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Unicyclic Graphs with Given Number of Cut Vertices
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Abstract. The Merrifield-Simmons index of a graph G, denoted by i(G), is defined to be the total number
of independent sets in G, including the empty set. A connected graph is called a unicyclic graph, if it
possesses equal number of vertices and edges. In this paper, we characterize the maximal unicyclic graph
w.r.t. i(G) within all unicyclic graphs with given order and number of cut vertices. As a consequence,
we determine the connected graph with at least one cycle, given number of cut vertices and the maximal
Merrifield-Simmons index.

1. Introduction

In this paper only simple graphs without loops and multiple edges are considered. For terminology
and notation not defined here, the reader is referred to Bondy and Murty [2].

Given a graph G with vertex set V(G) and edge set E(G). If S ⊆ V(G) and the subgraph induced by S has
no edges, then S is said to be an independent set of G. Let i(G) denote the total number of independent sets,
including the empty set, in G.

Since, for the n-vertex path Pn, i(Pn) is exactly equal to the Fibonacci number Fn+1, some researchers also
call i(G) the Fibonacci number of a graph G (see [1, 17]). Nowdays, i(G) is commonly termed as ‘Merrifield-
Simmons index’, which originated from [15]. This index is one of the most popular topological indices
in chemistry, which has been extensively studied, as can be seen in the monograph [13]. During the past
several decades, a number of research results on the Fibonacci number or Merrifield-Simmons index of
graphs have been obtained, among which characterization of graphs with extremal i(G) within a given class
of graphs with special structure has been one of the most popular tendency. For instance, see [11] and [17]
for trees, [16] for trees with given number of pendent vertices, [10] for trees with a given diameter, [7] for
trees with bounded degree, [14] for unicyclic graphs, [9] for the unicyclic graphs with a given diameter, [12]
for the cacti, [8] for the quasi-tree graphs, [4] for connected graphs with given number of cut edges, [5] for
connected graphs with given number of cut vertices, [6] for 3-connected and 3-edge-connected graphs, [1]
for maximal outerplanar graphs, and so on.
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In the current paper, we characterize the maximal unicyclic graph w.r.t. i(G) within all unicyclic graphs
with given order and number of cut vertices. As a consequence, we determine the connected graph with at
least one cycle, given number of cut vertices and the maximal Merrifield-Simmons index.

Before proceeding, we introduce some notation and terminology. For a vertex v ∈ V(G), we use NG(v)
to denote the set of neighbors of v, and let NG[v] = NG(v) ∪ {v}. For the sake of brevity, we write [v] instead
of NG[v]. The degree of v in G, denoted by d(v), is the number of its neighbors. A vertex v is said to be a
branched vertex, if d(v) ≥ 3. A vertex v is said to be a pendent vertex, if d(v) = 1. A cut vertex of a graph is any
vertex that when removed increases the number of connected components of this graph. If S is a subset of
V(G), we use G−S to denote the subgraph of G obtained by deleting the vertices in S and the edges incident
with them. Suppose that P = v1v2 · · · vs (s ≥ 2) is a path lying within a graph G. If d(v1) ≥ 3, d(vs) = 1 and
d(v j) = 2(1 < j < s), then we call P a pendant path of G.

Denote, as usual, by Sn and Cn the star and cycle on n vertices, respectively. Let Sl
n denote the graph

obtained from the cycle Cl by attaching n − l pendent vertices to any one vertex of it. Let Pn, t be the tree
obtained by attaching t − 2 pendent edges to the second vertex (natural ordering) of the path Pn−t+2.

LetUn, k denote the set of connected unicyclic graphs with n vertices and k cut vertices, andUl
n, k denote

a subset ofUn, k, in which every graph has girth l. If k = 0, thenUn, k contains a single element Cn. So we
will assume that k ≥ 1. Obviously, we have k ≤ n − 3, since n ≥ l + k ≥ k + 3.

For any graph G inUn, k, we let P(G) be the set of pendent vertices in G and C(G) be the set of cut vertices
in G. For any graph G inUl

n, k, we let OC(G) be the number of cut vertices in G lying outside of the unique
cycle Cl.

2. Preliminary results

The following lemmas are needed in the proof of main results.

Lemma 2.1 ([3]). Let G be a graph with m components G1,G2, . . . ,Gm. Then

i(G) =

m∏
i=1

i(Gi).

Lemma 2.2 ([3]). Let G be a graph, u be a vertex and vw be an edge of G. Then
(i) i(G) = i(G − u) + i(G − [u]);
(ii) i(G) = i(G − vw) − i(G − {[v] ∪ [w]}).

Lemma 2.2 (ii) implies the following lemma.

Lemma 2.3. Let G1 and G2 be two graphs. If G1 can be obtained from G2 by deleting some edges, then i(G2) < i(G1).

Recall that Fn = Fn−1 + Fn−2 with initial conditions F0 = F1 = 1. Thus,

i(Pn) = Fn+1 =

√
5

5

(1 +
√

5
2

)n+2

−

(
1 −
√

5
2

)n+2 .
Prodinger and Tichy [13] gave an upper bound for the i(G) of trees, and later Lin and Lin [6] characterized

the unique tree attaining this upper bound. Their results are summarized as follows:

Lemma 2.4. Let T be a tree on n vertices. Then i(T) ≤ 2n−1 + 1, with the equality if and only if T � Sn.

Yu and Lv proved the following result concerning the i(G) of trees with k pendent vertices.

Lemma 2.5 ([16]). Let T be a tree with n vertices and k pendent vertices. Then
(i) i(T) ≤ 2k−1Fn−k+1 + Fn−k, with equality if and only if T � Pn, k;
(ii) i(Pn, k) > i(Pn, k−1).
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By means of Lemma 2.5, we obtain the following result.

Lemma 2.6. Let T be a tree, not isomorphic to Sn, with n vertices. Then i(T) ≤ 3 · 2n−3 + 2, with equality if and only
if T � Pn,n−2.

Proof. Let T be a tree, not isomorphic to Sn, with n vertices. Then T has k′ ≤ n − 2 pendent vertices. By
Lemma 2.5, we have

i(T) ≤ i(Pn, k′ ) ≤ i(Pn,n−2).

This completes the proof.

Lemma 2.7 ([12]). Let X, Y and Z be three pairwise disjoint connected graphs with |X|, |Y|, |Z| ≥ 2. Suppose that
u, v are two vertices of Z, v′ is a vertex of X, u′ is a vertex of Y. Let G be the graph obtained from X, Y and Z by
identifying v with v′ and u with u′ , respectively. Also, we let G1 be the graph obtained from X, Y and Z by identifying
vertices u, v′ , u′ and G2 be the graph obtained from X, Y and Z by identifying vertices v, v′ , u′ ; see Fig. 1 for instance.
Then

i(G1) > i(G) or i(G2) > i(G).

X Z
Y Y

YX

X
Z Z

v u
u u

v v

G G1 G2

Fig. 1. The graphs G, G1 and G2.

We call the graph transformation from G to G1 (or G2) Operation I. From Lemma 2.7, we know that
Operation I increases the i(G) of graphs under consideration.

3. Unicyclic graph with given number of cut vertices and the maximal Merrifield-Simmons index

Lemma 2.5 implies the following result.

Proposition 3.1. Let T be a tree with n vertices and k cut vertices. Then i(T) ≤ 2n−k−1Fk+1 + Fk, with equality if and
only if T � Pn,n−k.

Proposition 3.2. Let T be a tree with n vertices and at least k cut vertices. Then i(T) ≤ 2n−k−1Fk+1 +Fk, with equality
if and only if T � Pn,n−k.

Proof. For each 1 ≤ k ≤ n − 3,

i(Pn,n−k) − i(Pn,n−k−1) = (2n−k−1Fk+1 + Fk) − (2n−k−2Fk+2 + Fk+1)
= 2n−k−2(2Fk+1 − Fk+2) − (Fk+1 − Fk)
= 2n−k−2Fk−1 − Fk−1 > 0.

So, for any 1 ≤ k < k′ ≤ n − 2,

i(Pn,n−k) > i(Pn,n−k−1) > . . . > i(Pn,n−k′ ). (1)

Suppose that T is a tree of n vertices and k′ (≥ k) cut vertices. Then by Proposition 3.1 and the above
Ineq. (1), we have

i(Pn,n−k) ≥ i(Pn,n−k′ ) ≥ i(T),

with equality if and only if k = k′ and T � Pn,n−k′ , i.e., T � Pn,n−k.
This completes the proof.
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Lemma 3.3. For any 3 ≤ l ≤ n − 1, i(Sl
n) ≤ i(S3

n), with equality if and only if l = 3.

Proof. Let u be a vertex of degree 2, adjacent to the vertex of degree n− l + 2 in Sl
n. Write Sl

n −u = Tn−1. Then
we have

i(Sl
n) = i(Tn−1) + i(Pl−3 ∪ (n − l)K1)

and

i(S3
n) = i(Sn−1) + i((n − 3)K1).

By Lemma 2.4, i(Tn−1) ≤ i(Sn−1) with equality if and only if Tn−1 � Sn−1, i.e., l = 3. Note that Pl−3∪(n− l)K1
contains (n−3)K1 as a proper spanning subgraph if l ≥ 4. By Lemma 2.3, i(Pl−3∪ (n− l)K1) ≤ i((n−3)K1) with
equality if and only if l = 3. Consequently, i(Sl

n) ≤ i(S3
n), with equality if and only if l = 3. This completes

the proof.

Let C3(n, k) be a unicyclic graph constructed as follows.

• For k = 1, we let Q3(n, 1) = S3
n.

• For k ≥ 2, we let C3(n, k) be the graph obtained by attaching a path of length k − 1 to a vertex of degree 2
in C3(n − k + 1, 1).

See Fig. 2 for instance.

..................

⎧
⎨
⎩

n− k − 2

k − 1
︸ ︷︷ ︸

Fig. 2. The graph C3(n, k).

According to the above definition for C3(n, k), we have

i(C3(n, k)) =

{
3 · 2n−3 + 1, k = 1;
2n−k−2Fk+2 + Fk, k ≥ 2.

Before proceeding, we prove the following two lemmas.

Lemma 3.4. Let G be a unicyclic graph inUl
n, k. If |OC(G)| = 0, then i(G) ≤ i(C3(n, k)), with equality if and only if

G � C3(n, k).

Proof. If k = 1, then G � Sl
n. Thus, by Lemma 3.3, we have

i(G) ≤ i(S3
n) = i(C3(n, 1))

with equality if and only if l = 3, that is, G � C3(n, 1).
So, we may assume that k ≥ 2. If k = 2, then G is the graph Gs, t(l), obtained by attaching s and t pendent

edges to any two vertices of the cycle Cl, where s + t + l = n. If min{s, t} ≥ 2, then by Lemma 2.6, we have
i(G) = i(Gs, t(l)) < i(G1, s+t−1(l)). Thus, i(G) = i(Gs, t(l)) ≤ i(G1, s+t−1(l)).

In view of Lemmas 2.1 and 2.2(i),

i(C3(n, 2)) = i(S3
n−1) + i(Sn−2)



H. Hua et al. / Filomat 28:3 (2014), 451–461 455

and

i(G1, s+t−1(l)) = i(Sl
n−1) + i(Tn−2),

where Tn−2 is a tree of order n − 2.
Evidently, i(Tn−2) ≤ i(Sn−2), with equality if and only if Tn−2 � Sn−2, and i(Sl

n−1) ≤ i(S3
n−1), with equality if

and only if l = 3. So
i(G) ≤ i(G1, s+t−1(l)) ≤ i(C3(n, 2))

with equality if and only if Tn−2 � Sn−2, l = 3 and G � G1, s+t−1(l), that is, G � C3(n, 2), as claimed.
So, we may assume that k ≥ 3.
Since |OC(G)| = 0, for k ≥ 3, we must have G � C3(n, k). By Lemmas 2.1 and 2.2(i),

i(C3(n, k)) = i(Pn−1,n−k−1) + 2n−k−2i(Pk−1)

and

i(G) = i(G − v0) + i(G − [v0]).

Notice that G − v0 is a tree of order n − 1 and at least k cut vertices; then, by Proposition 3.2, we have

i(G − v0) ≤ i(Pn−1,n−k−1),

with equality if and only if G − v0 � Pn−1,n−k−1.
By our assumption that |OC(G)| = 0, we know that all k cut vertices of G lie on Cl. If k = 2, then G − [v0]

is an empty graph of n − 3 isolated vertices. If k ≥ 3, G − [v0] is a forest composed of x (0 ≤ x ≤ n − k − 3)
isolated vertices and a nontrivial component of n − x − 3 vertices and at least k − 2 cut vertices. Also, the
largest component of G− [v0] contains the path Pk as a subgraph. Thus, G− [v0] contains (n− k− 2)K1 ∪Pk−1
as a spanning subgraph. Then by Lemma 2.3,

i(G − [v0]) ≤ i((n − k − 2)K1 ∪ Pk−1)
= 2n−k−2i(Pk−1),

with equality if and only if k = 2.
So, i(G) ≤ i(C3(n, k)), with equality if and only if G � C3(n, k) (k = 2).

Lemma 3.5. Let G be a graph in Ul
n, k. If |OC(G)| ≥ 1 and there exists a pendent path of length ≥ 2 in G, then

i(G) ≤ i(C3(n, k)), with the equality if and only if G � C3(n, k).

Proof. Obviously, V(G) \V(Cl) , ∅. For any given vertex x ∈ V(G) \V(Cl), we let dG(x, Cl) = min{dG(x, y)|y ∈
V(Cl)}. By the assumption that |OC(G)| ≥ 1, we have k ≥ 2.

We shall complete the proof by induction on |OC(G)|.
We first check the validity of the lemma for |OC(G)| = 1. Let v be the unique cut vertex, not belonging

to Cl, in G. Since |OC(G)| = 1, we have dG(v, Cl) = 1. Also, d(v) = 2, for otherwise, G has no pendent path of
length≥ 2, a contradiction. Let u be the pendent vertex adjacent to v. Clearly, |OC(G−u)| = |OC(G−[u])| = 0,
|C(G − u)| = k − 1 and |C(G − [u])| = k − 2 or k − 1.

If k = 2, then |C(G − u)| = 1 and |C(G − [u])| = 0 or 1. Thus, G − u � Sl
n−1 and G − [u] � Cn−2 or Sl

n−2. By
Lemma 2.7, i(Sl

n−1) ≤ i(S3
n−1). Also, i(Cn−2) < i(Pn−2) < i(Sn−2) and i(Sl

n−2) ≤ i(S3
n−2) < i(Sn−2) by Lemmas 2.3,

2.4 and 2.7. Thus,

i(G) = i(G − u) + i(G − [u])
< i(S3

n−1) + i(Sn−2)
= i(C3(n, 2)),

as claimed.
Assume now that k ≥ 3. , Since dG(u, Cl) = 2, |C(G − u)| = k − 1 and |C(G − [u])| = k − 2 or k − 1, we have

G − u ∈ Ul
n−1, k−1 and G − [u] ∈ Ul

n−2, k−2 orUl
n−2, k−1.
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Note that |OC(G − u)| = |OC(G − [u])| = 0; then by Lemma 3.4,

i(G − u) ≤ i(C3(n − 1, k − 1)), (2)

with the equality if and only if G − u � C3(n − 1, k − 1).
Also, by Lemma 3.4,

i(G − [u]) ≤ i(C3(n − 2, k − 2)), (3)

with the equality if and only if G − [u] � C3(n − 2, k − 2), or

i(G − [u]) ≤ i(C3(n − 2, k − 1)), (4)

with the equality if and only if G − [u] � C3(n − 2, k − 1).
We shall prove that for k ≥ 3,

i(C3(n − 2, k − 1)) < i(C3(n − 2, k − 2)). (5)

The above Ineq. (5) is equivalent to

2n−k−3Fk+1 + 2Fk−2 < 2n−k−2Fk + 2Fk−3.

⇔ 2n−k−3Fk+1 − 2n−k−2Fk < 2Fk−3 − 2Fk−2.

⇔ 2n−k−3Fk−2 > 2Fk−4.

The last inequality holds due to the fact that n − k − 3 ≥ 0.
By Ineqs. (2)-(5), for k ≥ 4, we obtain

i(G) ≤ i(C3(n − 1, k − 1)) + i(C3(n − 2, k − 2)) = i(C3(n, k))

with the equality if and only if G − u � C3(n − 1, k − 1) and G − [u] � C3(n − 2, k − 2), i.e., G � C3(n, k).
If k = 3, then G � C3(n, 3), as |OC(G)| = s ≥ 1. Since C3(n − 2, 1) = S3

n−2 contains Pn−2,n−4 as a proper
spanning subgraph, i(C3(n − 2, 1)) < i(Pn−2,n−4) by Lemma 2.3. By Ineqs. (2)-(5), for k = 3, we have

i(G) ≤ i(C3(n − 1, 2)) + i(C3(n − 2, 1))
< i(C3(n − 1, 2)) + i(Pn−2,n−4)
= i(C3(n, 3)),

as claimed.
Suppose now that |OC(G)| = s ≥ 2 and the statement of lemma is true for smaller values of |OC(G)|.

Then k ≥ s + 1 ≥ 3.
Let P be a pendent path of length ≥ 2 in G with pendent vertex u and N(u) = v. By the definition of

pendent path, we have d(v) = 2. Then we have |OC(G − u)| = s − 1 and |OC(G − [u])| = |OC(G − u − v)| =
s − 2 or s − 1, |C(G − u)| = k − 1 and |C(G − [u])| = k − 2 or k − 1.

Note that G−u ∈ Ul
n−1, k−1 and G− [u] ∈ Ul

n−2, k−1 orUl
n−2, k−2; thus by the induction hypothesis, we have

i(G − u) ≤ i(C3(n − 1, k − 1))

with the equality if and only if G − u � C3(n − 1, k − 1).
Also, by Lemma 3.4 (when |OC(G−[u])| = s−2 = 0) or by the induction assumption (when |OC(G−[u])| =

s − 2 ≥ 1), we have: if C(G − [u]) = k − 2, then

i(G − [u]) ≤ i(C3(n − 2, k − 2))

with the equality if and only if G − [u] � C3(n − 2, k − 2), and if C(G − [u]) = k − 1, then

i(G − [u]) ≤ i(C3(n − 2, k − 1))

with the equality if and only if G − [u] � C3(n − 2, k − 1).
Now, by the same way as used in the case of |OC(G)| = 1, we can obtain the desired result.
This completes the proof.
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A graph is called a sun graph if it can be obtained by attaching a pendent edge to each vertex of a cycle.
A damaged sun graph is a graph obtained from sun graph by deleting part of its pendent edges. Denoted by
DSG(N, l) the set of damaged sun graphs having N vertices and a cycle of length l. Obviously, we have
l + 1 ≤ N ≤ 2l − 1.

........... .....w

DSG(n− s− t, l)

︸ ︷︷ ︸
t(≥ 1)

}
s(≥ 2)

6
d(w) = 3

Fig. 3. The graph occurred in the proof of Theorem 1.

............... ...︸ ︷︷ ︸

}
............. ...︸ ︷︷ ︸

}

............. .....︸ ︷︷ ︸

}

k k − 1

k − 2

n− k − 2

n− k − 2

(a) (b)

(c)

n− k − 2

Fig. 4. The graphs occurred in the proof of Theorem 1.

.................
.....

︸ ︷︷ ︸
{

k − 1

n− k − 2

Fig. 5. The graph H3(n, k) occurred in the proof of Theorem 1.

Now, we are in a position to state and prove our maim theorem.

Theorem 3.6. Let G be a graph inUn, k. Then i(G) ≤ i(C3(n, k)), with the equality if and only if G � C3(n, k).

Proof. Let Gmax be a graph chosen from Ul
n, k for some l (3 ≤ l ≤ n − k) such that i(Gmax) ≥ i(G) for any

G ∈ Un, k \ {Gmax}. Next, we shall prove that Gmax � C3(n, k).
By contradiction. Suppose that Gmax � C3(n, k).
If |OC(Gmax)| = 0, then i(Gmax) < i(C3(n, k)) by Lemma 3.4, a contradiction to our choice of Gmax. So we

may suppose that |OC(Gmax)| ≥ 1.
We first prove the following two claims.
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Claim 3.1. Gmax has exactly one branched vertex lying outside Cl. Also, all neighbors but one of this branched vertex
are pendent vertices.

Proof. If Gmax has no branched vertices lying outside Cl, then Gmax must contain a pendent path of length
≥ 2, as |OC(Gmax)| ≥ 1. Then by Lemma 3.5, i(Gmax) < i(C3(n, k)), a contradiction to our choice of Gmax. So
Gmax has at least one branched vertex lying outside Cl.

Suppose that Gmax has two branched vertices lying outside Cl. Then we can employ Operation I on Gmax
and obtain a new graph G′

such that G′

∈ U
l
n, k. But, i(Gmax) < i(G′

) by Lemma 2.6, a contradiction to the
maximality of Gmax. Consequently, Gmax has exactly one branched vertex lying outside Cl.

Suppose that the unique branched vertex, lying outside Cl, has two neighbors of degree ≥ 2. Then Gmax
must contain a pendent path of length ≥ 2, as Gmax has exactly one branched vertex lying outside Cl. As
above, we can obtain a contradiction. This proves the claim.

Claim 3.2. Each vertex on the cycle Cl of Gmax is either of degree 2 or of degree 3. Also, all vertices but one, of degree
3, on the cycle Cl are adjacent to a pendent vertex.

Proof. Suppose to the contrary that Gmax has a branched vertex, of degree ≥ 4, lying along Cl. By Claim 3.1,
Gmax has a branched vertex lying outside Cl. Then we can employ Operation I on Gmax and obtain a new
graph G′′

such that G′′

∈ U
l
n, k. But then, i(Gmax) < i(G′′

) by Lemma 2.6, a contradiction to the maximality of
Gmax. Thus, each vertex on the cycle Cl of Gmax is either of degree 2 or of degree 3.

Assume that there are two branched vertices on the cycle Cl whose all neighbors are not pendent vertices.
By Claim 3.1, Gmax has exactly one branched vertex lying outside Cl. Thus, Gmax must contain a pendent
path of length ≥ 2. Then by Lemma 3.5, i(Gmax) < i(C3(n, k)), a contradiction to the maximality of Gmax. This
proves the claim.

By Claims 3.1 and 3.2, Gmax must be isomorphic to the graph as shown in Fig. 3.
If l = 3, then Gmax must be isomorphic to one of the graphs (a), (b) and (c), as shown in Fig. 4.
• Gmax is the graph (a). By our assumption that |OC(Gmax)| ≥ 1, we have k ≥ 2. Also, we have n − k ≥ 3,

since n ≥ l + k. Thus,

i(Gmax) = i(Pn−1,n−k−1) + i(Pn−3,n−k−1)
= 2n−k−2Fk+1 + Fk + 2n−k−2Fk−1 + Fk−2

< 2n−k−2Fk+2 + 2Fk−1

= i(C3(n, k)),

a contradiction to the maximality of Gmax.
• Gmax is the graph (b). Since |OC(Gmax)| ≥ 1, we have k ≥ 3. Also, we have n − k ≥ 3.
Thus,

i(Gmax) = i(Pn−1,n−k−1) + 2i(Pn−4,n−k−1)
= 2n−k−2Fk+1 + Fk + 2(2n−k−2Fk−2 + Fk−3)
< 2n−k−2Fk+2 + 2Fk−1

= i(C3(n, k)),

a contradiction to the maximality of Gmax.
• Gmax is the graph (c). Since |OC(Gmax)| ≥ 1, we have k ≥ 4. Also, we have n − k ≥ 4 (see Fig. 4).
Thus,

i(Gmax) = 2i(Pn−2,n−k−1) + 2i(Pn−5,n−k−1)
= 2(2n−k−2Fk + Fk−1) + 2(2n−k−2Fk−3 + Fk−4)
< 2n−k−2Fk+2 + 2Fk−1

= i(C3(n, k)),
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a contradiction to the maximality of Gmax.
Now, we assume that l ≥ 4.
Let w be the branched vertex of Gmax such that w lies along Cl and the unique neighbor, not belonging

to Cl, of w is of degree ≥ 2.
Since l ≥ 4, there is always a vertex v ∈ V(Cl) such that dGmax (v, w) ≥ 2. Let A = {v ∈ V(Cl)|dGmax (v, w) ≥ 2}.

Consider the following two cases.

Case 3.1. There exists a vertex v in A such that d(v) = 3.

By Claim 3.2, v has a pendent vertex as one of its neighbors in Gmax. Let u′v′ be a pendent edge in C3(n, k)
such that d(u′ ) = 1 and d(v′ ) = 3 (note that when n = k + 3 or k = 3, the way of choosing vertices v′ and u′ in
C3(n, k) is not unique). By Lemmas 2.1 and 2.2(i), we obtain

i(C3(n, k)) = i(C3(n, k) − v
′

) + i(C3(n, k) − [v
′

])
= 2i(Pn−2,n−k−1) + 2n−k−2i(Pk−2)

and

i(Gmax) = i(Gmax − v) + i(Gmax − [v])
= 2i(T1) + i(Gmax − [v]),

where T1 is a subtree of Gmax − v with n − 2 vertices.
Obviously, T1 has at least k − 1 cut vertices. Let Gmax − [v] = xK1 ∪ T2 (0 ≤ x ≤ 2, x + n′ = n − 4), where

T2 is the largest component of Gmax − [v] with n′ vertices. Then T2 has at least k − 3 cut vertices.
By Proposition 3.2, we obtain

i(T1) ≤ i(Pn−2, (n−2)−(k−1))

and

i(T2) ≤ i(Pn′ ,n′−(k−3)).

Thus,

i(Gmax − [v]) = i(xK1 ∪ T2)
= 2xi(T2)
≤ 2xi(Pn′ ,n′−(k−3))
= i(xK1 ∪ Pn′ ,n′−(k−3)).

Note that Pn′ ,n′−(k−3) contains (n′ − k + 1)K1 ∪Pk−1 as a proper spanning subgraph. Thus, xK1 ∪Pn′ ,n′−(k−3)
contains (n − k − 2)K1 ∪ Pk−2 as a proper spanning subgraph. By Lemma 2.3, we have

i(Gmax − [v]) ≤ i(xK1 ∪ Pn′ ,n′−(k−3))
< i((n − k − 2)K1 ∪ Pk−2)
= 2n−k−2i(Pk−2).

So, i(Gmax) < i(C3(n, k)), a contradiction to our choice of Gmax.

Case 3.2. For each vertex v in A, we have d(v) = 2.

Let v be a vertex in A. Then Gmax − v is a tree having n − 1 vertices and at least k cut vertices. Let
Gmax − [v] = xK1 ∪ T0 (0 ≤ x ≤ 2, x + n′ = n − 3), where T0 is the largest component of Gmax − [v] with n′

vertices. Evidently, T0 has at least k − 2 cut vertices.
We shall prove that i(Gmax) < i(H3(n, k)) in the following, see Fig. 5 for H3(n, k).
By Lemmas 2.1 and 2.2(i), we obtain

i(H3(n, k)) = i(Pn−1,n−k−1) + 2n−k−2i(Pk−1)
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and

i(Gmax) = i(Gmax − v) + i(Gmax − [v])
= i(Gmax − v) + i(xK1 ∪ T0).

By Proposition 3.2, we obtain

i(Gmax − v) ≤ i(Pn−1, (n−1)−k)

and

i(T0) ≤ i(Pn′ ,n′−(k−2)).

Thus,

i(Gmax − [v]) = i(xK1 ∪ T0)
= 2xi(T0)
≤ 2xi(Pn′ ,n′−(k−2))
= i(xK1 ∪ Pn′ ,n′−(k−2)).

Note that Pn′ ,n′−(k−2) contains (n′ − k + 1)K1 ∪Pk−1 as a proper spanning subgraph. Thus, xK1 ∪Pn′ ,n′−(k−2)
contains (n − k − 2)K1 ∪ Pk−1 as a proper spanning subgraph. By Lemma 2.3, we have

i(Gmax − [v]) ≤ i(xK1 ∪ Pn′ ,n′−(k−2))
< i((n − k − 2)K1 ∪ Pk−1)
= 2n−k−2i(Pk−1).

So, i(Gmax) < i(H3(n, k)), a contradiction to our choice of Gmax.
By discussions above, we conclude that Gmax � C3(n, k), as claimed.

4. Connected graph with at least one cycle, given number of cut vertices and the maximal Merrifield-
Simmons index

LetUn, k+ be the set of unicyclic graphs of order n and at least k cut vertices. According to Theorem 3.6,
we have the following consequence.

Corollary 4.1. Let G be a graph inUn, k+ . Then i(G) ≤ i(C3(n, k)), with the equality if and only if G � C3(n, k).

Proof. Let G be a graph inUn, k′ (1 ≤ k′ ≤ n − 3). Then by Theorem 3.6, we have i(G) ≤ i(C3(n, k′ )), with the
equality if and only if G � C3(n, k′ ). We need only to prove that if k′ ≥ k, then i(C3(n, k′ )) ≤ i(C3(n, k)).

If k = 1, the result is obvious. So we may suppose that k ≥ 2. Then k′ ≥ k ≥ 2. For 1 ≤ k ≤ n− 4, we have

i(C3(n, k + 1)) = 2n−(k+1)−2F(k+1)+2 + 2F(k+1)−1

= 2n−k−3Fk+3 + 2Fk

< 2n−k−2Fk+2 + 2Fk−1

= i(C3(n, k)).

Thus, for any 1 ≤ k < k′ ≤ n − 3, we have

i(C3(n, k
′

)) < · · · < i(C3(n, k + 1)) < i(C3(n, k)),

as claimed.

Theorem 4.2. Let G be a connected graph, not isomorphic to a tree, of n vertices and k cut vertices. Then i(G) ≤
i(C3(n, k)), with the equality if and only if G � C3(n, k).
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Proof. If G is a graph in Un, k, then by Theorem 3.6, we have completed the proof. Now, we may assume
that G is a connected graph of n vertices, k cut vertices and at least two cycles.

We can always obtain a connected unicyclic spanning subgraph of G by deleting edges along some cycles
of G. Let USS(G) denote a connected unicyclic spanning subgraph of G. Note that USS(G) is a connected
unicyclic graph of n vertices and at least k cut vertices. Thus, by Lemma 2.3 and Corollary 4.1, we have

i(G) < i(USS(G)) ≤ i(C3(n, k)),

as claimed.
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