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Abstract. The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices
of a connected graph. A connected graph G is a cactus if any two of its cycles have at most one common
vertex. Let ¢4 (n,r) be the set of cacti of order n and with r cycles, £(2n,r) the set of cacti of order 2n
with a perfect matching and r cycles. In this paper, we give the sharp upper bounds of the Harary index
of cacti among ¢ (n,r) and £(2n, ), respectively, and characterize the corresponding extremal cactus.

1. Introduction

Let G = (V, E) be a simple connected graph. For any u,v € V(G), the distance dg(u,v) is defined as
the length of the shortest path between v and v in G. The diameter d of a graph is the maximum distance
between any two vertices of G. The reciprocal distance matrix RD(G) of G, also called the Harary matrix
[11], is an n x n matrix (RD, ,(G)) such that

+7 Zf U 7é v,
RDu,'U(G) = { gc(u7v) Zf "o

The Harary index H(G) of G is defined as the half-sum of the elements in the reciprocal distance matrix,

that is,
H(G) = Z RDu,v(G) = Z #

w,weV(G),u#v uw,weV(G),u#v dG(u’U)

where the summation goes over all pairs of vertices of G. Let (G, k) be the number of vertex pairs of the
graph G that are at distance k, then

d
H(G) =Y (G, F) (1)

k=1

This topological index, which was introduced independently by Plavsi¢ et al. [13] and by Ivanciuc et al. [10]
in 1993 and named in honor of Professor Frank Harary on the occasion of his 70th birthday, has a number of
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interesting chemical-physics properties, it and its related molecular descriptors have shown some success in
structure-property correlations [5-7, 12, 16]. Up to now, many results were obtained concerning the Harary
index of a graph. In [16], B. Zhou et al. presented some lower and upper bounds for the Harary index of
connected graphs, triangle-free and quadrangle-free graphs. Feng and Ili¢ [7] established sharp upper bound
for the Harary index of graphs with a given matching number. In [8], Gutman attained the trees with the
maximum and the minimum Harary index. Xu and Ch. Das [14] determined the extremal (maximal and
minimal) unicyclic and bicyclic graphs with respect to Harary index. In this paper, we will consider the
Harary index of cacti.

In order to state our results, we introduce some notation and terminology. For other undefined notation
we refer to Bollobds [4]. For a vertex v of G, denote the degree of v by dg(v). Set Ng(v) = {u|luv € E(G)},
Ng[v] = Ng(v) U {v}. If W C V(G), we denote by G — W the subgraph of G obtained by deleting the
vertices of W and the edges incident with them. Similarly, if E C E(G), we denote by G — E the subgraph
of G obtained by deleting the edges of E. If W = {v} and E = {zy}, we write G — v and G — zy instead of
G — {v} and G — {zy}, respectively. We call G a cactus if it is connected and all of blocks of G are either
edges or cycles, i.e., any two of its cycles have at most one common vertex. Denote ¢ (n,r) the set of cacti
of order n and with r cycles, and £(2n, ) the set of cacti of order 2n with a perfect matching and r cycles.
Specifically, G(n,0) is the set of trees of order n and G(n,1) is the set of unicyclic graphs of order n.

Now we give some lemmas that will be used in the proof of our main results.

Lemma 1.1. [8] Let T be a tree on n vertices. Then

n— 1

1+nzk<H T) < W.

The right equality holds if and only if T =2 S,,, while the left equality holds if and only if T = P,.
Denote by C} 1 the graph obtained by attaching n — k pendent edges to one vertex of Cj.

Lemma 1.2. [14] For any unicyclic graph G, H(G) < %(n* + n) with equality holding if and only if
G=C3p_3 forn>6and G=C, or G=C3,_3 forn=>5.

Let oo be the graph obtained by adding two nonadjacent edges to a star Ss. Denote B2 the graph
attained by attaching n — 5 pendent edges to the unique vertex in oo of degree 4.

Lemma 1.3. [15] For any bicyclic graph G with two edge disjoint cycles, H(G) < i(n2+n+2) with equality
holding if and only if G = B2.

For a connected graph G with u € V(G), we define
Z de(u,w)
wev (@) da(u,w) +1
Lemma 1.4. [14] Let G be a graph of order n and v be a pendent vertex of G with uv € E(G). Then
HG) =HG—-v)+n—1—-Q¢g—v(u).

Lemma 1.5. [9] Let T be a tree of order n with perfect matching. Then

H(T) < —(17n* + 58n — 88).

4>\>—*

The right equality holds if and only if T = Ay, », where A, » is oblained from the star Sz 1 by attaching a
pendent edge to each of certain 5 — 1 non-central vertices of Sz 1.
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Figure 1: The graph G%(n,r)

2. The maximum Harary index of cacti

In the section, we will study a sharp upper bound on the Harary index of cacti. First, we give some
lemmas that will be used.

Lemma 2.1. Let G°(n,r) be the graph shown in Figure 1, then
1
H(G (n,r)) = 50372“1 —r? 4 (n—1)r+(n—1).

Proof. Obviously, the diameter of G°(n,r) is 2, by (1), we have

HEr) = 319G =G 1) + 37(G,2)

= ntr—1+= [02 g F2r (N =2r—1)4+2-(2r—2)+2-(2r—4)+---+2-2|
= n—i—r—1—1—507217%71+r(n—2r—1)+r(r—1)

_ %03;7%1_r2+(n_1)r+(n_1).
|

Lemma 2.2. Let G € 9(n,r) and v be a pendent vertex of G with uv € E(G), then Qg—o(u) > 5 — 1. The
equality holds if and only if G = G°(n,r).

Proof. Note that the function f(z) = —F5 is strictly increasing for x > 1. Then

-
B d(u,w) d(u, w)
Qo) = 3 ST Y qwwrid

weV (G—w)

1
> ey b
weV(G—v—u) +

weV(G—v—u)

v

The equality holds if and only if d(u,w) = 1 for any w € V(G —v — u). By the definition of cactus, we have
G=G%n,r). O

Lemma 2.3. Ifn > 6, then H(C,) < H(C1,,-1).
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Proof. Note that H(G) = 321", Y7 RD; j(G). If n = 21, 1 > 3, we have

1 1 1 1 1 1 1
1 1 1 1 1 1
H _ = 2l-1N1+ -+ 4+~ V14
(Crn-1) = @@-DA+g+g+tg)+1+25+5++7)
1 1 1 1 1 1 1
= 21(1+§+§+~~~+—l_1)+1+(§+§+'~+7)+771
Then
1 1 1 1
H(Cl,nfl)_H(Cn) = (§+§++7)+7—1>0
If n=20+1,12> 3, we have
1 1 1
H(C,) = (2l+1)(1+§+§+...+7)7
1 1 1 1 1 1 1
H(Cy p— = 2044+ +—)+1+2z+=+ - F+5)+14+—
(C1n-1) (+2+3+ +l_1)+ +[(2+3+ +l)+ +z+1]
1 1 1 1 1 1
= 2A+DN1+=4+=4.-.4= e T I R |
(+)(+2+3+ +l)+(2+3+ +7 1)
It is easy to see that
H(C )—H(C,) = (1+1+ +—1 )—1>0
bt I I+1 '

Then we obtain the desired results. [

Theorem 2.4. Let G € ¥(n,r), then H(G) < 5C%_,, 1 —r? + (n— 1)r + (n — 1). The equality holds if
and only if G = G%(n,r).

Proof. By induction on n+r. If r = 0,1 or 2, then the theorem holds clearly by lemmas 1.1-1.3. Now, we
assume that r > 2 and n > 5. If n = 5, then the theorem holds clearly by the facts that there is only one
graph in 4(5,2). Let G € 9(n,r), n > 6 and r > 2 in the following.

Case 1. §(G) = 1.

Let v € V(G) with dg(v) =1 and uv € E(G). Note that G —v € ¥(n — 1,r). By Lemma 1.4, we have

H(G) = HG-v)+n—1-Qg—v(u)
< %027%2 =+ (n=2)r+ (n=2)]+n-1-Qg-v(u)
< %072172%2 4+ n=2r+n—-2)]+n—1- (g —1) (by Lemma 2.2)

1
= 503727»1 —r? 4 (n—1)r+(n-1).

The equality holds if and only if G = G°(n, 7).

Case 2. §(G) > 2.

By the definition of cactus, 6(G) > 2 and r > 2, we can choose a cycle Cx = ujus ... ugu; of G such that
dg(uy) = =dg(ug—1) = 2 and dg(ug) > 3. We will finish the proof by considering four subcases.
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Subcase 2.1. If k =3, let G’ = G — u; — ug, then G’ € 9(n —2,r — 1).

H(G)

1
Z d(u, v)

u,veV(G),u#v

- >

w, eV (G")u#v

ueV(G’)

d(, + Z duu1 Z duuz

ueV(G")

B Z duu;;) Z dUU3) +1

uEV(G’ uweV(G")

d(u,u3)
H(G") +2 Z (1— ——"""—
e d(u,us) + 1

H(G’) +2[n—2—-Q¢ (uz)] +1

IN

<1O

IN

n—3

+2[n—2—

The equality holds if and only if G’ = G%(n — 2,7 —

1
H(G) = Z d(u v)
u,veV (G),u#v ’
1
= > aat X w2 amet
u, eV (G"),u#v ueV(G’) ueV(G")
1 1 1

02 Caapeno1 — (T= 17+ [(n-2) -

]+ 1 (by Lemma 2.2 Qg (uz) >

1
502—%—1 —r?+(n=1r+(n-1).

+(

- Z duU4)+1

LS o
= H(G)+ QHG;G/)H - M] + ue;@)u _duwug) 41
=A@ A== 2 Tt 4 (0 -3) -

< H@)+2(n-3) - "+ (-3~ 2 -4 - ]

= %C’QL*ZT*Z (r=12+[(n-3) =1 -1)+[n-3)—1]

)+ 1

> o)1 — (P =12+ [(n = 2) =1 (r = 1)) +[(n - 2) — 1]
n—3

2

1), then G = G%(n, 7).
Subcase 2.2. If k =4, let G' = G — uy — uz — uz, then G’ € ¥(n — 3,r —1).

d(uhUQ) + d(ul,u:),) + d(’U,Q,u;g))

Z duu4)

Z d(u u4)

uEV(G’

d(u,uq) + 2

497

r=1)+[n—-2)—1+2n—-2—- Q¢ (u3)] +1
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Hence H(G) < 3C2_5,_y — 1?4+ (n—1)r+ (n—1).
Subcase 2.3. If k =5,1let G’ =G —u; —us — ug — uq, then G’ € ¥(n —4,r — 1).

HEG = ), d(ul, v)

u,’UGV(G) u#v
- Z d(u V) Jr Z d(u Z + Z d(u Z
w,weV (G'),u#v ’ ueV(G’) ueV (G’ ) U ueV(G") ueV(G")
+(1+1+1+1+1+1)
d(uy,us) d(ulvu3) d(ui,us)  d(ug, Us) d(ug,us)  d(us,ug)
9
S @ Y L s % .
e d(u,us) + 1 e d (u,us) + 2
d(u, d + 9
weVv (G u, Us weVv (G » U5
= H(G)+2[( - ¥ d(u, u) OB 4 9((n—4) — dlu, ug) + J+2
- d(u,ug) +1 d(u, us) 2
ueV(G’) ueV (G’)
5 2 1 9
< H(G')+2[(n—4)—T]+2[(n—4)— g(n—B)— §]+f
m 5
— gLt 2
(G") + T T &
1 _, on 5
< ) SOk D=2 =) 4 (= ) 2)
1 1
= 503_2T_3 4t (n—Dr+(n-1)+ 6(4n —12r —5).
Note that n > 6, we have
1 n—>5
On 2r—1 [ CEL—QT‘—3 + 6(4” —12r-5)] = 3 > 0.
Then H(G) < 3C2_o,_y — 12+ (n—1)r+ (n—1).

Subcase 2.4. If k > 6, then G’ = G—ujus+usur € 9(n,r). Let Vi = {ug,ua,...,ur}, Vo = V(G) - 11.

H(G)

_ 3 1

u, eV (G),u#v da (’LL, 'U)

B u,ve%z:,u;év v +u;/2 dG (, u1) +u§/ de (u, up—1) u;/ dG (u, ug)

+ w}e;hwév dG(u, v)
B u,vé%:,u;év v +u; dG u,uy) +u;/ de(u,up—1) ; dG u, ug) + H(Cy),
- e

u,vEV (G, u#v

- Z dG/uv Z dG/uu1 +Z dG/(u Ug—1) Z dG/uuk

u,vEVa,u#v u€eVy u€eVs
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+ ) !

w,vEVL, uFv dGl (u’ U)

499

T
u,vevzg,u;év dG, , ’U Z dGl u ul u; dG/ u Uk— 1 u;/ dG, w, uk
+H(Cra(11)).

Note that dg(u,u;) > der(u,u;) for i = 1,2, ...k, then

1 1 1
H(G — -+ -
(&) - u;/ dG/ (u,uq) dg(u,ul)] uezv der(u,up—1)  dg(u,ug—1)
1
H(Cy_1(1Y)) — H
e RVt

> H(Ck,l(l )) — H(Cy) >0 (by Lemma 2.3).

Hence H(G') > H(G). Note that 6(G') = 1, by case 1, we have

HG)<=C? , | —r*+(n—-1r+(n-1).

DN | =

This completes the proof. [J

3. The maximum Harary index of cacti with a perfect matching

Now, we will study a sharp upper bound on the Harary index of cacti with a perfect matching. The
following Lemma 3.1 can be proved easily.

Lemma 3.1. If G € £(2n,r), n > 3, then each vertex of G is adjacent to at most one pendent vertex

Figure 2: The graph G(2n,r)

Lemma 3.2. Let G(2n,r) be the graph as shown in Figure 2, then

1
H(G@n,r) = ﬂ(n —r—1)(23n+17r —2) + 2n +r* + 7 — 1.
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Proof. Tt is easy to see that

v(G,1) = 2n+r-—1,
v(G,2) (n4+r+1)(n—r—1)+2r?
v(G,3) = (n+r—1)(n—r-—1),
v(G,4) = %(n—r—l)(n—r—Q).
Then
H(GOn,r) = Z%W(G,l)
=1
= (2n+r71)+%[(n+r+l)(n77’71)+27’z]+é(n+r71)(n77’71)
+%(n77’71)(n77"72)
1
= ﬂ(n—r—1)(23n+17r—2)+2n+r2+r—1.

O

Let Cy, (k > 4) be a cycle with vertex set V(Cy) = {u1,uq,...,ui}. Let Gy be a graph of order n, which
is obtained from Cj (n — k < k) by attaching a pendent edge to each of certain n — k vertices of Cy. Then
2<dg,(u;) <3fori=1,2,...,k Let

5 — 1, if dg,(u;) =3,
L0, dif dey(ug) =2.

Denote the pendent vertex adjacent to u; by u}(d;). In fact, if 6; = 0, there does not exist such pendent
vertex adjacent to u;, for convenience, we name wu}(d;) as a pseudo-pendent vertex adjacent to u;. If there
exist adjacent 3—degree vertices in G, without loss of generality, let de, (u1) = dg, (uz2) = 3; If there does
not exist adjacent 3—degree vertices in Gy, let dg, (u1) = 2,dg, (u2) = 3 and dg, (u3) = 2.

(2)

Lemma 3.3. Let Gy be the graph as described above, Go = G1 — usuz + ujus.
(1) If dG1 (’Uq) = dG1 (UQ) = 3, then H(Gl) S H(GQ)
(i) Ifdg,(u1) =2,dg, (u2) =3 and dg, (u3) =2 and k > 8, then H(G1) < H(G3).

Proof. Let PV be the set of pendent vertices of G;. Obviously, G2 has the same set of pendent vertices as
G1. By the definition of §; and pseudo-pendent vertex, we can set PV = {u}(d;)]i =1,2,...,k}. Then

HG) = Y :

u,wEV (G1),u#v dGl (u’ U)

- ¥

u,weV (Cy),u#v

0i0;
H(Gy) = Z de (u,v) + Z ZdG2uu +ZZ da, (uj(0;),uf(d5))

wwEV (Ch),uztv G, (u weV (Cy) i=1 i=1i<j<k

> ngluu *ZZ z<6>u'<6j>>’

d
Gl( v weV(Cy) i=1 i= 11<]<k G1 »

The proof need not distinguish two cases that k is even or not. However for convenience, we prefer to
given only the proof for even k = 2. Let

A (u;) Zdal Gy e Zdaz oGy O =he b
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106:)) = 9id; iy 5:6; o
B, (uj(6) = > GGy Do) = 3 Ty (k)

7 J 7

Note that as we pass from G; to G, the distance of u; from a vertex in {ug,...,u;y1} is decreased by
1 and the distance of uy from a vertex in {us,...,u;41} is increased by 1, whereas the distances of g, us
from a vertex in V(C%) — {us, ..., w41} are unchanged. Then

3 04 0141 3 04 0141
+ 4o - + o ),
1+035 2404 l—14141 2463 3+, I+ 6141
3 04 0141 3 04 d141

+ +... _ + oLy
24463 3+64 I+ 6111 1403 24064 l—1+40141

Ag,(u1) — Ag, (w1) = (

AGz(u2)_AG1<u2> = (

Similarly, it is easy to see that the distance of uz from a vertex in {uq, us, ug; . .., w43} is changed, and the
distances of ug from a vertex in V(Cj) — {u1, uz, ug; . .., w43} is unchanged; the distance of uy from a vertex
in {uy,us,ug ..., u4qa} is changed, and the distances of uy from a vertex in V(Cy) — {u1,ug, ug ..., ui44}
is unchanged; - - - ; the distance of w41 from a vertex in {u,us} is changed, and the distances of w41 from
a vertex in V(Cy) — {u1,uz2} is unchanged; the distances of u; 42 from a vertex in V/(Cy) is unchanged; the
distance of u;4o from ug is changed, and the distances of u;; o from a vertex in V(Cy) — {us} is unchanged;

--+; the distance of ug; from a vertex in {us,uq,...,w;} is changed, whereas the distances of ug from a
vertex in V(Cy) — {us, ug,...,u;} is unchanged. Then
01 P 021 0143
A - A = ... e — —
Gz(ug) Gl(ug) (1—|—51+2+(52+2+521+ l—1+5l+3
01 2 21 143
+ + o ),
(2+51 1462 34 l+5l+3)
01 2 21 0144
A - A = DRI — —
GQ(u‘l) Gl(U4) (2+(51+3+62+3+5gl+ l—1+5l+4
01 2 21 0144
+ + Hoe :
(3—|—51 246y 446y I+ 6144
01 2 01 )
A —A = _
G2(ul+1) Gl(ul+1> (1714’51 + l+52) (l+51 + l71+§2)7
Ag, (wy2) — Ag, (wy2) = 0,
d3 d3

Ag, (uiy3) — A, (u43) I—1+065 I+05

3 04 o

L 5 G 5
2463 3444 I—1+6

A A - _ o
Gz (u2r) — Ag, (uz) ( G35 T3 T TiTs

) ).

Similarly, it is easy to know that the distance of uj(d;) from a vertex in {u3(ds),...,u;, 1(d141)} is
changed, and the distances of w)(d1) from a vertex in PV — {u5(d3),...,u; 1 (0141)} is unchanged; the
distance of u(d2) from a vertex in {u3(3),...,uj,;(d1+1)} is changed, and the distances of uy(d2) from a
vertex in PV — {u3(d3), ..., (d141)} is unchanged; the distance of u3(d3) from a vertex u}(d;) for j > 4,
if j =21,21—1,...,1+ 3, the distance is changed, and the others are unchanged; - - - ; the distance of u}(d;)

from a vertex u;(éj) for j > 1+ 1, if j = 2[, the distance is changed, and the others are unchanged; the
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distance of u}(d;) from a vertex u’;(d;) for j > and i > [ + 1, the distance is unchanged. Then
5153 51(54 5151+1
Be, (U] — Bg, (u] = T—1xs +5..0 "
a2 (11(01)) = Ba, (1 (0)) (1+51+53 246, + 04 I— 146, + 0111
(s 5164 516111
2401+93 3+01+04 1461+ 841"
(5253 (5254 525l+1
B 5(62)) — B 5(6 = 2Pl
Gz(u2( 2)) Gl(U’Q( 2)) (2+52+63 3-'—52-'—54 l+52 +6l+1
( 5253 5254 5251+1
1460403 245+ I =146+ 641"
0309y 030143
B : -B ! = (2 S o B
G2(u3(53)) Gy (U3(53)) (2+63 +621 1—1 +(53 4 (SlJ,»S
( 302 030143
3+ 03 + o l+53+(5l+3’
04021 040144
Be. (W) (64)) — Ba. (W (6,)) = (—2%2 Q4%
G2(U4( 4)) Gl(u4( 4)) (3+54 +521 1—1 +54 +6l+4
( 6462[ 645l+4
44 04 4 0oy I+ 084+ 0144a"
0102 0102
B / — B / —
and Bg, (u;(0;)) — Bg, (u}(d;)) =0fori=1+4+1, ..., 2l
By Lemma 2.3, if [ > 2, we have
1 1 1 1 1 1
oo Y = Attt o120
u,vEV(Ck),u;év (’LL, U) u,veV (Ck),u#v dGl (u7 U) 2 3 ; ¢
(i) If dy, = dy, = 3, then 6; = d2 = 1. By the above discussion, it is easy to see that
21
Z(AG2(uJ) AGI u] Z Z dG2 u, u Z Z ) > 0,

j=1 u€V (Ck)

ZZ

1= lz<j<k 2

ueV(Cy) i=1

ZZ Z< u’<6j>> =0

i= lz<j<k G ]

21

Z(BGQ(U‘;(é )) BGl

j=1

Then H(Gl) S H(Gg)
(i) If d,,, = 2,d,, = 3, then 6; = 0,52 = 1 and d3 = 0. By the above discussion, we have

21

1 1 04 0 04 &
Ae () — A N> _Z — ceegp
;( calwy) ~delw)) = — et g oty T s T e
21
04 d141 4 8141
B "(6;)) — B (6 > (—— 4 ... _ .
j;( a, (u}(95)) — Ba, (uj(8;))) > (4+54 T 5o " .
Hence
1 1 1 1 0141 141
HG G = — — — ,_1 - _ = _
(G2) — H(Gh) Grgt+pP+7-14 3 R ww e b
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Note that k =2 > 8, then [ > 4. If §;;1 = 0, it is easy to see that
1 1 1 1 1 1
H(Gz)—H(G1)Z(*+*+"'+*)+*—1+7—§>0.
If 6,41 = 1, obviously

H(Ga)~ H(G) = (5+ 5+ +

Then H(Gl) S H(Gz) OJ

Theorem 3.4. Let G € £(2n,7), n >3, then H(G) < 57(n—r—1)(23n+17r —2) + 2n +r* +r — 1. The
equality holds if and only if G =2 G(2n,r).

Proof. By induction on n + 7. If r = 0, then the theorem holds clearly by Lemmas 1.5. Now, we assume
that r > 1 and n > 2.

Case 1. §(G) = 1.

Subcase 1.1. There exists a vertex u of degree 2 which is adjacent to a pendent vertex v in G. Let
G'=G —u—v, we have G’ € 4(2n — 2,r). By the inductive assumption, we have

H(@) < %[(n—r—l)—l][(%n—kl?r—?)—23]+(2n—2)+r2+r—1
23 1
= H(G(?n,r)—ﬁn—kir.

Note that 2n > 2r + 2, then

HE) = HG)+ Y Y

zeV(G—v—u) d(.]?,U)) +1 zeV(G—v—u) d(x,w) +2

n+r—1 n—r—2 n+r—1 n—r—2 1
< H(G 1 )+1
< (G") + ( 5 + 3 + 1)+ ( 3 + 1 +2)+
23 1 n+r—1 n—r—2 n+r—1 n—r—2 1
< H(G(2 - — - 1 - 1
< (G(2n,71) 12n+4r+( 5 + 3 +1)+( 3 + 1 +2)+

— H(G2n,r) — %(n C o 1) < H(G2n, 7).

Subcase 1.2. The degree of any vertex which is adjacent to a pendent vertex in G is at least 3. We

can choose a cycle C' = ujus ... uguy of G such that u; (i = 2,3,...,k) does not appear on other cycles of
G and there at least exists one of u; adjacent to a pendent vertex for ¢ = 1,2,...,k. Then d,, = 3 if u;
is adjacent to a pendent vertex, otherwise d,,, = 2; and 3 < d,, = d < n + r. Note that at most one of

ujug, uruy belongs to the perfect matching M of G. Without loss of generality, we assume that ujug ¢ M.

s o —o o

H Gi, G, G,
Figure 3: The graphs Hg, G}l 2 Gi 5 and Gi 9

Subcase 1.2.1. k = 3.

(i) If dy, = dyy = 2, then ugus € M and there is a pendent vertex v} adjacent to u;. Let G' = G—ug—usg,
obviously G’ € ¥(2n —2,r — 1).

If G’ = Hg, then n = 4,7 = 2. We have G = G}, (as shown in Figure 3) and H(G},) = 17.3333. By
Lemma 3.1, H(G(8,2)) = 18.1516. Then the result holds.



Zhongzun Zhu et al. / Filomat 28:3 (2014), 495-507 504

If G' 2 Hg, then G’ € 4(2n — 2,7 — 1) \ Hg. By the inductive assumption, we have

HG) < i[(n—l)—(r—l)—1][(2371—1—177"—2)—40]+(2n—2)+(r—1)2+(r—1)—1
= 21—4(71—7“—1)(23n+17r—2)+2n+r2+r—1—%(571—1—7“—&—1)

— H(G2n,r) — %(571 b,

Then
1 1
HG) = HGY+ Y ot > 1
z€V(G—us—us) d(l’, ul) +1 2V (G—v—u) d(.’ﬁ, ul) +1
< HE) -+ T 4

n+r—2 n—r—1
2 + 3
The equality holds if and only if G — us — uz =2 G(2n — 2,7 — 1), then G = G(2n, 7).

(ii) If dy, = du, = 3, then there exist two pendent vertices u}, uj adjacent to us, us, respectively, and
uguh € M,uguy € M. Let G' = G — v}, — us. Then M U {ugus} \ {ugub, ugus} is a perfect matching of G’
and G' € 9(2n — 2,r) \ He.

By the inductive assumption, we have

< H(G(2n7r)—%(5n+r+1)+2( +1)+1=H(G(2n,r).

1
H(G) < ﬂ[(n—1)—r—1][(23n+17r—2)—23}+(2n—2)+r2+r—1
23 1
= H(G(?n,r)—ﬁn—l—ir.
Then
1 1 1 1 1
H = H(G — X+ 1+ - —+1+ )+ -
(@) (G)+<ch(a;,u1)—|—2Jr +2)+(Z d(az:,ul)—&-2Jr +2)+3
T€V2 TeV2
+r—-3 1 n—-r—-2 1 1
< H(G Qni - T 414z —
= (G") +2( 3 +2+ 1 + +2)+3
23 1 n+r—3 1 n—-r-—2 1 1
< H(G(2 - — —r+2(——+ -+ ——+1+ )+ <
< H(GEnr) -t r+ 22— — 45+ —p—+1+7)+7
1
= H(G(2n,r)— 1—2(911 —r—16),

sincen > r+ 1,7 > 1, then 9n —r — 16 > 8 — 7 > 0. Hence H(G) < H(G(2n,r).

(iil) If dy, = 2,dy, = 3 or dy, = 3,dy, = 2, without loss of generality, let d,, = 3,dy, = 2. Then there
exists a pendent vertex uf, adjacent to ug, and usuh, ujuz € M. Let G/ = G — ug — ub,.

If G’ = Hg, then n = 4,7 = 2. We have G = G} , (as shown in Figure 3) and H(G%,) = 16.8333. Note
that H(G(8,2)) = 18.1516. Then the result holds.

If G’ 2 Hg, then G’ € 9(2n — 2,7 — 1) \ Hg. By the inductive assumption, we have

H(G) < %[(n—l)—(r—l)—1][(2371—1—177"—2)—40]+(2n—2)+(r—1)2+(r—1)—1
= 21—4(71—7“—1)(23n+17r—2)+2n+r2+r—1—%(571—1—7“—&—1)

— H(G@n,r) — %(571 b,
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Let Vi = {ug,ub,us}, Va = V(G) — V4. Then

1
H(G) = Y41
(@) Y gt )t
Tz€V2 zeVa
n+r—3 n—-r—1 1 n+r—-3 n—-r—-1 1
< H(G 1 1 = =
< H(G)+ 1+ 5t +)+(2+ s T +2)+1
1 17 1 5
< H(G(2 - = — —
< (G(2n,r) 3(5n—|—r+1) 12n+4r+12

= H(G(2n,r)— %(?m +r—1) < HG2n,r).

\ L))
Slelelotaty

Figure 4: The graphs G1,Ga,...,G12.

Subcase 1.2.2. k > 4. Let Vi = {uy, | (81), uz, u5(92), ..., uk, u)(dx)} (note that if §; = 0, u}(J;) isn’t
an element of V1), Vo = V(G) — V1. Let i +1 = (i +1) mod k. Then

H@&) = Z z v)

u, eV (G),u#v dG( ’
+szguu sz (u, ul( ))+ Z

>

da(u,v)’
u,veVQ,u;é'u ueVs i=1 ueVs i=1 u,vEV) , u#v G( ’ )

Subcase 1.2.2.1. There exist two adjacent vertices u;,u;+1 € V(Cy) with 6; = §;.1 = 1. Note that if
k =4, it must coincide with this case. Let G’ = G — u;11ui+2 + Uiuit2, obviously G’ € ¥4 (2n,r). Then

, 1
H(G ) - Z dgr (uv 'U)

u,veV(G")u#v

1
- Z dG/uv szczuu sz@uu ))Jr Z dgr(u,v)’

w,vEVa, uFv u€Vsy i=1 u€Vs i=1 u,vE VY , uFtv

Note that if u,v € Va,u # v, dg(u,v) = dg(u,v); if u € Vo, dg(u,u;) > der(u,u;) and dg(u, ul(;)) >
der (u,u)(6;)). Hence

/ 1 71 1
H(G) - H(G) = Z Z dG' (u,ui) dG(uaui)) " Z ) Z da(u,v)

der (u,v
ucVs i=1 u,vEVY , uFv G/( ’ w,vEV], u#v
1 1
= Z d o Z d :
u,v u,v
u,veV  uFv G,( ’ ) u,wEV] , u#v G( ’ )

By Lemma 3.3 (i), we have H(G") > H(G). Further by Subcase 1.1, H(G(2n,r) > H(G’).
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Subcase 1.2.2.2. There do not exist two adjacent vertices u;,u;+1 € V(Cy) with é; = §;41 = 1.
Without loss of generality, let §; = d;4120 = 0,0;41 = 1.
If k> 8,let G =G — ujp1uip2 + usuirs, similar to Subcase 1.2.2.1, we have

1 1
HG)Y-HG) > _— _—
©)-HE) = > T 2 )
u,veVL,uF#v u,v€Vy , u#v
By Lemma 3.3 (ii), we have H(G') > H(G). Further by Subcase 1.1, H(G(2n,r) > H(G").
Now we only need to consider the cases of 5 < k < 7, let G' = G — ujr1Uit2 + U2, or G/ =
G — Ujy3u;rq + uu;yo. By direct calculation, we have

H(Gy) =5, H(Gy)=8.3333, H(Gs)=10.1667, H(G,) = 10.3333;
H(Gs) =135, H(Gg) =165, H(Gr)=12.9167, H(Gs) = 16.2333;
H(Gy) = 18.1667, H(G1o) = 19.5667, H(G11) = 21.6667, H(Gis) = 16.25. (3)

By (3.3), it is easy to see the following results:

(i) If k =5, H(Gs) < H(Gy);

(ii)) If k = 6, H(G7) < H(G5) and H(Gs) < H(Gy);

(111) Ifk=7, H(Glg) < H(GG) and H(Glo) < H(Gll)

So H(G') > H(G). Now either G’ exists a vertex of degree 2 which is adjacent to a pendent vertex, or
G’ has two adjacent vertices u;, u;11 with §; = ;11 = 1. At the same time, it is easy to see that the other
cases of G must have two adjacent vertices u;, u;41 with §; = d;41 = 1. Further by Subcase 1.1 and Subcase
1.2.2.1, we have H(G(2n,r) > H(G").

Case 2. 6(G) = 2. We can choose a cycle C, = ujus ... uguy of G such that dg(us) = -+ = dg(ug) = 2
and dg(uy) > 3.

If k=3, let G’ = G — ugus. If G’ = Hg, then n = 4,7 = 2. We have G = G}, (as shown in Figure 3)
and H(G%,) = 14. By Lemma 3.1, H(G(8,2)) = 18.1516. Then the result holds. If G’ % He, similar to
Subcase 1.2.1, we have the desired result.

If k = 4,5, let G = G — ujug + ujug, note that H(Cy) =5 = H(G1), H(C5) = 7.5 < H(G32). Then we
have H(G'") > H(G), by Case 1, we have H(G(2n,r) > H(G).

If £k > 6, Let G’ = G — ujus + ujuz. Similar to the proof of Subcase 2.4 in Theorem 2.4, we have
H(G') > H(G). Further by Case 1 in Theorem 3.4, we obtain the desired result. [J

Acknowledgement: The authors are grateful to the referee for his or her valuable comments, corrections
and suggestions, which led to an improved version of the original manuscript.
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