ M(A). The basic idea
for completing the proof is to show U(B) ≤ M(A), because it implies A ⊥ M(A) ≥ U(B), with the final
A ∈ U(B)⊥ =M(B) and R has to be a special Osserman.

Let us start with the important subspace P defined by

P =M(A) ∩M(B).

Its dimension can be evaluated byV ≥M(A) +M(B).

dimV ≥ dim(M(A) +M(B)) = dimM(A) + dimM(B) − dimP.

Thus dimP ≥ n − 2(τ + 1), and therefore dimP⊥ = n − dimP ≤ 2(τ + 1). U(A) ⊥ M(A) ⊃ P and
U(B) ⊥M(B) ⊃ P giveU(A) +U(B) ⊥ P, and thusU(A) +U(B) ≤ P⊥.

On the other hand, the initial condition B ∈ M(A) means ΠM(A,B) = B. Lemma 9 gives

εΠM(B,A) =
εA

εB
· εΠM(A,B) =

εA

εB
· εB = εA , 0,

and therefore by Lemma 10

U(A) ∩U(B) = 0.

This is why U(A) +U(B) is a direct sum and accordingly dim(U(A) +U(B)) = 2(τ + 1). Comparing this
with the previous results (U(A) +U(B) ≤ P⊥ with dimP⊥ ≤ 2(τ + 1)), we conclude dimP⊥ = 2(τ + 1) and
finally

P
⊥ =U(A) ⊕U(B).

Every X ∈ U(B) can be decomposed as X = ΠU(A,X) + ΠM(A,X). In the case of nonnull X we have
U(X) =U(B), and applying Lemma 9 twice (on the pair A,X and on the pair A,B) gives

εΠU (A,X)

εX
=
εΠU (X,A)

εA
=
εΠU (B,A)

εA
=
εΠU (A,B)

εB
= 0,

since B ∈ M(A) implies ΠU(A,B) = 0. Thus εΠU (A,X) = 0 holds for every nonnull X ∈ U(B). The projection
Ξ :U(B) 7→ U(A) given by Ξ(Y) = ΠU(A,Y) is linear, and therefore Lemma 6 extends εΠU (A,X) = 0 for every
X ∈ U(B), which can be written as

X = ΠU(A,X) + ΠM(A,X), εΠU (A,X) = 0. (10)

Let us define new important subspaces S and F with

S := {ΠU(A,X) : X ∈ U(B)}, F :=M(A) ∩U(B).

A spaceS is a subspace ofV as a projection. Moreover, by (10), it is a totally isotropic subspace ofU(A), and
according to Lemma 3 dimS ≤ τ+1

2 holds. It is not difficult to notice that dimS+dimF = dimU(B) = τ+1,
which implies dimF ≥ τ+1

2 . Of course, we need dimF = τ + 1 to show U(B) ≤ M(A) and solve our
problem. This is why we assume existence of some D ∈ U(B), such that ΠU(A,D) , 0. It is easy to find
nonnull D with the same properties, because if D is null we choose D′ = D + θB ∈ U(B) for some θ with
θ , 0 and θ , −21(D,B)

εB
. Thus

εD′ = εD + 2θ1(D,B) + θ2εB = θ(21(D,B) + θεB) , 0,

and D′ ∈ U(B) is nonnull with ΠU(A,D′) = ΠU(A,D + θB) = ΠU(A,D) , 0.
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After the previous argument we have nonnull D = E + C ∈ U(B), with E = ΠU(A,D) , 0 and C =
ΠM(A,D). Since S is totally isotropic, E ∈ S is null, and therefore εC = εD and C is nonnull. Both E and
C are orthogonal to E, and therefore E ⊥ E + C = D. Lemma 5 applied on null E ∈ U(A) regards nonnull
D ⊥ E gives a decomposition E = S + T, with S,T ∈ U(A) and εS = −εT > 0, where either D − S or D − T is
nonnull. Without loss of generality we can assume that D − S is nonnull.

Because of P ⊂ M(B) = M(D), P ⊂ M(A) = M(S), and U(D) ∩ U(S) = U(B) ∩ U(A) = 0, Lemma 8
gives P ⊂ M(D − S). The fact ΠM(T,D − S) = ΠM(A,D − S) = ΠM(A,D) = C gives εΠM(T,D−S) = εC , 0,
and therefore Lemma 10 impliesU(D − S) ∩U(T) = 0. We have P ⊂ M(D − S) and P ⊂ M(T), so another
application of Lemma 8 gives P ⊂ M(D − S − T) =M(C).

The factsP ⊂ M(C) andU(A)∩U(C) = 0 (C ∈ M(A) and Lemma 10), after a similar technique, establish
P
⊥ =U(A) ⊕U(C).

Subspaces S andM(A) are both orthogonal to S, so S ⊥ S +M(A) ≥ U(B), and therefore S ⊥ U(B).
It gives S ≤ U(B)⊥ = M(B), and finally S ≤ M(B) ∩ P⊥. Since E ∈ S, the decomposition C = D − E has
D ∈ U(B) and −E ∈ M(B). Consequently ΠM(B,C) = ΠM(B,D − E) = −E ∈ S, and therefore

εΠM(B,C) = 0. (11)

The equation (11), using Weak duality lemma, guarantees null ΠM(X,Y) and null ΠM(Y,X) for all nonnull
X ∈ U(B) and Y ∈ U(C).

εΠM(X,Y)

εY
=
εΠM(Y,X)

εX
=
εΠM(C,X)

εX
=
εΠM(X,C)

εC
=
εΠM(B,C)

εC
= 0.

Let us define subspacesH andZ by

H := {ΠM(B,X) : X ∈ U(C)}, Z :=U(B) ∩U(C).

The previous consideration gives null ΠM(B,X) for all nonnull X ∈ U(C). Lemma 6 can easily extend
εΠM(B,X) = 0 for all X ∈ U(C), and therefore H is totally isotropic. The condition (6) with U(B) , U(C)
implies thatZ is totally isotropic, too.

We need to prove that P⊥ is nondegenerate. Let (B0,B1, ...,Bτ) be a pseudo-orthonormal basis of the
nondegenerate spaceU(B). Let us decompose

Bi = Ai + Di, Ai = ΠU(A,Bi) ∈ S, Di = ΠM(A,Bi) ∈ M(A),

for every i ∈ {0, 1, ..., τ}. Hence

1(Bi,B j) = 1(Ai + Di,A j + D j) = 1(Ai,A j) + 1(Di,D j) = 1(Di,D j),

and therefore (D0,D1, ...,Dτ) is a pseudo-orthonormal basis of the space M(A) ∩ P⊥. This is why P⊥ =
U(A) ⊕ (M(A) ∩ P⊥) is nondegenerate as an orthogonal sum of nondegenerate spaces. M(B) ∩ P⊥ is a
nondegenerate space of dimension τ + 1 and H is its subspace. This is why Lemma 3 gives dimZ ≤ τ+1

2
and dimH ≤ τ+1

2 . Once again, it is not difficult to see that dimZ+ dimH = dimU(C) = τ+ 1, which gives
the only possible case

dimZ =
τ + 1

2
= dimH . (12)

Let us stop here and introduce the following definition in order to explain some results.

Definition 6 (Almost-special Osserman). We say that R is almost-special Osserman if it is two-leaves Osserman
and for all nonnull X,Y ∈ V holds

U(X) ∩U(Y) , 0⇒U(X) =U(Y).
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It is easy to see that special Osserman curvature tensor is almost-special Osserman, and that almost-
special Osserman is quasi-special Osserman. Almost-special Osserman curvature tensors allowed only
trivial intersections ofU spaces, and consequently dimZ = 0. This contradicts the equation (12), and the
following theorem holds.

Theorem 2. Almost-special Osserman curvature tensor is special Osserman.

Let us give the final remark. The duality principle for an Osserman curvature tensor is a very complex
problem. The present author is not aware of any counterexample, although we failed to prove the duality
principle, even under very strong additional conditions. It seems that the solution of our quasi-special
Osserman problem is not far away, because of the equation (12), which looks peculiar. For example, it
immediately solves the problem in the case of even τ. This is why we hope for an affirmative answer of the
problem in our future investigations.
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