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Rapid Variability and Karamata’s Integral Theorem
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Abstract. In this paper some important variations and generalizations of the well-known Karamata’s
integral theorem are proved. The property of rapid variability is the central argument for the results
presented in this paper.

1. Introduction

Let f : [a,+∞) 7→ (0,+∞), (a > 0), be a measurable function.

1◦ f is rapidly varying in the sense of de Haan with the index of variability +∞ (see e.g. [1]) if

lim
x→+∞

f (λx)
f (x)

= +∞, (1)

for all λ > 1. The class of all these functions is denoted by R∞ and f ∈ R∞ holds if and only if

lim
x→+∞

inf{ f (t)|t∈[λx,+∞)}
f (x) = +∞ for all λ > 1 (see e.g. [2]). In the paper [2] it is shown that

x∫
a

f (t)dt is an

element of the class R∞ (as well as 1/
+∞∫
x

dt
f (t) ) whenever f ∈ R∞. Also, in the same paper it is shown

that for all λ > 1 it holds
x∫

a
f (t)dt ∼

x∫
x/λ

f (t)dt, x→ +∞, and that
+∞∫
x

dt
f (t) ∼

λx∫
x

dt
f (t) , for x→ +∞, whenever

f ∈ R∞ (∼ is the relation of strong asymptotic equivalence [1]).

2◦ f is bounded increasing (see e.g. [1]) if

lim
x→+∞

sup{ f (t) | t ∈ [x, λx]}
f (x)

< +∞ (2)

for all λ > 1. The class of these functions is denoted by BI, and it holds that a function f is bounded
decreasing (denoted by f ∈ BD) if and only if the function 1/ f is bounded increasing (see [1]). Also,
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we have ORV = BI∩BD and MR∞ = R∞∩BD, where ORV is the class ofO-regularly varying functions
in the Karamata’s sense (see [1]), and MR∞ is a class of functions (a proper subclass of the class R∞
(see [1])) for which the lower Karamata’s index is +∞ (see [1]).

3◦ f is O-regularly varying with continuous index function (see e.g. [3]) if

lim
x→+∞
λ→1

f (λx)
f (x)

= 1. (3)

The class of these functions is denoted by CRV (or IRV [3]).

2. Results

Proposition 2.1. Let f ∈ R∞ and 1 ∈ CRV. Then:

(a)
x∫

a
f (t)1(t)dt ∼ 1(x)

x∫
a

f (t)dt, for x→ +∞, whenever f and 1 are locally bounded on [a,+∞);

(b)
+∞∫
x

1(t)
f (t) dt ∼ 1(x)

+∞∫
x

dt
f (t)

, for x→ +∞.

Remark 2.2. Proposition 2.1(a) is a variation (and a sort of generalization) of the result from the famous
Karamata’s integral theorem (see e.g. [4]). In relation to this one can find results by S. Simić [4].

Proposition 2.3. Let f ∈ R∞ and 1 ∈ ORV. Then:

(a)
x∫

a
f (t)1(t)dt � 1(x) ·

x∫
a

f (t)dt, for x→ +∞, whenever the functions f and 1 are locally bounded on [a,+∞);

(b)
+∞∫
x

1(t)
f (t) dt � 1(x) ·

+∞∫
x

dt
f (t)

, for x→ +∞.

Remark 2.4. Symbol � represents the relation of weak asymptotic equivalence [1].

Proposition 2.5. Let f ∈ BI. Then:

(a)
x∫

a
f (t)dt is an element of the class CRV whenever the function f is locally bounded on [a,+∞);

(b)
+∞∫
x

dt
f (t) is an element of the class CRV whenever this integral is convergent.

Proposition 2.6. Let f ∈MR∞ and 1 ∈ BI. Then:

(a)
x∫

a
f (t)1(t)dt = o

(
f (x) ·

x∫
a
1(t)dt

)
, for x→ +∞, whenever the functions f and 1 are locally bounded on [a,+∞);

(b)
+∞∫
x

1
f (t)·1(t) dt = o

(
1

f (x) ·

+∞∫
x

dt
1(t)

)
, for x→ +∞, whenever the integral

+∞∫
x

dt
1(t) is convergent.

Remark 2.7. Symbol o is the Landau symbol [1].

The next proposition is a direct consequence of Proposition 2.6, while (a) in Proposition 2.6 is proved in
[2] as a separate proposition.
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Corollary 2.8. Let f ∈MR∞. Then:

(a) 1
x

x∫
a

f (t)dt << f (x) <<
1

x
+∞∫
x

dt
t2 f (t)

, for x→ +∞, whenever the function f is locally bounded on [a,+∞);

(b)

x∫
a

f (t)1(t)dt

x∫
a
1(t)dt

<< f (x) <<

+∞∫
x

dt
t21(t)

+∞∫
x

dt
t2 f (t)1(t)

, for x→ +∞, whenever the function 1 is non-increasing on [a,+∞).

Remark 2.9. For positive functions s and p on [a,+∞) the relation s(x) << p(x), for x→ +∞, represents the
fact that s(x) = o(p(x) for x→ +∞.

3. Proofs

Proof. [Proof of Proposition 2.1] (a) Let µ > 1. Let us choose λ0 > 1 and x0 ≥ aλ0 such that for λ ∈ [1, λ0]
and x > x0, 1

√
µ ≤

1( x
λ )
1(x) ≤

√
µ holds. Let x1 > x0 be such that

x∫
a

f (t)1(t)dt ≤
√
µ

x∫
x/λ0

f (t)1(t)dt and

x∫
a

f (t)dt ≤
√
µ

x∫
x/λ0

f (t)dt, for all x > x1.

From the fact that the functions f and f · 1 are elements of the class R∞ and from the results given in [2] it
follows that x1 exists. So, for x > x1 it follows

1
µ

x∫
a

f (t)1(t)dt ≤
1
√
µ

x∫
x/λ0

f (t)1(t)dt ≤ 1(x)

x∫
x/λ0

f (t)dt ≤ 1(x)

x∫
a

f (t)dt,

√
µ1(x)

x∫
x/λ0

f (t)dt ≤ µ

x∫
x/λ0

f (t)1(t)dt ≤ µ

x∫
a

f (t)1(t)dt.

Since the previous inequalities hold for all µ > 1, it follows

x∫
a

f (t)1(t)dt ∼ 1(x)

x∫
a

f (t)dt, for all x→ +∞.

(b) Let µ > 1. Choose λ0 > 1 and x0 ≥ a such that 1
√
µ ≤

1(λx)
1(x) ≥

√
µ for λ ∈ [1, λ0] and x > x0. Let x1 > x0

be such that

+∞∫
x

1(t)
f (t)

dt ≤
√
µ

λ0x∫
x

1(t)
f (t)

dt

and

+∞∫
x

dt
f (t)
≤
√
µ

λ0x∫
x

dt
f (t)

,
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for all x > x1. From the fact that the functions f and f/1 are elements of the class R∞ and from results in [2]
it follows that x1 exists. So, for x > x1 it follows

1
µ

+∞∫
x

1(t)
f (t)

dt ≤
1
√
µ

λ0x∫
x

1(t)
f (t)

dt ≤

≤ 1(x)

λ0x∫
x

dt
f (t)
≤ 1(x)

+∞∫
x

dt
f (t)
≤

≤
√
µ1(x)

λ0x∫
x

dt
f (t)
≤ µ

λ0x∫
x

1(t)
f (t)
≤ µ

+∞∫
x

1(t)
f (t)

dt.

Since the previous inequality holds for all µ > 1, it follows
+∞∫
x

1(t)
f (t)

dt ∼ 1(x)

+∞∫
x

dt
f (t)

, for x→ +∞.

Proof. [Proof od Proposition 2.3] (a) There exist C > 0 and x0 ≥ 2a such that for all x > x0 and for all λ ∈ [1, 2],

2
c ≤

1(x)
1(x/λ) ≤

c
2 holds. Also there exists x1 > x0 such that for all x > x1 it holds

x∫
a

f (t)dt ≤ 2
x∫

x/2
f (t)dt and

x∫
a

f (t)1(t)dt ≤ 2
x∫

x/2
f (t)1(t)dt (because the functions f and f1 are elements of the class R∞). For x > x1 we

have

1
c

x∫
a

f (t)1(t)dt ≤
2
c

x∫
x/2

f (t)1(t)dt ≤ 1(x)

x∫
x/2

f (t)dt ≤

≤ 1(x)

x∫
a

f (t)dt ≤ 21(x)

x∫
x/2

f (t)dt ≤

≤ c

x∫
x/2

f (t)1(t)dt ≤ c

x∫
a

f (t)1(t)dt.

The previous inequalities prove Proposition 2.3(a).
(b) Combining ideas from the proof of Proposition 2.1(b) and the proof of Proposition 2.3(a) we get the

proof of Proposition 2.3(b). Due to these obvious analogies the proof is not given step by step.

Proof. [Proof of Proposition 2.5] (a) Let us prove that lim
x→+∞
λ→1

x∫
x/λ

f (t)dt

x∫
a

f (t)dt
= 0, and this fact is equal to the part

(a) of the proposition. Respectively, let us show that for all M > 0 there exist x0 ≥ a and λ0 > 1 such that for

all x > x0 and for all λ ∈ [1, λ0] it is true
x∫

a
f (t)dt > M

x∫
x/λ

f (t)dt. This procedure (observe only the values of

λ to the right side of 1) is sufficient since f (t) > 0 for t ≥ a, so the function
x∫

a
f (t)dt is increasing.
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Thus: let M > 0 and let λ1 > 1, x0 > aλ1 and K > 0 be such that for t > x0
λ1

and µ ∈ [1, λ1] one has
f (µt) < K f (t). Let n ∈N be such that n > MKλ1 and let λ0 =

n√λ1. For x > x0 and λ ∈ [1, λ0] we have

x∫
a

f (t)dt ≥

x∫
x/λn

f (t)dt =

n−1∑
k=0

x/λk∫
x/λk+1

f (t)dt =

=

n−1∑
k=0

1
λk

x∫
x/λ

f
( t
λk

)
dt >

n−1∑
k=0

1
λk

x∫
x/λ

1
K

f (t)dt >

> n ·
1
λ1
·

1
K

x∫
x/λ

f (t)dt > M

x∫
x/λ

f (t)dt.

This completes the proof of (a).

(b) Let us show that lim
x→+∞
λ→1

λx∫
x

dt
f (t)

+∞∫
x

dt
f (t)

= 0, and this is equal to the part (b) of the proposition. Respectively,

let us show that for all M > 0 there exist x0 > a and λ0 > 1 such that for all x > x0 and for all λ ∈ [1, λ0] the

inequality
+∞∫
x

dt
f (t) > M

λx∫
x

dt
f (t) holds. This procedure (we observe only the values of λ to the right side of 1) is

sufficient since f (t) > 0 for t ≥ a, so the function
+∞∫
x

dt
f (t) is decreasing.

Thus: let M > 0 and let λ1 > 1, x0 > a and K > 0 be such that for t > x0 and µ ∈ [1, λ1] it holds
f (µt) < K f (t). Let n ∈N be such that n > MK and let λ0 =

n√λ1. For x > x0 and λ ∈ [1, λ0] we have

+∞∫
x

d(t)
f (t)

>

λnx∫
x

d(t)
f (t)

=

n−1∑
k=0

λk+1x∫
λkx

dt
f (t)

=

n−1∑
k=0

λk

λx∫
x

dt
f (λkt)

>

>
n−1∑
k=0

λk

λx∫
x

1
K

dt
f (t)

> n ·
1
K
·

λx∫
x

dt
f (t)

> M

λx∫
x

dt
f (t)

.

With this (b) is proved.

Proof. [Proof of Proposition 2.6] (a) Let us show that for all M > 0 we have M
x∫

a
f (t)1(t)dt < f (x)

x∫
a
1(t)dt,

for sufficiently large x. Since f ∈ BD, it follows that for some C < +∞ it holds lim
x→+∞

sup{ f (t)|t∈[x/2,x]}
f (x) < C. Also,

it holds C > 1. According to Proposition 2.5(a) there exist x0 ≥ a and λ0 > 1 such that for all x > x0 and for

all λ ∈ [1, λ0] it holds
x∫

x/λ
1(t)dt < 1

2MC

x∫
a
1(t)dt. Also, for the same λ we have (take λ0 < 2):

(1◦a ) f (x)
sup{ f (t)|t∈[a, x

λ ]} > 2M for sufficiently large x (because f ∈ R∞), so for the same λ and x we have

M

x/λ∫
a

f (t)1(t)dt <
1
2

f (x)

x/λ∫
a

1(t)dt ≤
1
2

f (x)

x∫
a

1(t)dt;
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(2◦a ) sup{ f (t) | t ∈ [x/λ, x]} < C · f (x) for sufficiently large x, so for the same λ and x (also it should be x ≥ x0)
it holds

M

x∫
x/λ

f (t)1(t)dt < MC f (x)

x∫
x/λ

1(t)dt <
1
2

f (x)

x∫
a

1(t)dt.

For the same λ and sufficiently large x, by using (1◦a ) and (2◦a ), (a) can be obtained.

(b) We prove that for all M > 0 it holds M
+∞∫
x

dt
f (t)1(t) <

1
f (x)

+∞∫
x

dt
1(t) , for sufficiently large x. Since f ∈ BD,

then for some c > 0, lim
x→+∞

inf{ f (t)|t∈[x,2x]}
f (x) > c holds. Also, c < 1.

According to Proposition 2.5(b), there exist x0 ≥ a and λ0 > 1 such that for all x > x0 and for all λ ∈ [1, λ0]

it holds
λx∫
x

dt
1(t) <

c
2M

+∞∫
x

dt
1(t) .

Also, for the same λ (take λ0 < 2) we have

(1◦b) inf{ f (t)|t∈[λx,+∞)}
f (x) > 2M for sufficiently large x (because f ∈ R∞), so for the same λ and x it holds

M

+∞∫
λx

dt
f (t)1(t)

<
1
2

1
f (x)

+∞∫
λx

dt
1(t)

<
1
2

1
f (x)

+∞∫
x

dt
1(t)

;

(2◦b) sup{ 1
f (t) | t ∈ [x, λx]} < 1

c ·
1

f (x) for sufficiently large x, so for the same λ and x (also it should be x ≥ x0)
it holds

M

λx∫
x

dt
f (t)1(t)

<
M
c
·

1
f (x)

λx∫
x

dt
1(t)

<
1
2

1
f (x)

+∞∫
x

dt
1(t)

.

For the same λ and sufficiently large x, by using (1◦b) and (2◦b), (b) is obtained.
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